

Topology and its Applications 84 (1998) 175-184

TOPOLOGY AND ITS APPLICATIONS

Bihomogeneity and Menger manifolds [☆]

Krystyna Kuperberg¹

Department of Mathematics, Auburn University, Auburn, AL 36849, USA Received 17 September 1995; revised 16 May 1996

Abstract

It is shown that for every triple of integers (α, β, γ) such that $\alpha \ge 1$, $\beta \ge 1$, and $\gamma \ge 2$, there is a homogeneous, non-bihomogeneous continuum whose every point has a neighborhood homeomorphic to the Cartesian product of Menger compacta $\mu^{\alpha} \times \mu^{\beta} \times \mu^{\gamma}$. In particular, there is a homogeneous, non-bihomogeneous Peano continuum of covering dimension four. © 1998 Elsevier Science B.V.

Keywords: Homogeneous; Bihomogeneous; Factorwise rigid; Menger universal curve; Homology separation

AMS classification: Primary 54F35, Secondary 54F15

Introduction

A space is *n*-homogeneous if, for any pair of *n*-point sets, the space admits a homeomorphism sending one of the sets onto the other. A homogeneous space is a 1-homogeneous space. A space X is bihomogeneous if for any pair of points p and q in X, there is a homeomorphism $h: X \to X$ such that h(p) = q and h(q) = p. A space X is strongly locally homogeneous if, for every $p \in X$ and every neighborhood U_p , there is a neighborhood V_p such that for every $q \in V_p$ there is a homeomorphism $h: X \to X$ with h(p) = q and h(x) = x for $x \notin U_p$. A continuum is a compact, connected, metric space containing more than one point.

Around 1921, Knaster asked whether homogeneity implies bihomogeneity, and Kuratowski (Kazimierz Kuratowski) [18] gave an example of a 1-dimensional, non-locally

^{*} This research was supported in part by NSF grant # DMS-9401408.

¹E-mail: kuperkm@mail.auburn.edu.

^{0166-8641/98/\$19.00 © 1998} Elsevier Science B.V. All rights reserved. *PII* S0166-8641(97)00090-4

compact, homogeneous, non-bihomogeneous subset of the plane. An example similar to that of Kuratowski can be easily described as follows: Let p and q be distinct points in the same composant of a nontrivial solenoid Σ . The composant of $\Sigma - \{p\}$ containing q is homogeneous but it is not bihomogeneous; one end of the composant is dense in it whereas the other end is not, making swapping points impossible. It is also easy to obtain nonmetric examples. In 1986, Cook [8] described a locally compact, 2-dimensional, homogeneous, non-bihomogeneous metric space. It is still not known if there is a 1-dimensional [locally] compact metric example.

In 1930, van Dantzig [9] restated Knaster's question for continua, which was answered in [15] by an example of a locally connected, homogeneous, non-bihomogeneous continuum. The construction of the example starts with a space that is bihomogeneous but has a property in some sense contrary to bihomogeneity. This space consists of compatibly oriented circular fibers such that any homeomorphism maps a fiber onto a fiber, and to swap certain fibers the homeomorphism must reverse orientation of the fibers. The next step is to replace each fiber with a homogeneous space containing it as a retract and not admitting a homeomorphism reversing orientation of the original fiber. The fibers are held together by a rigid grid that is locally homeomorphic to the Cartesian product of two Menger universal curves. Each circle is then replaced by a larger fiber, a manifold, which contains S^1 as its retract, but admits no homeomorphism changing the sign of the generator of the first homology group represented by this S^1 . The dimension of the example equals the dimension of the manifold plus two, giving a 7-dimensional continuum. The seemingly unrelated property of local connectedness is important for the notion of 2-homogeneity: Ungar [21] proved that 2-homogeneous continua are locally connected. However, homogeneity does not imply 2-homogeneity for Peano continua [16,12,13,17,10] and, as the above example shows, it does not imply bihomogeneity.

