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Abstract

We show that every uncountable compact space has a realcompact subspace of sizeω1, that if
there are no S-spaces, then every uncountable Tychonoff space has a realcompact subspace of size
ω1 and that Ostazewski’s space has no uncountable realcompact subspace. 2000 Elsevier Science
B.V. All rights reserved.
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At the end of a seminar at Ohio University where Frank Tall had been talking
about spaces with Lindelöf subspaces of sizeω1, Arhangel’skii asked him whether all
uncountable compact spaces had a realcompact subspace of sizeω1. This paper will
answer that question in the affirmative and will also consider the question of whether
the compactness hypothesis is necessary, that is, whether every uncountable Tychonoff
space has a realcompact subspace of sizeω1. The answer to this latter question is more
complicated and, in fact, depends on the model of set theory in which we are working.

I wish to thank Professor Arhangel’skii for not only asking the question but also for
many instructive conversations on this subject. In particular, I thank him for pointing out
several references and for providing the proof of one of the theorems.

We shall, of course, assume that all spaces are Tychonoff. We denote the continuous
real-valued functions on a spaceX byC(X). We first give two sufficient conditions for an
uncountable space to have a realcompact subspace of sizeω1.

Theorem 1. If there is a subsetA ⊂ X andf ∈ C(A) with f→(A) > ω1, thenX has a
realcompact subspace of sizeω1.
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Proof. LetA⊂X and letf ∈ C(A) with f→(A)> ω1. PickB ⊂ f→(A) with |B| = ω1

andR ⊂ A such thatf is 1–1 onR. Thenf � R :R→ B is a 1–1 continuous map from
R ontoB which implies thatR is submetrizable (that is,R has a coarser metric topology);
henceR is realcompact (see [3, 8.18]).2

Obviously many spaces satisfy the hypothesis of Theorem 1. Spaces with uncountable
spread come immediately to mind where thespreadof a topological spaceX is sup{|D|: D
is a discrete subspace ofX}. We will see in a bit that there are at least two classes of
spaces that do not satisfy these hypotheses. An interesting question to me would be to find
necessary and sufficient conditions for Tychonoff spaces to satisfy that hypothesis. Note,
for example, that all spaces that do not are zero-dimensional.

We give next another sufficient condition for a space to have a realcompact subspace of
sizeω1. The proof of this theorem was suggested by Prof. Arhangelskii. We remind the
reader that a spaceX is right separated(in typeβ) if there is a well-ordering (of typeβ)
onX with respect to which initial segments are open. All ordinal spaces, for example, are
right separated.

Theorem 2. If X is uncountable, right separated and ifX has the property that every
subspace of sizeω1 has a complete accumulation point inX, thenX has a Lindelöf, hence
realcompact, subspace of sizeω1.

Proof. The proof is by induction onβ whereX is right separated in typeβ . So suppose
the theorem is true for allδ < β and letX = {xξ : ξ < β} be right separated in typeβ
whereβ is uncountable. It is clear thatβ > ω1 for if β = ω1, thenX itself has no complete
accumulation point.

LetA= {xξ : ξ < ω1}. First we consider the case whereA has more than one complete
accumulation point. In this case we letxγ be the one with the least index. Then clearly
γ < β , and we can choose a neighborhoodG of xγ inX with clX G⊂ {xξ : ξ 6 γ } sinceX
is right separated. Clearly sincexγ is a complete accumulation point ofA, |clX G|> ω1.
Also clXG is right separated in typeδ whereω1 6 δ 6 γ < β , andclX G satisfies the
hypothesis that every subset of sizeω1 has a complete accumulation point. Then by the
induction hypothesisclX G has a Lindelöf, hence realcompact, subset of sizeω1.

If, on the other hand,A has only one complete accumulation point, say,xσ , thenA∪{xσ }
is itself a Lindelöf subset of sizeω1. 2

Recall that a spaceX is scatteredif every subspace ofX has isolated points. It is well
known that scattered spaces are right separated. We sketch a brief proof of that fact for
completeness.

