
1 keoretical Computer Science 8 (1979) 239-25X
@ Yorth-Holland Publishing Company

RELATIONS BETWiZEN DIAGONALIZATION, PROOF
SYSTEMS, AND COMPLEXITY GAPS*

Juris HARTMANIS
Computer Science Department, Cornel! University, Ithac*a, NY 148.53, U.S. A.

Communicated by Jiii Be&&i
Received June 1977
Revised April 1978

Abstract. In this paper we study diagonal processes over time bounded computations of one-tape
Turing machines by diagonalizing only over those machines for which there exist formal pro&
that they operate in the given time bound. This replaces the traditional “clock” jr. .-zsource
bounded diagonalization by formal proofs about running times and establishes close relations
between properties of proof systems and existence cf sharp time bounds for one-tape Turing
machine complexity classes. These diagonalization metnods also show that the Gao Theorem for
resource bounded computations can hold only for those complexity classes which Wkr frcm the
corresponding provable complexity classes. Furthermore, we show that there exist recursive time
bounds T(n) such that the class of languages for which we can formally prove the existence of
Turing machines which accept them in time T(n) differs from the class of languages accepted by
Turing machines for which we can prove formally that they run in time T(n). We also investigate
the corresponding problems for tape bound computations and discuss tI;e difference time and
tapebounded computations.

1. Introduction

One of the h:entral problems in computational complexity theory is to determine
for a given computer model and computer resource by how much a given resource
bound T(n) @isfying some honesty conditions) has to be increased to be able to
compute something new which cannot be computed in the old resource bound T(n)

PI .
In this paper we show that these problems are very closely related to problems

about what can and cannot be proven formally about resource bounded compu-
tations.

The standard way to obtain separation results for complexity classes is by
efficiently diagonalizing over all the computations t .ich can be performed in the
given resource bound. The efficiency of the diago,Aal process over the resource
bounded computations, or the additional amount of resources required to carry out
the diagonalization over all the computations computable within the given resource

* This research has been supported in part by National Science Foundation Research Grant DCI? 75-
0943’

239

240 J. Hartmanis

bound, determines the sharpness of the results. The standard way to carry out such
diagonal processes is to bound the given resource as a function of the length of the
input and by simulation determine on successive inputs what different Turing
machines do and do the opposite, provided their simulation did not try to exceed
the given resource bound [1,4,5]. Such diagonal processes, in essence, require that
we perform two separate computations: a simulation process and a process which
shuts the computation off if it tries to use too much of the bounded resource.

This method works very well for reusable resource measures where we can first
compute the resource bound and then perform the simulation within the bounded
resources. For example, for the tape bounded Turing machine computations the
following result holds [S].

(1) Let t(n), t(n)3 log n, be computable on t(n) tape. Then there exists a
language, A, acceptable on t(n) tape but not acceptable of ?l(n) tape, provided

lim tl(n)=()
n-3 t(n) ’

For time bounded Turing machine computations the problems become more
difficult and the results depend on whether we consider the class of all many-tape
Turing machines or the class of one-tape Turing machines (or more generally the
class of Turing machines with a fixed number of tapes). In the first case, when we
consider multi-tape Turing machines, it is easy to run the two computational
processes of simulation and the shut-off clock independently on separate sets of
tapes and not lose ary time. On the other hand, since in this case we must simulate
Turing machines wi:h arbitrarily many tapes on a Turing machine with a fixed
number of tapes (the diagonalizer), we iose time in this process. The use of the best
known simulation result of many-tape machines on a two-tape machine yields the
following hierarchy result for multi-tape Turing machines [7]; any improvement in
the time loss during the simulation of many-tape Turing machines on a machine
with fixed number of tapes would lead to a corresponding improvement in this
result.