A substantially simpler, although not locally connected, example of a homogeneous, non-bihomogeneous continuum was given by Minc [20]. The "model" space of Minc's example is a solenoid, whose each arc component is replaced by a sequence of "glued together" mapping cylinders of a degree $m \ge 2$ map of S^1 onto S^1 . For most pairs of composants of a solenoid, a homeomorphism swapping the composants must be orientation reversing (see [20]). Hence in the above continuum, not every two arc components can be swapped. To achieve homogeneity, Minc takes the Cartesian product of this continuum and the Hilbert cube. To get a finite dimensional example, a manifold of the same homotopy type as the above mapping cylinder can be used to replace the solenoid composants. Recently, Kawamura [11] noticed that using Menger manifolds and "*n*-homotopy mapping cylinders" (see [6,7]), the dimension of Minc's example can be lowered to 2.

This paper shows that by applying Kawamura's idea to the construction of [15], a locally connected, homogeneous, non-bihomogeneous continuum of dimension 4 can be obtained. The factorwise rigidity of the Cartesian products of Menger compacta, immediately gives such examples in all dimensions greater than or equal to four.

1. Factorwise rigidity

Menger [19] defined *n*-dimensional universal compacta in terms of the intersection of a sequence of polyhedra in \mathbb{R}^{2n+1} . Anderson [1,2] proved that the 1-dimensional universal compactum, the Menger universal curve μ^1 , is homogeneous and strongly locally homogeneous. Not much was known about the higher-dimensional Menger universal compacta until Bestvina [5] characterized the Menger universal compactum μ^n as a space that is topologically defined as follows:

- (1) μ^n is a compact *n*-dimensional metric space,
- (2) μ^n is LC^{n-1} ,
- (3) μ^n is C^{n-1} ,
- (4) μ^n satisfies the Disjoint *n*-Disk Property, DD^{*n*}P.

By [5], the compacta μ^n are homogeneous and strongly locally homogeneous. An *n*-dimensional Menger manifold, i.e., μ^n -manifold, is a metric space whose every point has a neighborhood homeomorphic to μ^n .

Definition. The Cartesian product $X = \prod_{\lambda \in \Lambda} X_{\lambda}$ is *factorwise rigid* if every homeomorphism $h: X \to X$ preserves the Cartesian factors: specifically, there is a permutation $\tau: \Lambda \to \Lambda$ and homeomorphisms $h_{\lambda}: X_{\tau(\lambda)} \to X_{\lambda}$ such that if $h(\langle x_{\lambda} \rangle) = \langle y_{\lambda} \rangle$, then $y_{\lambda} = h_{\lambda}(x_{\tau(\lambda)})$.

Definition. The *i*-fiber of $X = \prod_{\lambda \in A} X_{\lambda}$ is a subset of X of the form $\prod_{\lambda \in A} A_{\lambda}$, where $A_i = X_i$ and the remaining factors are single points. An *i*-cofiber of $X = \prod_{\lambda \in A} X_{\lambda}$ is a subset of X of the form $\prod_{\lambda \in A} A_{\lambda}$, where A_i is a single point and $A_j = X_j$ for $j \neq i$.

Definition. Points $x, y \in X$ are homologically separated in dimension n, if they have respective neighborhoods U_x and U_y such that

 $i_*(\check{H}_n(U_x)) \cap j_*(\check{H}_n(U_y)) = 0,$

where $i: U_x \hookrightarrow X$, $j: U_y \hookrightarrow X$ are the inclusions, and \check{H} is the *n*th Čech homology group.

The factorwise rigidity of the Cartesian product of two Menger universal curves was first determined in [16] to show that the product is not 2-homogeneous. The factorwise rigidity of the Cartesian products of pseudo-arcs was shown in [3,4]. Kennedy Phelps [12] proved that the Cartesian product of arbitrarily many copies of μ^1 is factorwise rigid, and by an unpublished result of Yagasaki, Kennedy's theorem extends to the Cartesian products of copies of μ^n (see [7, Section 3]). Garity [10] used the Künneth and Eilenberg–Zilber formulas to show that finite products of at least two Menger universal compacta (of equal or different dimensions, but excluding the product with all factors μ^0) are not 2-homogeneous. His proof is very close to imply factorwise rigidity. The notion of homology separation was introduced in [17].