Proposition 3. Scattered spaces are right separated.

Proof. Let X be scattered. LetX0 be the isolated points ofX andXα+1 be the isolated
points ofX −Xα . For a limit ordinalγ , let Xγ be the isolated points ofX −⋃β<γ Xβ .
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There will be a smallest ordinalκ such thatX = ⋃β<κ Xβ . Now well order eachXβ
arbitrarily by≺β and well orderX =⋃β<κ Xβ by x < y if and only if x ∈ Xβ , y ∈ Xα
andβ < α or x, y ∈Xβ andx ≺β y. This well ordering is a right separation ofX. 2

In [6], Pelezynski and Semadeni show that for a compact spaceX, X is scattered (they
call scattered spacesdispersed) if and only ifX does not map onto the unit interval. Thus
we can now draw the following conclusion.

Theorem 4. Every uncountable compact space has a realcompact subspace of cardinal-
ity ω1.

Proof. Let X be an uncountable compact space. IfX does not satisfy the hypothesis
of Theorem 1, then by [6],X is scattered, hence right separated, and soX satisfies the
hypotheses of Theorem 2.2

We will show later that it is not possible to reduce the hypothesis of compactness very
much, even in the presence of some powerful other properties.

Turning next to the noncompact case we will need to consider two different models of
set theory. The first one we will look at is a model in which there are no S-spaces, that
is, there are no hereditarily separable spaces that are not Lindelöf. Todorčevíc in [11] has
constructed such a model of ZFC. We will use the following fact from [1].

Proposition 5 (See [1, Remark following Problem 4]).The following are equivalent in
ZFC.

(1) Every hereditarily separable space is hereditarily Lindelöf.(That is, there are no
S-spaces.)

(2) Every space with countable spread is hereditarily Lindelöf.

In [1] Arhangel’skii attributes this proposition to mathematical folklore. We will,
however, sketch a proof for completeness.

Proof. We need only prove (1)⇒ (2). Assume (1) and letX be a space that is
not hereditarily Lindelöf. ThenX contains a right separated subspaceA such that no
uncountable subset ofA is Lindelöf. (See [4, 2.9(b)].) Now by (1)A is not hereditarily
separable and so by [4, 2.9(c) and 2.12],A has an uncountable discrete subspace which
implies thatX does not have countable spread.2

This proposition easily gives us the next theorem.

Theorem 6 (There are no S-spaces).Every uncountable Tychonoff space has a realcom-
pact subspace of sizeω1.

Proof. LetX be uncountable. IfX has uncountable spread, thenX satisfies the hypothesis
of Theorem 1. Otherwise,X is hereditarily Lindelöf by Theorem 5, and hence every
subspace is realcompact.2
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There is, however, a model of set theory in which it is possible for an uncountable space
to have no realcompact subspace of sizeω1. The following ZFC theorem gives us sufficient
conditions for such a space.

Theorem 7. If X is perfectly normal, right separated in typeω1 and if closed subsets of
X are either countable or co-countable, thenX has no realcompact subset of sizeω1.

Proof. Let X be perfectly normal and right separated in typeω1. Suppose thatA ⊂ X
with |A| = ω1, andA is realcompact. We will show thatX cannot satisfy the cardinality
hypothesis on closed subsets.

For eachα < ω1, letFα = {xξ : ξ > α}. SinceX is perfectly normal and right separated,
eachFα is a zero-set ofX. Hence there is a z-ultrafilterF onAwith {A∩Fα : α < ω1} ⊂F .
Now F is free andA is realcompact, and so there is a collection{Zi : i ∈ ω} ⊂ F with⋂
i∈ω Zi = ∅. Since each member ofA misses someZi and sinceA is uncountable, there

is somei ∈ ω such that uncountably many members ofA missZi . ButZi must meet each
A ∩ Fα as well. NowZi = K ∩ A for someK closed inX. ClearlyK can be neither
countable nor co-countable.2

In [5] Ostazewski constructed a space that satisfies the hypotheses of Theorem 7. The
space is constructed with underlying setω1 using the set-theoretical principle�. � is
equivalent to the Continuum Hypothesis plus a combinatorial principle called♣ and is
known to be consistent with ZFC, and in fact, holds in Gödel’s constructible universe.
(See [8, IV].) Thus we have proved the next theorem.