(2) Let T(n), T(n)2 I?, be computable by a k-tape Turing machine in time T(n).
Then there exists a language which is accepted in time T(n), but not in time Tl(n),
provided

lim G(n) l log Tl(n)= o

n-02 T(n) l

For one-tape Turing machines (or Turing machines with a fixed number of tapes)
the situation changes. Pn this case the simulation of one-tape machines on a fixed
one-tape machine can be carried out without a substantial time loss, but the
running of the shut-off “clock” must be performed (in parallel) with the simulation
operations on the same tape (or the fixed number of tapes). The combining of two

Diagonalization, proof systems and complexity gaps 241

independent computations on one tape leads to a time loss and the best result about
one-tape Turing machines known up to the present is stated below 141.

(3) Let T(n)sn l log n be computable on log T(n) tape in T(n) time by a
one-tape Turing machine. Then there exists a set acceptable by a one-tape Turing
machine in time T(n). log T(n) which is not acceptable by any one-tape Turing
machine in time Tl(n), provided

l im T1(n)
-=

n-- T(n)
0

’

Next we consider Turing machines with k-tapes for a fixed k, k 2 2. In this case
one can use two tapes to cleverly move along parts of the “clock” and a recent
result shows that one can get sharper results for these machines than for one. rape
machines 18).

(4) Let T(n) be time constructible on a k-tape Turing machine, k 3 2. Then

l im G(n) l log*[Wdl
=

o

n+a3 T(n)

implies that there exists a set acceptable in time T(n) on a k-tape machine but not
in time Tl(n). Where

log* n = min{k 1 n s 220*‘2}k times}.

It is seen from the last two results that the need to carry along a “clock” does
not permit us (so far) to prove for time bounded computations of k-tape Turing
machines as sharp results as we have for the tape bounded computations and which
we conjecture also hold for time bounded computations.

In this paper we study a new class of diagonalization processes over resource
bounded classes in which we do not use (explicitly) a “clock”. In particular, we
study the class of diagonal processes over time-bounded computations of one-tape
(or k-tape) Turing machines in which we diagonalize over the computations of a
Turing machine Mi only if there is a formal proof that M, runs in the given time
bound. Thus in these diagonal processes we replace the “clock” which shuts off the
simulation before it takes too much time by a formal proof that the simulation will
not take too much time. As we will show, this approach will establish close links
between properties of proof systems and the existence of sharp time bounds for
one-tape Turing machine computatiofls. Thus these results raise some interesting
questions about what can and cannot be proved formally about running times of
computations and emphasize the importance of these problems to computational
complexity theory.

It should be observed that it is known that formal mathematical systems are not
powerful enough for the analysis of algorithms, since we can exhibit algorithms
which t un in a specified time, say T(E)= n 2, but such that there is not proof in the

242 J. Hartmanis

formal system that they run in less time than 2” [6]. The questions raised in this
paper about provable properties of running times of computations are different and
they have the following form:

Is there for every set acceptable on a one-tape Turing machine in time n* a
one-tape Turing machine A& which accepts this set in time n* and for which it can
be formally proven that IM, runs in time lo’?

Finally, we show that the diagonalization methods using formal proofs show that
the well known Gap Theorem for resource bounded computations [1,5] does not
hold for complexity classes consisting of languages accepted by Turing machines for

, which we can prove formally that they run in the given time bound. This result
shows that the originally surprising gap phenomenon for computational complexity
classes can appear only for the nonconstructively defined computational complexity
classes

TIME1 T(n)] = {AIA is accepted by a one-tape Tm in time s T(n)}.

If we formalize our reasoning and insist that the complexity classes consist only of
the sets accepted by Turing machines for which we can prove formally that they run
in the given time bound, then the gap phenomenon disappears.

We now summarize the basic concepts and notation used in this paper. It should
be observed that though we formulate and prove our results in the first half of this
paper only for one-stage Turing machines all results carry over directly for k-tape
Turing machines for a fixed k. Let lM1, 1M2, A43,. . . be a standard enumeration of
one-tape Turing machines (Tm’s). The running time Ti of Mi is given by

Ti(n) = max{number of operations performed by Mi on input wlw c 2”).

