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Abstract

Starting from the\V = 2 SYM4 quiver theory living on wrapped/; D5-branes arounﬂl.2 spheres of deformed ADE fibered
Calabi-Yau threefolds (CY3) and considering deformations usizssive vector multiplets, we explicitly build a new class of
N =1 quiver gauge theories. In these models, the quiver gauge §odf(X;) is spontaneously broken down fi§; SU(N;)
and Kahler deformations are shown to be given by the real part of the int@gfalform of CY3. We also give the superfield
correspondence between the= 1 quiver gauge models derived here and those constructed by Cachazo et al. [hep-th/0108120]
using complex deformations. Other aspects of these twodluall supersymmetric field theories are discussed.
0 2003 Published by Elsevier B.@pen access under CC BY license.
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1. Introduction

Recently four-dimensional” = 1 supersymmetric quiver gauge theories have been subject to an intensive
interest [1-3]. These theories, which are engineered in different but dual ways, appear as low energy effective
field theory of compactification of M-theory on G2 manifolds and type Il string compactification on threefolds
preserving 18 of original supersymmetries [4—7]. A remarkable set of such field theoretical systems corresponds
to those 4DA = 1 supersymmetric quiver gauge theories with gauge gfdup’ (»;) and which are obtained
through deformations of 4DV = 2 [ |, U (N;) supersymmetric quiver gauge theories living on D5-branes wrapped
on ADE fibered Calabi—Yau threefolds (CY3) [8,9]; see also [10]. Two classes (with and without monodromies)
of such DO N = 1 supersymmetric quiver gauge theories, following from the complex deformation &f 4£2
supersymmetric quiver gauge theories, have been constructed in [11-13]. In this Letter, we want to derive their
mirrors using Kahler deformations rather than complex ones. Note that from the geometric point of view, this
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kind of dual models follows naturally using algebraic geometry methods and mirror symmetry exchanging Kahler
and complex deformations; but from the supersymmetric field theory view the situation is far from obvious and
needs a careful treatment. We will show, amongst others, that Kahler deformations in supersymmetric quiver field
theories require massive gauge prepotentials; that is a spontaneously broken gauge sy@iény down to
[1; SU(N;) with all the features that go with this behaviour and also in particular the implementation of a Higgs
superpotential and so adding further fundamental matters.

The presentation of this Letter is as follows: in Section 2, we describe the 422 [ |, U (N;) supersymmetric
quiver gauge theories living on D5-branes wrapped on ADE fibered Calabi—Yau threefolds (CY3). We focus our
attention on the special example@fN) gauge theory engineered on a fibered CY3 and use the simplest path
involving the minimal degrees of freedom. Extension to ADE geometries is straightforward and some of its aspects
may be found in [14]. In Section 3, we develop the study of theMB: 1 []; U (N;) supersymmetric quiver gauge
theories following from complex deformations of thé =2 SYM, quiver models. In Section 4, we consider the
mirror of the previousV = 1 supersymmetric quiver gauge by using Kéhler deformations rather than complex
ones. In Section 5, we give our conclusion. Note that we will workvin= 1 superspace and make use of both
real superspacer, 0, 6) techniques as well as chiral ones+ 606, 6, 6). For technical details; see for instance
[14,15].

2. 4D N =2 SYMy quiver theories: A1 model

The N = 2 supersymmetric Aquiver theory in four dimensions involves the fc_)llowivkg_z 1 degrees of
freedom: (i) AU (N) gauge multiplet’ which we take in the WZ gauge &= —00"0A, — 6205 + i6%0% +
16262 D. This superfield has the special features

N2-1

1
vi=0, V=—UY+ D VaTe U=TrW), (2.1)
a=1

which will be needed later on. Here ¥ lijq is the AbelianU (1) generator o/ (N) and{T?} refer to theSU(N)
traceless generators. (ii) A chiral multipkétin the adjoint representation of the gauge gréu@v). We will refer
to it as adjoint matter and has the two following decompositions