Theorem 8 (�). There is an uncountable Tychonoff space with no realcompact subspace
of sizeω1.

We recall that Ostaszewski’s space, in addition to satisfying the hypotheses of
Theorem 5, is hereditarily separable, locally compact, locally countable, scattered, and
almost compact. Thus we cannot reduce the compactness hypothesis in Theorem 3 to
almost compactness, even in the presence of these other properties.

We also know, from Theorems 1 and 8, that no uncountable subspace of Ostaszewski’s
space has a continuous real-valued function on it with uncountable range, but we can
actually say more. We say that a real-valued functionf defined on a spaceX = {xξ : ξ < κ}
for some ordinalκ is eventually constantif there isα < κ and a real numberz such that
f (xξ )= z for all ξ > α. We say that a subsetA⊂X is z-embeddedin X if every zero-set
of A is the trace onA of a zero-set ofX. All subsets of a perfectly normal space are z-
embedded, and ifA is z-embedded inX, thenυA⊂ υX. See [2] for a discussion of these
matters.

Theorem 9. LetX be Ostaszewski’s space and letA be an uncountable subset ofX. Then
every real-valued continuous function onA is eventually constant.
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Proof. Let f ∈ C(A). SinceX is perfectly normal,A is z-embedded inX and so
υA ⊂ υX = X ∪ {ω1} (see [2, 4.1]). Now no uncountable subset ofX is realcompact
and soω1 ∈ υA. LetF be the extension off to υA and suppose thatF(ω1)= r. It is easy
to see thatf = r on some final segment ofA. 2

There are not many known examples of perfectly normal spaces of nonmeasurable
cardinality that are not realcompact. It was a conjecture of the late Robert L. Blair that
it is consistent with ZFC that every perfectly normal space of small enough cardinality is
realcompact. See [2] for a discussion of this question. In particular Blair conjectured that
this was true under MA+¬CH. Some partial results in this direction have been obtained.
In [9], it was shown that MA+ ¬CH implies that regular spaces of nonmeasurable
cardinality in which closed sets have countable character are realcompact. In [10] it
was shown that MA+ ¬CH implies that every perfectly normal space is p-realcompact
(= every zero-set ofβX that meetsβX−X meetsβX− υX). But the general question as
far as this author knows, remains unsolved.

There are several other questions suggested by this work.

Question 1. What are necessary and sufficient conditions for an uncountable space to have
the property that all real-valued continuous functions on any of its subsets have countable
range, that is, to fail to satisfy the hypothesis of Theorem 1? We know by [6] that if such
a space is compact, then it is scattered, but, in fact, we show in the next result that if the
space is pseudocompact, then it must be scattered as well.

Theorem 10. If for all f ∈ C(X), |f→(X)| < 2ω and ifX is pseudocompact, thenX is
scattered.

Proof. Suppose that for allf ∈ C(X), |f→(X)| < 2ω and thatX is not scattered. Then
βX is not scattered and so by [6], there isg ∈ C(βX) such that|g→(βX)| = 2ω. Now by
the hypothesis onX, there isr ∈ g→(βX)− g→(X). Theng←{r} is a zero-set ofβX that
missesX and soX is not pseudocompact (see [3, 6I(1)]).2
Question 2. Is it consistent with ZFC that every uncountable perfectly normal space has a
realcompact subspace of sizeω1?

Question 3. Does every uncountable realcompact space have a realcompact subspace of
sizeω1?
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