For dimensional reasons, any two points in μ^n are homologically separated in dimension n. At every $x \in \mu^n$, there are arbitrarily small spheres S^n embedded in μ^n as retracts. Let $X = \mu^{n_1} \times \cdots \times \mu^{n_k}$. The *m*-cycles, where $m = n_1 + \cdots + n_k = \dim X$, carried by two disjoint tori of form $S^{n_1} \times \cdots \times S^{n_k}$ are not homologous. Therefore, if $h_1, h_2: X \to X$ are isotopic homeomorphisms, then $h_1 = h_2$. The lemma below has analogs in the above-mentioned papers, but treats factorwise rigidity as a local property.

Lemma 1. Let $X = X_1 \times \cdots \times X_k$, where X_i is homeomorphic to μ^{α_i} , $1 \leq \alpha_1 \leq \cdots \leq \alpha_k$. Let $U = U_1 \times \cdots \times U_k$, $U_i \subset X_i$, be an open connected subset of X, and let $h: U \to X$ be an open embedding. Then $h(x_1, \ldots, x_k) = (h_1(x_{\tau(1)}), \ldots, h_k(x_{\tau(k)}))$, where τ is a permutation and $h_i: U_{\tau(i)} \to X_i$ is an embedding.

Proof. Let $x = (x_1, \ldots, x_k)$ and $\bar{x} = (x_1, \bar{x}_2, \ldots, \bar{x}_k)$ be two points in the same 1-cofiber of U. There is a sequence of α_1 -dimensional spheres C_n in U_1 containing x_1 with diam $(C_n) \to 0$. Let

$$K_n = \left\{ (y^n, x_2, \dots, x_k) \mid y^n \in C_n \right\} \quad \text{and} \quad \overline{K}_n = \left\{ (y^n, \overline{x}_2, \dots, \overline{x}_k) \mid y^n \in C_n \right\}.$$

The spheres K_n are retracts of X, and the spheres $h(K_n)$ are retracts of h(U). Every point of h(U) has small neighborhoods $V_1 \times \cdots \times V_k$ in h(U), which are retracts of X. Hence sufficiently small spheres $h(K_n)$ are retracts of X. For some i and infinitely many n's, $\pi_i \circ h: K_n \to X$ is essential. Note that $\alpha_1 = \alpha_i$, so by the classical Hurewicz theorem, an essential map $S^{\alpha_1} \to \mu^{\alpha_i}$ is homologically nontrivial. If the *i*-coordinates of h(x) and $h(\bar{x})$ are different, then for sufficiently large n, the images $\pi_i(h(K_n))$ and $\pi_i(h(\overline{K}_n))$, are disjoint. Since the 1-cofibers of U are arcwise connected, there is a tube $S^{\alpha_1} \times [0, 1]$ in U joining K_n and \overline{K}_n , which implies that the nontrivial cycles represented by $\pi_i(h(K_n))$ and $\pi_i(h(\overline{K}_n))$ are homologous, contradicting the fact that distinct points in μ^{α_i} are homologically separated in dimension α_i . Therefore the points h(x) and $h(\bar{x})$ are in the same *i*-cofiber of X. Hence every 1-cofiber in U is mapped into a cofiber in X. By continuity, 1-cofibers close to a 1-cofiber mapped into an *i*-cofiber are mapped into *i*-cofibers for the same *i*. The compositions of the natural inclusions of $U_2 \times \cdots \times U_k$ into 1-cofibers, h restricted to these 1-cofibers, and the projection π_i are isotopic, so they are identical. The proof is completed by induction.