The set of tapes accepted by 1Mi is denoted by L(M;i).
An axiomatizable theory is a triple F = (2, W, T) where
(1) C is a finite non-empty alphabet,
(2) W, W s X*, is a recursive set, referred to as the set of well-for,ned formulas,
(3) T, T s W, is a recursively enumerable set, referred to as the set of theorems

provable in F.
If w is provable in F we will write 1 -F~. If the set T is recursive the system F is
said to be decidable.

We can think of W as the syntactically correctly formed formulas and T as the
subset of these for which there exist proofs in the formal system F. (In practice we
would prescribe a set of axioms and proof rules so that it can be recursively decided
whether a given string following a well formed formula is a proof of this formula.)

We furthermore assume that the Turing machines form a model (or a submodel)
for the theory F. Thus we assume that we can express and prove elementary facts
about Turing machines in F and that only true statements about Turing machines
can be proven in F. For example, elementary number theory is such a theory, if we

Diagonalization, proof systems and complexity gaps 243

assume that it is consistent and if we use an agreed upon encoding of Turing
machine computations.

The complexity classes and provable complexity classes are defined for partial
recursive functions T(n) as follows:

TIME[T(n)]=(L(Mi)l~n)[~(n)~ T(n)]}
and

F-TIME[T(n)] = {L(Mi)l “(Vn)[?l:(n)s T(n)]” is provable in F}

={L(M)l I-#n)[K(n)~ WdlI-

Thus the class TIME[T(n)] is the class of all sets acceptable by one-tape Tm’s
whose running time is bounded by T(n), without specifying how to determine that
this is so. On the other hand, for a fixed formal system F the class F-TIME[T(n)] is
the complexity class consisting of the languages accepted by Tm’s for which there is
a proof in F that they run in the time bound T(n). We shall refer to these sets as
provable complexity classes. In the following we will omit the repetitive use of the
universal quantifier by writing Ti(n)S T(n) instead of (Vn)[Ti(tl)‘g T(n)].

For related work on provable properties of computational comp!exity problems
see [3,9] and for early work on provable recursive functions see [2].

2. Axiomatizable theories and diagonalization

in this section we explore the use of formal proofs that machines run in a given
time bound in diagonalization processes. As pointed out before, the standard way
of diagonalizing is to simulate all Turing machines and shutting the simulation off
by an independent “clock” mechanism if the simulation tries to take too much time.
Instead, we assume that we have a fixed formalized mathematical system F, as
described before, and only after (searching in an efficient way for proofs when) we
find a proof in F for a Tm Mi that Ti(n)S T(n) do we diagonalize over Mi by
simulating Mi and doing the opposite. Thus we are replacing the shut-off
mechanism of the previously used diagonal processes by a formal proof that the
machine under consideration halts in a given time. As we will see in the following
this diagonalization method depends now on what can be proven formally about
running times of Turing machines and we will explore these relations.

Theorem 1. Let T(n), T(n)==n l log n, be a rscursive function for which

F-TIME[T(n)] = TIME[T(n)].

Then for any non -decreasing, unbounded recursive function g(n), g(n) 2 1, we have
that

TIME[T(n)] Z TI E[T(n). g(n)]*

J. Hartmanis

Proof. Since g(n)2 1 we know that

TIME[T(n)] f TIME[T(n) l g(n)].

To show that

TIME[T(n)] # TIME[T(n) l g(n)]

we construct a Tm A4” such that

L(A&)E TIME[T(n) l g(n)] -TIMEi[T(n)].

The machine & operates as follows:
(1) For input x A& lays off log loglxl tape in 1x1 l loglxl steps and checks if x has

the format

X= Xl#X2#X3

with x1, x2, x3 in (6- #)* and such that

1x1 # x2 # 1 slog log 1x1.

If not the input is rejected, otherwise:
(2) A& checks whether x1 is a description of a Tm, say A& and x2 is a proof in F

that Ti(n)c T(n) for all n (for a fixed Tm, M,, computing T(n)). If not the input is
rejected, otherwise:

(3) Qn the marked off tape A& searches for m such that

lsrnsn and]x112sg(m).