N2-1
1 _
P=_0Y+ Y T @ =¢+0y +6%°F, DP=0, (2.2)
N a=1

whereD stands for the supersymmetric covariant derivat{i@; D} ~ 20, and® =Tr(®) is theU (1) part of
the adjoint ofU(N). We have alsd®Y, @] =[OY,UY]=[OY, V] =0. For later use, we will focus on the
supersummetric vacuum with a presen®dl N) gauge symmetry; that is matrix superfields with vevs such as
(@4) =0, but(®) # 0. Note that the computation of ("] in terms of ® and @, involves SU(N) Casimirs;
however, due tq®,) = 0 the vev of Tf@™] simplifies to T[(%@)Y)’"] = N""1e™ and so superpotentials of
type W (@) = Z’{“ 8n Tr @™ reduce to a polynomial in th& (1) superfield®. (i) Four chiral multipletsQ (4 +)
with the followingU (1) x SU(N) chargesQ+ +) = 0+ andQ(_ 4+, = P_ are in the representatigt:1, N) and
Q+.—) =P+ andQ(— ) = Q_ are in the representatias:1, N). The antichiral superfields are in the complex
conjugate of these representations. For convenience, we will work with the normalization G{ Itheharge
as[Y,Q0+]=20+ andl[Y, PL] = —2P.. These matter superfields have, in the chiral basis, the follo@ing
expansions

Qs =qs+0Vs +0°fs, Pi=pi+0ns + 6714, (2.3)
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whereg+, p+ and so on stand for component fields. Note that the chiral compo@ite8_ and P, P_ are

in the U (N) adjoint representation and may be expanded as in Egs. (2.1) and (2.2). The same is valid for the
Hermitian composite® .+ 0% and P+ P;. Note also that these fog . and P+ chiral multiplets form twa\V = 2
hypermultiplets; one of them encodes the transverse coordinates of D5-branes; it describes their positions in the
ten-dimensional type IIB string space, and the other is the usual moduli associated with the Kahler deformation of
the A singularity [17].

2.1. Action

The superspace Lagrangian density_»(A1) describing the\' = 2 dynamics of the previous superfields
reads as

Ly—2(A1)=Lg(V) —2¢ /d49 U+ Lad(P) — fd29 (B0 +Tr[@(Q- 04 — P-Py)] +he)

+ / d*9Tr[0*e Y 0 + 0% e®V 04 + P*e ™ P_ + PV Py, (2.4)

where L, (V) and Laq(P) are, respectively, the gauge covariant Lagrangian densities fol/tié) vector
multiplets and adjoint matter superfields. The coupling constardad 8 are, respectively, real and complex
parameters. They have both a field theoretical and geometric meanings and will play a crucial role in the present
study. The supersymmetric scalar potential reads in terms of the auxiliary field&a%Tr(Dz) + Tr(FF*) +
Tr(f¥ f+) + Tr(l%1+) and the moduli space of its vacuum configuration is given by the following equations
{=r1—r2, B=1t—12 (2.5)
where we have set
r1=(Tr(Q+ Q% + P4 PY)), n=(Tr(Q-04)).
r2=(Tr(Q_Q* + P_P¥)), 12 =(Tr(P_Py)). (2.6)

These parameters have a geometric interpretation in terms of Kahler and complex moduli effiber Af the
CY3. The real parameter is the volume of the blown up sphere and the complex constant is just the so-called
holomorphic volume of the complex deformation of.An algebraic geometry, this means

¢ = / gy = f I f 02, 2.7)
$2 $2 sz

where 71D andw?9 are, respectively, the Kahler and complex holomorphic forms on theuiface. Note in
passing that the algebraic geometry equation of the complex deformed of fiteeAof the CY3 reads as

X2+ Y2+ (z— Az + A1) =0, (2.8)

whereAr stands for the holomorphic volunig — ) of the complex deformation which, by help of Eq. (2.5), is
also equal tg8 and so Eq. (2.8) may be rewritten g8+ y2 + z2 = 2.

2.2. Mirror N =2 models

On the supersymmetric field theory side, theand |8| parameters are involved in th¥ = 2 SYM gauge
coupling constantﬁlg") = gy=2 Which read, in terms of the type IIB string coupling @s

9N:2=\/gvs, V=\/¢2+BB. (2.9)
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Fig. 1. In this figure we represent the projection of a floped = gy —2(?) on the(¢, |8|) plane. The black dot on the-axis representsgi.L2
and the one on thgg|-axis represents%):z.