Corollary (see [17, Problem 2]). Finite Cartesian products of Menger universal compacta (also Menger manifolds) are factorwise rigid.

2. Grids

A homeomorphism $h: X \to X$ is *periodic* with *period* $k \ge 1$ if $h^k(p) = p$ for every $p \in X$, but for every $1 \le i < k$ and $p \in X$, $h^i(p) \ne p$. A closed subset A of a compact metric space X is a Z-set if for every $\varepsilon > 0$, there is a map $f: X \to X \varepsilon$ -close to the identity with $f(X) \cap A = \emptyset$.

For positive integers α , β , and $k \ge 2$, choose M, f_M , N, A, B, f_N , F, and Q as follows:

Fig. 1. The symmetry of Q.

- (1) $f_M: M \to M$, where M is a μ^{α} -manifold, is a periodic homeomorphism of period k,
- (2) $N = \mu^{\beta}$,
- (3) A and B are disjoint, nonempty, homeomorphic Z-sets in N, and f_N: A → B is a homeomorphism, such that the quotient space of N obtained by identifying each point n ∈ A with its image f_N(n) ∈ B, is a μ^β-manifold,
- (4) $F: M \times A \to M \times B$ is given by $F(m, n) = (f_M(m), f_N(n)),$
- (5) $Q = (M \times N)/F$ is the quotient space obtained by identifying each point (m, n) with the point F(m, n).

We refer to the continuum Q as the k-grid. By a slight abuse of notation, points in the quotient space are denoted in the same way as the corresponding points in $M \times (N - A)$.

For $p = (m_p, n_p) \in Q$, let

$$M_{p} = \{(m, n) \in Q \mid n = n_{p}\},\$$

$$N_{p} = \{(m, n) \in Q \mid m = f_{M}^{i}(m_{p}), i = 0, \dots, k - 1\},\$$

$$O_{p} = M_{p} \cap N_{p}.$$

Remark. If $\alpha = \beta$, the position of the sets M_p and N_p in Q is symmetrical, see Fig. 1.

Call the sets M_p and N_p horizontal and vertical fibers respectively. The intersection of a horizontal fiber and a vertical fiber is a *necklace* and its elements are *beads*. Note that the number of beads on each necklace O_p is k.

Lemma 2. A homeomorphism $h: Q \to Q$ takes each horizontal and vertical fiber onto a horizontal or vertical fiber, and a necklace onto a necklace.

Proof. Using Lemma 1, the proof is identical to the proof of Lemmas 5 and 6 in [15], where this is shown for the case $\alpha = \beta = 1$ and a specific k. \Box

There is a cyclic order of a given set of beads on a necklace, which cannot be arbitrarily disturbed by a homeomorphism of Q. Let $\phi: Q \to Q$ be the homeomorphism given by $\phi(m,n) = (f_M(m), n)$. For a point p_0 in Q, denote by p_i the point $\phi^i(p_0)$. Thus the necklace O_{p_0} is the set $\{p_0, \ldots, p_{k-1}\}$.

Fig. 2. Beads on a necklace.

Lemma 3 (Compare with Lemma 7 in [15]). Suppose that $h: Q \to Q$ is a homeomorphism and $h(p_0) = p_0$. Then there is an s such that $h(p_i) = p_{(si) \mod k}$ for i = 0, ..., k-1.

Proof. There is an arc L_0 joining p_0 and p_1 such that distinct $\phi^i(L_0)$ and $\phi^j(L_0)$ do not intersect except for a possible common end point. Denote $\phi^i(L_0)$ by L_i , and by K the simple closed curve $\bigcup_{i=0}^{k-1} L_i$. Note that K is the union of necklaces. Hence h(K) is the union of necklaces; if $p \in h(L_0)$ then $O_p \subset h(K)$. We have (see Fig. 2)

$$h(K) = \bigcup_{i=0}^{k-1} h(L_i) = \bigcup_{i=0}^{k-1} \phi^i h(L_0)$$

The points $h(p_i)$ are ordered on the simple closed curve h(K) in such a way that the difference modulo k in the indices between $h(p_i)$ and $h(p_{i+1})$ is a constant. Therefore if $\phi(p_1) = p_s$, then $h(p_i) = p_{(si) \mod k}$. \Box

Lemma 4. If $h: Q \to Q$ is a homeomorphism and $h(p_0) \in O_{p_0}$, then there are integers r and s such that $h(p_i) = p_{(r+s_i) \mod k}$ for $i = 0, \ldots, k-1$.