If no such m is found the input is rejected, otherwise:
(4) A& simulates x1 = A!& on input

X =X1’#X2#X3

and accepts x iff Mi rejects it.

Note that the steps 1, 2 and 3 can all be carried out in time rt l log n for n = 1x1,
since log log n tape can be layed-off In n 9 log n steps and since all the other
processes halt and are carried out on log log n tape, the total time is bounded by
?I l log n for these steps. Since we can only prove true properties about Turing
machines in F we know that successful completion of step 2 guarantees that Mi
runs in time Ti(n)S T(n). Furthermore, since we can simulate a step of Mi compu-
tation in 1~11~ steps on A&, the condition Ix112 G g(m) for some nr 6 12 implies that
1~ II2 G g(n) and therefore A& operates in time

T&n)< T(n) l g(n)< T(n) l gin).

Tlrus
L(&) is in TIME[T(n) l g(n)]-

Oni the other hand, L(A4’) cannot be in F-TIME[T(n)] since this would imply that

Diagonalization, proof systems and complexity gaps 245

there exists a Tm Mi such that L(Mi) = L(A&) and there is a proof in the formal
system F that Ti(n)s T(n) and therefore we must have that t(AJi)# L(iW&. Thus
L(Mi) is not in F-TIME[T(n)] and because of our hypotheses we know that

L(M&s TIME[T(n) l g(n)] -TIME[T(n)],

as was to be shown. Cl

From the proof of Theorem 1 it immediately follows that for any recursive time
bound a “slight” increase in the bound permits a new computation which is not
provably computable in the old complexity bound.

Corollary 2. Let T(n), T(n)3 n l log n, be a recursive fmction and let g(n)2 1 be a
non -demwing, unbounded recursive function. Then

F..TIME[T(n)] $ TIME[T(n) l g(n)].

Proof. Follows from Theorem 1. 0

The above theorem shows that the condition

F-TIME[T(n)] = TIME[T(n)]

yields very sharp hierarchy results for time bounded one-tape Tm computations.
This leaves a very interesting open problem about the validity of the assumption

F-TIME[T(n)] = TIME[T(n)].

We conjecture that this condition holds for
“honesty” conditions. For example, the previous
required that the time bound T(n) be computable in
tape. Thus we would expect that

F-TIME[T(n)] = TIME[T(n)]

for such functions as

time bounds with certain
diagonalization results [4]
time T(n) and on log T(n)

T(n) = n 9 log n, T(n) = n*, T(n) = 2”, etc.

In the next section, we will show that the corresponding conjecture holds for
tape-bounded computations for which we can, in essence, show that a complexity
class is equal to the corresponding provable complexity class iff the complexity class
can be defined by a tape constructible bound.

On the other hand, our next result shows there exist recursive time bounds for
which the classic complexity, classes differ from the corresponding provable
complexity classes. That is, we will show that there exist recursive, monotonically
increasing functions T(n) such that for some set A acceptable in time T(n) there is
no Tm Mi which accepts ,4 and for which it can be proven in F that T& 16 T(E).

246 J. Hartmanh

Though this theorem is only stated for one-tape Tm’s it is easily seen that it holds
for all computational complexity measures [5 1.

Theorem 3. There exist recursive, monotonically increasing time bounds T(n) such
that

F-TIME [T(n)] # TIME[T(n)].

Proof. By the Gap Theorem [1, S] we can effectively construct a recursive, mono-
tonically increasing function To(n) 2 27 l log n such that

TIME[To(n)] = TIME[T&$1.

But by Theorem 1 we know that, choosing g(n)= To(n), we get

F-TIME[To(n)] Z TIME[To(n)2].

Thus

F-TIME[To(n)] f TIME [To(n)],

as was to be shown. 0

By similar reasoning we can get the next independence result about non-
existence of formal proofs of resource bounds.