Note that from the above relation, one sees that\the 2 SYM coupling constant is a real two argument function;
Ov=2 = On=2(¢, |B]), which we shall naively rewrite asvg.2(¢, 8). Accordingly, one may think about this gauge
coupling constant as describing a flon/gf= 2 SYM models interpolating between two extreme models | and Il
with respective gauge coupling constan};',%:g and é\',')zz The firstis

9§\|1)=2=\/%, V|=\/§, B=0, (2.10)

with blown up volumeV; and the second involves pure holomorphic voluveype Weil-Peterson as

9%')=2=\/3i;, Vi =\/§, ¢=0. (2.11)

Setting¢ = p cosy and|gB| = psind; with the spectral parametér bounded as & ¥ < 7, one gets an explicit

relation for this\ = 2 gauge coupling constant flowygs = gy—2(%) = %. In this view, the theories | and Il

with respective gauge couplingfkj,)g2 and Q\',')ZZ correspond t@ = 0 and%, they are mapped to each other under
mirror symmetry acting a8 — 7 — ¢, see Fig. 1.

In A; geometric language, th&¥ = 2 gauge models | correspond to the blowing up efstirface in CY3; but
zero holomorphic deformationﬁgz 0?9 = 0. The compact part of thegssingularityx? + y? + z2 = 0 gets a non-
zero volume agRex)2+ (Rey)2+ (Rez)2 = ¢. This positive Kéhler parameteiis same as in the superfield action
Eq. (2.4). To fix the ideas can be imagined of as corresponding to the derivative of a special Kéahler deformation
K (h, h) whereh andh are Higgs fields to be specified later on; see Eq. (4.7). In other word8 Kr/dC where
Kr is alinear Kéhler deformation akg ~ ¢(C + U) and whereC = ”f}’%””; see Egs. (5.1)—(5.4). In the
present Letter; should be thought of as just the leading case aba-linear Kahler superpotentiak (H, H)
so that(Rex)? + (Rey)? + (Rez)? = ¢ gets replaced byRex)2 + (Rey)? + (Rez)2 = K'(h, k). Along with
this Kahler analysis, one may also consider its mirror description using complex deformatiansofgiilarity.
In this case the resulting/ = 2 gauge model Il corresponds exactly to the reverse of previous situation. Here
[z T =0 but [, 0?9 £ 0. As before the A singularityx? + y2 + z2 = 0 gets now a holomorphic volume
asx? + y2 + z2 = p? where§ is as in the super action Eq. (2.4). Here also fhiappears as the derivative of
linear complex deformation a¥g ~ B¢ which in general should be thought of as just the leading caseorfi-a
linear polynomial superpotentiaV (¢) so thatr? + y2 + z2 = 2 extends tor2 4 y2 + z2 = W'2(¢) constituting
a non-trivial fibered deformed AAin the CY3 we are interested in here. Note thdt+ y2 + z2 = W'2(¢)
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describes a singular conifold i6%; no complex deformation of this conifdlds made here and so it should
not be confused with geometric transition scenario of [11]. Note also that extensipramd 8 to non-linear

K’ andW’, respectively, brea/ = 2 supersymmetry down t& = 1. From the field theoretical point of view,
these two models correspond to choosing the corresponding vevs Egs. (2.5) and (2.6) suth)teat(¢) and
ri(c) # ra2(c) and inverselyy(¢) # t2(¢) andri(c) = r2(c). The two symmetric situations indicate the existence of
two mirror N = 1 supersymmetric Aquiver gauge theories | and Il with gauge couplinﬁ,%zg and g\',')zl Let us
first study complex deformations of the previoMs= 2 theory by introducing chiral superpotentidig ®). Later

we consider how mirror K&hler superpotentials may be implemented.

3. N =1A; quiver gaugetheory |

This theory is obtained by performing complex deformations of the Lagrangian dehgity(A1) Eg. (2.4).
This is equivalent to introducing an extra chiral superpoteri#iain the adjoint matter superfield and also in
particular in theU (1) factor ® of adjoint matter® Eg. (2.2). In doing so, the Lagrangian density—»(A1)
becomes

LY_1(A1) = Ly=2(A1) + (/dzé W(O) + h.c.). (3.1)

In this relation,N' = 2 supersymmetry is explicitly broken down & = 1 due the presence of the nonlinear
superpotentialW (®); but U (N) gauge invariance is still preserved. The superpotetigh) generating complex
deformations has two basic features which, in fact, are inter-related and play an important role at the quantum

level: (i) the holomorphic properts gv(g()) = 0, which permits to benefit from the power of algebraic geometry and
(i) chirality
/d40 W(©)=0 (3.2)

allowing miraculous simplifications. Comparing the above Lagrangian density (3.1) with Eq. (2.4), one learns that
complex deformation by the superpotentfé(®) corresponds to promoting the previous complex Fl type linear
term with complex coupling constagt namelyg fd29 (®), to a more general chiral superfunctiﬁwze W(®).