Proof. Take r and s such that $h(p_0) = p_r$ and $\phi^{-r} \circ h(p_1) = p_s$. \Box

3. Circular fibers and fiber replacing

The next step is to construct a continuum built on the k-grid Q (see Fig. 3) obtained from $Q \times I$ by the identification $(p, 1) = (\phi^b(p), 0)$, where k is the product of two positive integers a and b. Each of the sets $O_p \times I$ transforms into b circles called *circular fibers*; X decomposes into pairwise disjoint copies of S^1 . The number of beads of $O_p \times \{0\}$ on each circle C is a. The order of the beads determines the orientation of C. By [17, Lemma 3.1], we have:

Lemma 5. A homeomorphism $h: X \to X$ takes each circular fiber onto a circular fiber.

Every point of X has a neighborhood homeomorphic to the Cartesian product $M \times N \times I$. Orient the I-fiber of $Q \times I$ and transfer the orientation to the circular fibers of X.

Fig. 3. Circular fibers of X going through the beads of a necklace in $Q \times \{0\}$.

Similarly as in [15, Lemma 11], a homeomorphism of X onto itself either preserves orientation on all circular fibers (it is then *orientation preserving*), or reverses orientation on all circular fibers (it is then *orientation reversing*).

As in the previous section let $O_{p_0} = \{p_0, \ldots, p_{k-1}\}$ be a necklace in Q. Denote the point $(p_i, 0) \in X$ by q_i .

Lemma 6. If $a \ge 3$, then every homeomorphism $h: X \to X$ such that $h(q_0) = q_1$, $h(q_1) = q_0$, and $h(Q \times \{0\}) = Q \times \{0\}$ is orientation reversing.

Proof. By Lemma 4, $h(q_i) = q_{(1-i) \mod ab}$. Suppose that h is orientation preserving. Then $h(\{q_0, q_b, q_{2b}, \ldots\}) = \{q_1, q_{1+b}, q_{1+2b}, \ldots\}$ preserving order. Hence $h(q_b) = q_{1+b}$ and $1 + b = (1 - b) \mod ab$. So $2 = 0 \mod a$, which is a contradiction. \Box

If one were to follow the procedure described in [15], each circular fiber C of X would be replaced by a manifold E which contains C as its retract, and such that every autohomeomorphism of E takes the element of the first homology group represented by C onto itself; in particular it does not change the sign of this element. (Note that in [15], C, E and X are denoted by different symbols.) The resulting continuum D is the union of pairwise disjoint copies of the same manifold E, called manifold fibers. Since in [15] a = b = 3; each circular fiber in X consists of three segments; each manifold fiber of D consists of three identical pieces, as shown in Fig. 4. D contains a copy of X as its retract. Although X needs not be invariant under a homeomorphism $h: D \to D, h$

Fig. 4. Replacing circular fibers.

induces a homeomorphism of X preserving the correspondence of the circular fibers to the manifold fibers given by the inclusion $X \hookrightarrow D$. It is shown that:

- (1) every homeomorphism $h: D \to D$ maps a manifold fiber onto a manifold fiber,
- (2) some manifold fibers cannot be swapped by a homeomorphism of D.