Corollary 4. Let G(n) be a non -decreasing, unbounded recursive function. Then
there exist arbitrarily large, non-decreasing recursive functions T(n) such that for any
formal system F (satisfying our assumptions)

F-TIME[G(T(n))] s TIME[T(n)].

It should be observed that for every formal mathematical system F we can
effectively construct a recursive bound T(n) such that for each provably total Mi
the running time Ti(n)s T(n) for sufficiently large n.

Note though that the proof of Theorerii 3 and Corollary 4 are not based on such a
size argument. The time bound To(n) of Theorem 3 is such that for any formal
mathematical system F (satisfying our previous assumptions) we must have

F-TIME[TO(c)] Z TIMEE To(n)]*

Thus we see that for the time bound To(n), yielded by the Gap Theorem, for every
formal system F there will be a set A and there will be Tm’s accepting A in time
To(n) but for none of these machines can it be proven in F that they run in time
To(n). This effect is strengthened by Corollary 4.

From the above we see that though the time bound To(n) is effectively con-
structed the complexity class defined by To(n) is such that we cannot effectively list
names of Tm’s which accept these sets and run in time To(n). Thus we see that the

Diagonalization, proof systems and complexity gyps 247

originally surprising Gap Thef3rem describes a fact about non-constructive complexity
classes. Or, stated differently, it is a result about d class of languages whose defining
properties cannot be verified formally.

Our next result shows that a gap result can hold for provable complexity classes
for a formal system F only if they differ from the corresponding non-constructively
defined complexity classes and, furthermore, that we can constructively exhibit a
set on which they differ. As a matter of fact, a gap in the provable complexity
classes implies that there is no proof in F that, the simply constructed Tm, A& of
Theorem I runs in time T(n) l g(n) nor is there a proof in F, for any other M;i fc.r
which L(Mi) = L(&), that

T(n)< T(n) l g(n).

Corollaw 5. For a recursive function T(n), T(n)2 n 9 log n, and a non-decreasing,
unbounded recursive function g(n), g(n)3 1, we can have a gap in the hierarchy of
the provable complexity classes,

F-TIME[T(n)] = F-TIME[T(n) l g(n)],

only if

F-TIME[T(n) l g(n)] $ TIME[T(n) l g(n)]

and we can effectively construct a set A such that

A E TIME[T(n) l g(n)] -F-TIME[T(n) l g(n’)].

Proof, From our assumption about F we know that

F-TIME[T(n) l g(n)] s TIME[T(n) l g(n)],

from Theorem 1 we know that

F-TIME[T(n)] Z TIME[T(n) l g(n)],

and therefore

F-TIME[T(n)] $ TIME[T(n) l g(n)].

Furthermore we know that, for the effectively constructed I’m 1Mo of Theorem 2
we have

UMD)ETIME[T(~). g(n)1

and from the hypotheses of this theorem it follows that

L(A&& TIME[T(n) l g(n)] - F-TIME[T(n) 0 g(n)],

as was to be shown. 0

248 J. Hartmanis

If we could prove in F fo; MO of Theorem 1 that 7”&)s T(ro) l g(n), then we
would have shown that there are no gaps between provable complexity classes.
Surprisingly, as pointed out by Peter van Emde Boas, the proof of

&(n)s T(n)* s(n)

in F appears to imply a proof in F that F is consistent, which is impossible by
Goedel’s second incompleteness theorem.

Let SOUND(F) and CONS(F) be the formal sentences which assert that F
is sound and that F is consistent, respectively. We know that

SOUND(F) + TD(n)s T(n) l g(n)

Furthermore, if F is inconsistent then we can prove every assertion in F and
therefore the machine MD of Theorem 1 will simulate Mi which do not run in time
T(n). Therefore,

iCONS(TD(n)g T(n\, 0 P(n

and

TD(n)s T(n) l g(n)=+ CONS(F).

We believe that

To(n) s T(n) l g(n) + CONS(F),

can be formalized and proven in F, though a proof of this fact would involve a
detailed analysis of what can be formalized in F and will not be carried out here.