As a consequenc®’(®) is no longer constant as in general idsdependent. It follows then that the constgnt

of Section 2 is now promoted tola(N) gauge invariant functio®(¢) as

B—P@)=8—-Wi(p), (3.3)

whereW’(¢) = (W’/(®)). Moreover, putting the relation (3.3) back into the expression of the SYM gauge coupling
g, one gets the following runninf” = 1 gauge coupling constant

On=1(¢) =9gn=2(¢, B: ¢), 95\|/)=1(¢) =0gv=2(£,=0;9), gﬁ\lzl)=1(¢) =gnv=2(0=0,8:¢). (3.4)

Note that\ = 2 supersymmetry is recovered at the critical pgigbf the superpotentialy’ (¢o) = 0, and so by
expanding around this critical point, one may compute the deviations @f teel gauge coupling from th&” = 2
value.

0gn=2(B)

On=1(¢) =gn=2(p) — <¢W o

+ h.c.) +0(¢?), (3.5)

1 complex deformation of conifold singularity involves desingularisation modutisx2 + y2 + z2 = W’2(¢) + u which is required in
geometric transition at larg¥ [18]. Here we have only¥’2(¢) (deformed A moduli); but nox = 0.
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where we have seip = 0. The leading term of theé expansion of g_1(¢) is gv=2(8) and the next one depends
on W”. For free massless adjoint matteyg (¢) = gn—2(8) up to second order ap expansion. Setting = 0,

one gets the variation of the coupling constaf))[:g around the value of th&/ = 2 one. Moreover, as the real
coupling constant has been untouched by the extension Eqg. (3.1), it follows then that the defining equations of
the moduli space of this/ = 1 supersymmetric quiver gauge theory reads as

{=r1—ry, Pl(@)=B— W (p) =t1(p) — 12(h). (3.6)

One of the special features of this expression is that under complex deformation Eq. (2.8) becomes

W24y 4 2= (P9) S

showing that the CY3 is indeed a complex deformadsArface fibered on the plane parameterized by the complex
variable¢. Furthermore, using the relation (3.6) and comparing with Eq. (2.7), it is not difficult to see that the
superpotential of the adjoint matter considered above is in fact linked to CY3 complex moduli space as follows

W(g) =B — / Q. (3.8)
S2xJ

wheref2 = w Adt is a(3, 0)-form on CY3 realized by an Afiber on the complex plane and where one recognizes
the Fl terms8¢. Such analysis extends straightforwardly to all ADE fibered CY3; with both finite and affine ADE
geometries. This aspect and other features will be exposed in [14].

4. N =1A1 quiver gaugetheory Il

Applying mirror symmetry ideas to the abowé = 1 A; quiver gauge theory |, one expects to be able to
build its superfield theoretical dual by starting from the Lagrangian deisity,(A1) (Eq. (2.4)) and use Kéahler
deformations as

L4 (A1) = Ly—2(A1) + SkanierL. (4.1)
In superspacekanierl involves integration over the full superspace measure and reads as
SKahlerl = /d49 K, (4.2)

whereC is a Kéhler superpotential; that is some real superfunction we still have to specify. In what follows, we
show that'C has much to do with massive gauge superfields.