Kawamura's idea [11] to modify Minc's example [20] can be also applied to modify D. Instead of the manifold E take a Menger manifold Ω consisting of a identical pieces homeomorphic to a μ^{γ} -manifold P, where $\gamma \ge 2$. P corresponds to the mapping cylinder of a degree two map of $S^1 \to S^1$. The Menger manifold Ω is similar to the Menger manifold L_n in [11, Section 3], and has the following properties:

- (1) $\Omega = \bigcup_{i=0}^{a-1} \Omega_i$, and there are homeomorphisms $\tau_i : P \to \Omega_i$.
- (2) $\Omega_i \cap \Omega_j = \emptyset$ if $|(i-j) \mod a| \neq 1$.
- (3) There are two disjoint homeomorphic Z-sets in P, P_0 and P_1 , such that

$$\Omega_i \cap \Omega_j = \begin{cases} \tau_i(P_0) = \tau_j(P_1) & \text{if } (i-j) \mod a = 1, \\ \tau_i(P_1) = \tau_j(P_0) & \text{if } (j-i) \mod a = 1. \end{cases}$$

(4) There is a simple closed curve K ⊂ Ω intersecting each Ω_i in an arc such that K is a retract of Ω, every homeomorphism Ω → Ω takes the element of the first homology group represented by (oriented) K onto itself without changing its sign.

The Menger manifold P can be used to replace the circular fiber of the continuum X to obtain a non-bihomogeneous continuum Y. Namely, Y is the quotient space obtained from $Q \times P$ by identifying each point (p, x) with $(\phi^b(p), \tau_{(i+1) \mod a}^{-1} \circ \tau_i(x))$, where Q is the k-grid considered in the beginning of this section, $p \in Q$, and $x \in P_1$. Note that $\tau_{(i+1) \mod a}^{-1} \circ \tau_i : P_1 \to P_0$.

Lemma 7. The continuum Y is homogeneous.

Proof. The proof uses strong local homogeneity of the Menger compacta and is similar to the proofs of Lemmas 3 and 4 in [15]. \Box

Lemma 8. If $a \ge 3$ and $b \ge 2$, then Y is not bihomogeneous.

Proof. Since Y is locally homeomorphic to $\mu^{\alpha} \times \mu^{\beta} \times \mu^{\gamma}$, the local factorwise rigidity holds. Using the local Cartesian product structure, we may define the μ^{α} , μ^{β} , and μ^{γ} -fibers, as well as the μ^{α} , μ^{β} , and μ^{γ} -cofibers. The μ^{γ} -fibers are homeomorphic to P, and the μ^{γ} -cofibers are homeomorphic to Q. The necklaces in the μ^{γ} -cofibers have abbeads, whereas the necklaces in the μ^{α} - and μ^{β} -cofibers contain only a beads. Therefore every homeomorphism $Y \to Y$ maps the μ^{γ} -fibers onto μ^{γ} -fibers and μ^{γ} -cofibers onto μ^{γ} -cofibers even if $\alpha = \beta = \gamma$. Since $b \ge 2$, there are at least two distinct μ^{γ} -fibers passing through the same necklace of $Q \times \{x\}$, where x is a point in $P - P_1$. By Lemma 6 and by the above consideration, there are two such fibers that cannot be swapped. \Box

The above lemma could be compared to Lemmas 13–16 in [15]. However, factorwise rigidity involving all three factors, μ^{α} , μ^{β} , and μ^{γ} , makes the proof much simpler.

Theorem. For every triple of integers (α, β, γ) such that $\alpha \ge 1$, $\beta \ge 1$, and $\gamma \ge 2$, there is a homogeneous, non-bihomogeneous continuum whose every point has a neighborhood homeomorphic to $\mu^{\alpha} \times \mu^{\beta} \times \mu^{\gamma}$.

Remark. Y is the quotient space of $\mu^{\alpha} \times \mu^{\beta} \times \mu^{\gamma}$ with some identifications made along Z-sets. It is not known whether the same effect can be achieved on the product $\mu^{1} \times \mu^{1} \times \mu^{1}$.

Question 1. Does there exist a homogeneous, non-bihomogeneous Peano continuum of dimension lower than 4?