Theorem 6. If F is a sound theory and

b[TD(n)a T(n)*g(n)*CONS(FII,

then there is no proof in F that

&(n)-(T(+ g(n)-

Proof. If

+&(n)s T(n)’ g(n)

then from the hypothesis of the theorem it follows that

I-F CONS(F),

which is a proof in F that F is consistent. This is impossible by Goedel’s second
incompleteness theorem which asserts that for (sufficiently rich) sound theories it is
not provable in F that F is consistent. Cl

Diagonaliration, proof systems and complexity gaps 249

3. Other measures and A.E. conditions

To gain some further insight when compiexity classes are equal to the cor-
responding provable complexity classes and what can and cannot be proven about
complexity of computations, we consider tape bounded computations. As in many
other cases, it turns out that we can prove sharper results for tape bounded
computations than for time bounded computations.

Let Li(n) denote the maximum amount of tape used by Tm Mj on inputs of
length n. Let us fix a Tm, J”M,, which computes the recursive function T(n), then

TAPE[T(n)] = {L(Mi) 1 Lj(n)a T(U)}

and

F-TAPE[T(n)] = {L(Mi) It-&i(n)< T(n)}.

We recall that a function T(n) is tape constructible iff there exists a Tm A4 which for
input of length n lays off exactly T(n) tape squares without using more than T(n)
tape [S].

In the next result we will consider all Tm’s with a fixed tape alphabet C = Co and
denote the corresponding complexity classes by

TAPE&[m)l and F-TAPE&[T(n)].

Our next result shows that in essence a complexity class coincides with the
corresponding provable complexity class if and only if the class can be defined by a
tape constructible bound.

Note that the following result asserts that for tape bounded computations if a set
is accepted by some Tm 1Mj which runs on Li(n) tape then this fact can be proven
formally in F Surprisingly, the corresponding result for time-bounded one-tap{:
Turing machines is not known to be true.

Theorem 7. (1) lf t(n)” n is tape constructible, then TAPE[t(n)] = F-TAPE[t(n)].
(2) If TAPE&[T(n)] = F-TAPExO[T(n)], then there exists a tape constructible

t(n) such that

TAPEsJT(n)] = TAPES&(n)].

Proof. Since t(n) is tape constructible and we can prove elementary facts about
Turing machines in the formal system F, there exists a Tm AI,,, with the following
properties:

(1) For any input of length n the Tm Mi, lays off exactly t(n) tape squares
without using more than t(n) tape.

(2) Mi, halts for all inputs w such that t(lw I) is finite.

250 J. Hartmanis

(3) It is provable in F that Mi, computes a (partial recursive) tape constructible
function.
Properties (1) and (2) follow from the definition of a tape constructible function and
elementary facts about detecting cycling for tape bounded computations. Property
(3) follows from the fact that Mi, can be so chosen that from inspection of its
description it is clear that it can only halt after printing a “1” on each tape square it
has visited except the left most and right most squares which are marked with “ # “.
Thus it is provable in F that Mi, computes a tape constructible function. It is not
necessarily provable in F that t(n) is a total function, but that is not needed for our
proof.

Using the machine Mi, (as a subroutine to lay off the desired amount of tape) we
can effectively construct for any i a Tm M&i) with the following properties:

(l) M,ci) rejects input w if Mi on w uses more than t(lwl) tape, otherwise, MT(i)
accepts w iff Mi accepts.

(2) It is provable in F that MT(i) uses no more tape than Mi,.
Thus we conclude that for a tape constructible t(n) for every Mi which runs on

tape t(n) there exists an equivalent Tm MT(i) which provably in F uses no more than
t(n) tape. Thus

TAPE!?(n)] = F-TAPE[t(n)].