4.1. Massive gauge prepotential

Although natural from geometric point of view due to mirror symmetry exchanging Kéhler and complex
deformations of CY3 [16], the superfield theoretical formulation of the dual theory Il is far from obvious. The
pointis that in the derivation ok = 1 quiver gauge theories I, the promotion®fo chiral superpotential®’ (¢)
uses the scalar moduli of adjoint matter However, for the Kéhler deformations we are interested in here, one
cannot use” by deforming the kinetic energy densifyi“e (©*O) to

/d40 Kag(©*0), (4.3)

where/Cagi(@*©) is a Kahler superpotential for adjoint matter. A field theoretical reason for this isckides
not couple to the Abeliai/ (1) gauge prepotential of th& (N) gauge symmetry. The introduction of Kahler
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deformations for th&) 1 and P+ fundamental matters

/ d*0 Krund(Q%Le™ 01 + P12V Py) (4.9

does not solve the problem any more since this leads essentially to quite similar relations to Eqgs. (2.5)—(2.7).
The adjunction of superpotentials for fundamental matters does not work as well because iSr@ékgauge
symmetry down to subgroups and this is ruled out by thdildered CY3 we are considering here. However, there

is still an issue since a careful analysis for the Kéhler analogue of the chiral superpotential of complex deformations
of theory | reveals that the difficulty we encounter in theory Il is not a technical one. It is linked to the fact that in
4D N = 1 supersymmetric gauge theory Il, tAé= 1 massless gauge muItipIe}, 1) has no scalar moduli that

could play the role of the coordinate of the complex one dimension base of CY3. This is then a serious problem;
but fortunately not a basic one since it may be overcome by considering maésive gauge multipletd/ (Mass,

12
U(mass (o, —_ 1) , (4.5)
2 M
which have scalars contrary to massless gauge prepotentials. But how may this issue be implemented in the
original /' = 2 supersymmetric quiver gauge theory we started with? The answer is by spontaneously breaking the
Abelian gauge sub-invariance 8§N) — SU(N). For general ADE geometries, the spontaneous breaking of the
quiver gauge symmetry should be[ds U (N;) — [[; SU(&;). Using this result, one still has to overcome the two
following apparent difficulties.

4.2. Two more things

(1) From geometric point of view, we know that the variablparameterizing the complex one dimension base
(plane) of the CY3 is associated with the complex scalar modulus of the adjoint matter mutipfeshown on
(@3,

T o (Trd)=(0)=6. (4.6)

In the case of\" = 1 massive gauge multiplets(™23, one has only one scalar modulus and it is legitimate to ask

from where does come the lacking scalar? This is a crucial question since one needs one more scalar to be able tc
parameterize the two-dimensional base of CY3. The answer to this question is natural in masgivia QFISsing

scalar degree is, in fact, hidden in the= 1 on shell massive gauge representation; it is just the longitudinal degree

of freedom of the massive spin one partidlg. This a good point in the right direction; but we still need to know

how to extract this hidden scalar. The right answer to this technical difficulty follows from a remarkable feature

of N' = 1 supersymmetric theory which requires complex manifolds [15]. In the language of supersymmetric field

theoretical representations, the real scalappearing in0, %2, 1), should, in fact, be thought of as the real part

of a complex fieldh asc ~ h + h* where nowh is the scalar component of chiral (Higgs) superfield,
H=h-+0y +06°F, (4.7)

which one suspects justly to be the right modulus for parameterizing the base of CY3.

(2) The second thing concerns the way to implement the massive vector multipletNhte 2 supersymmetric
guiver gauge theory we started with. The answer is to think abouttkel massive gauge multipl€®, %2, Dy
as itself following from the decomposition of & = 2 massive gauge multiplgt°, %4,
following decomposition

14 12 1 1
0°,=,1 0,=,1 0% = 0% =), 4.8
( 2 )Mﬁ( 2 )M@( 2>®( 2) (4.8)

1)y as shown on the
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where(02, 3) @ (02, 3) are two chiral multiplets. Moreover, as thé= 1 massive gauge multipléd, %2, 1)y may
also be decomposed as the sum of\r= 1 massless gauge multiplet and &= 1 chiral superfield, one then
ends up with the following spectrum: (a) a massless Abelian gauge prepotérgia (b) three chiral multiplets
Ho, + as shown here below

14 1 1 1 1
0°,= 1 -1 0% = 0% = 0% = 4.9
( ’2’)M_><2’)®< ’2)+®< ’2)069( 2) (4-9)

where the charges @1 appearing at the bottom of the matter multiplets refer to charges under the Abelian gauge
factor of theU (N) gauge symmetry.