Question 2. Does there exist a homogeneous, non-bihomogeneous Peano continuum whose every point has a neighborhood homeomorphic to an open set in $\mu^1 \times \mu^1 \times \mu^1$?

While the second question remains open, since the submission of this paper, the first question has been answered by G. Kuperberg [14]. For any pair of integers α , β such that $\alpha \ge 1$ and $\beta \ge 2$, he constructs a homogeneous, non-bihomogeneous Peano continuum with the local structure of $\mu^{\alpha} \times \mu^{\beta}$.

References

- R.D. Anderson, A characterization of the universal curve and the proof of its homogeneity, Ann. of Math. 67 (1958) 313–324.
- [2] R.D. Anderson, 1-dimensional continuous curves and a homogeneity theorem, Ann. of Math. 68 (1958) 1–16.
- [3] D. Bellamy and J.A. Kennedy, Factorwise rigidity of products of pseudo-arcs, Topology Appl. 24 (1986) 197–205.
- [4] D. Bellamy and J. Łysko, Factorwise rigidity of products of two pseudo-arcs, Topology Proc. 8 (1983) 21–27.
- [5] M. Bestvina, Characterizing k-dimensional universal Menger compacta, Mem. Amer. Math. Soc. 71 (1988).
- [6] A. Chigogidze, K. Kawamura and R.B. Sher, Finiteness results in *n*-homotopy theory, Topology Appl. 74 (1996) 3–16 (Proceedings of the International Conference on Set-theoretic Topology and its Applications, Matsuyama, Japan, 1994).
- [7] A. Chigogidze, K. Kawamura and E. Tymchatyn, Menger manifolds, in: Continua with the Houston Problem Book, Lecture Notes Pure Appl. Math. 170 (Marcel Dekker, New York, 1995) 37–88.
- [8] H. Cook, A locally compact homogeneous space which is not bihomogeneous, Topology Proc. 11 (1986) 25–27.
- [9] D. van Dantzig, Über topologish homogene Kontinua, Fund. Math. 15 (1930) 102-125.
- [10] D.J. Garity, On finite products of Menger spaces and 2-homogeneity, Topology Proc. 20 (1995) 111–122.
- [11] K. Kawamura, On a construction of homogeneous, non-bihomogeneous continua of P. Minc, Topology Proc. 19 (1994) 121–127.
- [12] J. Kennedy Phelps, Homeomorphisms of products of universal curves, Houston J. Math. 6 (1980) 127-143.

- [13] J. Kennedy Phelps, A condition under which 2-homogeneity and representability are the same in continua, Fund. Math. 121 (1984) 89–98.
- [14] G. Kuperberg, Another homogeneous non-bihomogeneous Peano continuum, Bull. Polish Acad. Sci. 44 (1996) 457–460.
- [15] K. Kuperberg, On the bihomogeneity problem of Knaster, Trans. Amer. Math. Soc. 321 (1990) 129--143.
- [16] K. Kuperberg, W. Kuperberg and W.R.R. Transue, On the 2-homogeneity of Cartesian products, Fund. Math. 110 (1980) 131–134.
- [17] K. Kuperberg, W. Kuperberg and W.R.R. Transue, Homology separation and 2-homogeneity, in: Continua with the Houston Problem Book, Lecture Notes Pure Appl. Math. 170 (Marcel Dekker, New York, 1995) 287–295.
- [18] K. Kuratowski, Un probleme sur les ensembles homogènes, Fund. Math. 3 (1922) 14-19.
- [19] K. Menger, Kurventheorie (Teubner, Berlin, 1932).
- [20] P. Minc, Solenoids and bihomogeneity, in: Continua with the Houston Problem Book, Lecture Notes Pure Appl. Math. 170 (Marcel Dekker, New York, 1995) 297–304.
- [21] G.S. Ungar, On all kinds of homogeneous spaces, Trans. Amer. Math. Soc. 212 (1975) 393-400.