4.3. The N =1 quiver gauge model 11

This supersymmetric model involves the following= 1 degrees of freedom: (a) B (N) gauge multiplet/
which has an Abelian patf as in Eq. (2.1) and a8J(N) partV, = Tr(T, V). (b) A chiral multiplet® in the adjoint
representation of the gauge grolgN). The Abelian part® of this adjoint matter is identified with the neutral
superfield appearing in the decomposition (4.9). The non-Abelian term is given by thg s€tr(7,®). (c) Four
chiral matter superfield® 1 and Py transforming in the fundamental representations ofltli&) x SU(N) gauge
symmetry as in Eq. (2.3). All these superfields exist already in the original 2 model we have described in
Section 2. (d) Two more chiral multiplefd,. carrying+2 charges under the Abelian symmetry of the gauge group
and transform as scalars with respec8t(N). The H. superfields are associated with the multipls %)i
appearing in the decomposition Eq. (4.9). In summary, we have the folloWiagl superfield spectrum: (i) the
guartet

U, Hop=6®, H,, H-_, (4.10)
which describe the degrees of freedom Abelian massive- 2 multiplet (0° 14 1y Eqg. (4.9). The chiral

) ? )
multiplets should be thought of as Higgs superfields and whose Kéhler superpotential

f d*0 Kriggs(Hie?V Hy + H*e 2V H_) (4.11)

is exactly what we need; (ii) thBU (V) massless\V = 2 vector multiplet which in terms of th&” = 1 superfield
language we are using here readsVasand @,; and (iii) finally the two N = 2 hypermultipletsQ+ and P+
describing fundamental matters. From this supersymmetric representation analysis, one learns that dynamics of
massiveN' = 2 vector multiplet may be formulated iV = 1 superspace by starting with a massless vector
multiplet U and three chiral one&p 1+ as introduced before. To get a massive gauge superfield, one gives non-
trivial vevs toH ; a fact which is achieved by introducing a superpoteiiati( H, Ho, H-) describing couplings
between chiral superfields. Since we are interested by the engineemig=df quiver gauge theory using Kahler
deformations, we will not insist on haviny = 2 supersymmetric couplings for Higgs superfields. So we restrict
the extra superpotential 1W0ex: = Wext(H+, H-) with the two following requirementse{ the full scalar potential

V of the supersymmetric gauge Abelian model nameéty %Dg + F F{ + FoF§ + F_F* vanishes in the vacuum

(Dy = Fo+ =0) and (8) at least one of the chiral superfiel#s. acquires a vev when minimising (% =0).

Let us take these vevs as

(Hy)=v, (H.)=0, (4.12)

wherewv is a complex parameter. A simple candidate for gauge invariant Higgs superpotential fulfilling features
(o) and (B) is Wext = m Hy H— with massm linked to¢ andwv; i.e.,m = m(¢, v). With this in mind one can go
ahead to work out the Kéhler deformation program. In what follows, we describe the main lines and omit details.
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4.4. Theactionfor N = 1 quiver theory I

From the above discussion, it follows that the Lagrangian deﬂé&ﬁ/l(Al) = Ln=2(A1) + Skanteil (EQ. (4.1))
of the N/ = 1 supersymmetric quiver model Il is given by the following superfunctional

L4 (A1) = Ly=2(A1) — (/d29 Wext(Hy, H_) + h.c.) +/d49 [K(H:eYHy) + H*e VH_]. (4.13)

In this relation we have endowed the matter superfieldwith a Kahler potentialC(HjeUH+) and leftH_ with
a flat geometry. The introduction of a Kahler potential fér does add nothing new since it i, that is eaten
by the gauge prepotential after symmetry breaklﬁgHjeUHJr) is then crucial in the derivation ¢¥" = 1 quiver
theories II; it is the mirror oW (®) of ' = 1 quiver gauge theories I.

5. Moreresults

In the Lagrangian densit§ y—2(A1) (EQ. (2.4)) of the\ = 2 quiver theory, Kahler deformations are encoded
in 2¢ fd“@ (U). This term should appear as a particular Kahler deformation ivire 1 supersymmetric quiver
theory Il encoded in the terrﬁd“@ IC(HjeUH+). Choosingl as follows

Kri(HieVHy) =2¢In(HeV Hy), (5.1)

one recovers Fl deformation; thanks to chiray“ty“e (H4) = 0. Therefore Kéhler deformatiori® that are mirror
to the chiral potentiagP (®) = & — W(®) we have used in Eq. (3.3) read in general as

R(Y) = 2¢ In(Y) — K(Y), (5.2)

where Y= HieVH,. In this result similarity between Kahler and complex deformation is perfect. It is a
consequence of mirror symmetry in this super QFT and may also be rederived from the analysis of the Lagrangian
density (4.13). The appearance of this composite Hermitian superfield Y is not fortuitous; it is just a manifestation
of the massive gauge prepotential we have discussed before. Indeed parametiriamg

H
Hy = UGXD(—), (5.3)
v
where nowH describes quantum fluctuation, we have for Y
Y = vut exp(ﬁ ¥ U). (5.4)
vu*

But the term% + U in the exponential is nothing but the massive gauge prepotdntis® of Eq. (4.5).
Egs. (5.4) and (5.2) give actually the relation between massive gauge multiplet and Kéhler deformations. Moreover,
the defining equations for the moduli space of the supersymmetric vacua of Kahler deformafioasinquiver
theories Il following from (4.13) reading as

R'(c) = (r1—r2), (5.5)

wherec = YU and whereR (c) = R[y(c)] and y(c) = vv* exp(c) are as follows

R(Y) = [¢Iny—K(y)], y(c) = |:v exp(%)][v* exp(ﬁ—:)] = ww. (5.6)

Eg. (5.5) shows that the blown sphere depends on the coordinate of the base of CY3. Like .befer2,
supersymmetry is explicitly broken down.o = 1 except at the critical poirg of R(c) where it is recovered; but
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U (N) gauge invariance is spontaneously broken dow8U1¢N). In terms of the quantum fluctuation superfields
H andH* Eq. (5.3), the critical poinR’(cp) = 0 is translated to

dR(Ho, H dR(Ho, H
5 (Ho o)+U (Ho 0) —o.
d0Hp GHS‘

(5.7)

This relation should be thought of as the analogu%’;ﬁgf = 0 in complex deformations. One can also compute
the variation of the\V = 1 running gauge couplingag-1(c) = gn=1(¢, B; ¢) around the value of th&/ = 2 one
gn=2(co) living at the critical pointK’(cp) = 0. One finds, for a generic point on thé = 2 supersymmetric flow
g=g(?), the following dual formula to Eq. (3.5)

dgn=1(¢)

aco
Note by the way that one may also work out the mirror of Egs. (3.7) and (3.8). Sphttingndz asx = x1 +ix2
and so on, one may decompose the complex surfagey? + z2 = 0 into a compact pavtf + yf + z% =0anda
non-compact one. Deformations of compact parx%\& yf + (z1 — Ar)(z1 + Ar) = 0 and substituting\r as in
Eq. (5.5), one gets the real analogue of Eq. (3.8), namely

gv=1le] = gy=2(¢, B) — (c — co)K" (Co) +0[(c - c0)?]. (5.8)

2424 2= (R(0)% (5.9)

Geometrically, this means th@&(c) generates Kahler deformations of the CY3 and one can checlRitwtis
given by the following

R()=tec+ / K@D 4 / K2, (5.10)
§2xJ §2xJ

whereKX?D and K2 are, respectively2, 1) and (1, 2) forms on CY3 and where one recognizes the usual FI
term¢c of the N = 1 Abelian gauge theories. The correspondence between the two theories is then perfect.

6. Conclusion

In this Letter, we have developed the field theoretic analysis of deformations.&f 42 quiver gauge theories
living in D5-branes wrapped on¥ibered CY3. Though it looks natural by using algebraic geometry methods and
mirror symmetry exchanging complex and Kéhler moduli, such study is far from obvious on the field theoretical
side. After noting that the gauge coupling constantgof such a theory is given by a spectral flow

On=2=0On=2(?),  tand = zﬂ 0< ¥ < % (6.1)

with gy=2(0) and gv=2(%), respectively, associated with pure Kahler and pure complex deformations in the A
fiber, we have considered deformations in the full moduli space of CY3. For complex deformations, geometry
implies that we have the following: (a) if deformations are restricted to the ADE fibersNther? supersymmetry
is preserved, up to a global shift of energy and (b) if they cover the full CY3, fen 2 supersymmetry is
broken down toV = 1. Mirror symmetry implies that similar results are also valid for Kéhler deformations. On
the superfield theoretical view, this corresponds to adding appropriate superpotential (complex and Kahler) terms
in the original V' = 2 SYM,4. We have studied complex deformations/df= 2 supersymmetric quiver theories
by using the method of [8] and given amongst others the field expansion @ teel running gauge coupling
constant g—1 around gy—». We have also developed the explicit analysis for Kahler deformationg ef 2
supersymmetric quiver theories and shown that such real deformations require massive gauge prepdt&tifials
implying in turn a spontaneously brokéh(N) gauge symmetry down t8J (N). We have worked out this program
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explicitly and shown amongst others that Kahler deformations are given by the following
SkahlerL A’ =2 = / d*9 R(UMas3), (6.2)

whereR(U (M%) s as in Eq. (5.6). This relation, which generalize naturally for all ADE fibered CY3, should be
compared with the usual complex deformation involving the chiral superpotential of adjoint matter,

Scomplel N =2 = f d*o P(P) (6.3)

with P(®) as in Eq. (3.3). The analysis we have developed in this Letter has the remarkable property of being
explicit. It allows superfield realizations of geometric properties of CY3 and offers a powerful method to deal with
4D N = 1 supersymmetric field theories living on wrapped D5. Through this explicit field theoretic study, one
also learns that, on th& = 1 supersymmetric field theoretical side, mirror symmetry acts by exchanging the roles

of adjoint mattersp and massive gauge prepotentigl$"@s3, On the geometric side, we have shown that Kahler
deformations, generated by the real superfie{@ (M2s%), are given by the real part of the integral of2a 1) form

on CY3 as shown on Eq. (5.10). This analysis may be also extended to incorporate D3-branes by considering affine
ADE symmetries. Details on aspects of this study as well as other issues may be found in [14].

Acknowledgements

We thank Protars [[I/CNRST/Rabat, for support and A. Belhaj for discussions.

References

[1] F. Cachazo, N. Seiberg, E. Witten, JHEP 0302 (2003) 042, hep-th/0301006.
[2] R. Dijkgraaf, C. Vafa, hep-th/0208048.
[3] B.S. Acharya, hep-th/0011089.
[4] C. Bisley, B.R. Greene, hep-th/9907186.
[5] R. Dijkgraaf, C. Vafa, Nucl. Phys. B 644 (2002) 3, hep-th/0206255.
[6] A. Belhaj, L.B. Drissi, J. Rasmussen, hep-th/0304019.
[7] A. Hanany, A. Igbal, hep-th/0108137.
[8] S. Katz, P. Mayr, C. Vafa, Adv. Theor. Math. Phys. 1 (1998) 53, hep-th/9706110.
[9] A. Belhaj, A. Elfallah, E.H. Saidi, Class. Quantum Grav. 16 (1999) 3297.
[10] C. Vafa, Adv. Theor. Math. Phys. 2 (1998) 497, hep-th/9801139.
[11] F. Cachazo, S. Katz, C. Vafa, hep-th/0108120.
[12] F. Cachazo, C. Vafa, hep-th/0206017.
[13] R. Dijkgraaf, C. Vafa, Nucl. Phys. B 644 (2002) 21.
[14] On the engeneering &f = 1 supersymmetric quiver gauge theories, in preparation.
[15] J. Wess, J. Bagger, Supersymmetry and Supergravity, Princeton Univ. Press, Princeton, NJ, 1983.
[16] W. Lerche, Mirror Symmetry and/ = 1 Supersymmetry, in: Lectures Delivered at Spring School on String Theory and Related Topics,
ICTP, Trieste, 2003.
[17] C. Vafa, in: Lectures on Strings and Dualities, Summer Workshop, ICTP, Trieste, 1997, hep-th/9702201.
[18] F. Cachazo, K.A. Intriligator, C. Vafa, Nucl. Phys. B 603 (2001) 3, hep-th/0103067.



	Explicit analysis of Kähler deformations in 4D N=1 supersymmetric quiver theories
	Introduction
	4D N=2 SYM4 quiver theories: A1 model
	Action
	Mirror N=2 models

	N=1 A1 quiver gauge theory I
	N=1 A1 quiver gauge theory II
	Massive gauge prepotential
	Two more things
	The N=1 quiver gauge model II
	The action for N=1 quiver theory II

	More results
	Conclusion
	Acknowledgements
	References