Conversely, if

TAPEz,[T(n)] = F-TAPEsO[T(n)],

then we car1 effectively enumerate the set of’Tm‘s (with ta;>e alphabet &)

But then it follows that the function

t(n) = max{{n} u {Lij(n) IMij is enumerated on n tape}}

is tape constructible since we can simulate all enumerated Mi, on Li,(n) tape and
find the maximum. Note that the machine computing t(n) may have a larger tape
alphabet. than &. Further, we can see that

t(n)< T(G)

and if A4’ij is in TAPEEJ T(n)], then there exists an equivalent A& such that L,(n) 6
t(n). Thus

TAPE&(n)] = TAPEsJ T(n)]

as was to be shown. Cl

From the previous result it follows immediately that if some set A is accepted on
a tape-bound achieved by a Tm, then %is fact can be proven in F.

Diagonalization, proof systems and complexity gaps 251

Corollary 8. For every (total) Mi with Li(n) ~3 n

TAPE[Li(n)] = F-TAPE [Li(n)].

Proof. Obuious. CI

It should be pointed out that it is not known whether the corresponding result
holds for time bounded Turing machines. The best known result for one-tape Tm’s
follows from [4].

Corollary 9. For every (total) one-tape Tm Mi

TIME[Z(n)] s F-TIME[z(n) l log I;f”i(n)].

Proof. Similar to the diagonalization proof in 141. Cl

For k-tape Tm’s, k 22, we can exploit [8] to get the following result.

lary 10. For euery (total) k-tape Mi

TIMEk[Z(~)]sF-TIMEk[Ti(n). log*[T&z)]].

It would be very interesting to see whether the last two results cannot be
improved. Unless the result for one-tape Tm’s can be improved, it leaves us with
the possibility that there can exist sets which are accepted by a Tm 1Mi running in
time Ti(n), but that the best recognition time we can prove in F for these aets is
Ti(n) l log Ti(n). This would be a rather Yhocking situation.

Note that Theorem 3 and Corollary 4 yield time bounds for computations which
we cannot prove in F, but these are not the actual running times of the Turing
machines performing these computations.

The previous results suggest that In thlz study of different computational
colnplexity measures we should investigate how sharp resource bounds can be
proven formally for these measures. A natural measure for the “provability” is
given by results analogous to Corollaries 8,9 and 10.

Next we show that if a set A is accepted in time Ti(n) by some one-tape Tm, 1Mi,
then it can be proven in F that such a machine exists, but we do not know whether
we can prove for any specific machine accepting A that it runs in times less or equal
to z(n) (since our best provability result is given by Corollary 9).

We first prove a result due to A. Meyer. In the following a.e. stands for almost
everywhere.

. For a recursive function T(n)3 n l log n :

)I 17:(n)sT(n)}={L) lt-~:~(n)~ T(n) a.e.}.

252 J. Hartmanis

Proof. We construct a recursive function r such that for all i:
(1) L(M),& = if T&z) 6 T(n), then L(Mi) else L(A&) is finite.

(2) l-~[T,&-r)~ T(n) a.4
The machine A&(i) has a much larger tape alphabet than Iwi so that it can simulate

M; in time iTi(MT(i) operates as fOllOWS:

on input w,]w] = n, MT(i) lays off 10gt3’ n .- log log log n tape and tries to find on

this tape a, z, 121 G logt3’ n, such that

If such a z is found then the input w is rejected. If not, then AZ&i) simulates M;: on
W and accepts iff Mi accepts W.

It is easily seen that A&i) satisfies condition (l), furthermore TT(i)(n)s Tt,) a.e. and
since we can prove elementary facts about Tm’s in F we can choose a simple
construction for r such that it is provable in F that

T7ci,(n) s T(n) a-e.

where T(n) is given by some Tm. Note again that the proof of TT<i,(n)s T(n) a.e.
does not depend on knowing that T(n) is a total function. Cl

Theorem 12. For one-tape Tm’s for any recursive T(n), T(n)an 9 log n, we have

TIME[T(n)] = {L(Mi) 1 t-&lM,)[L(M,)=L(M) and T&d< T(n)11

Proof. The previous result showed that for every A&&i) we can prove in F that

T&n)< T(n) a.e.

Therefore we can prove in F that there exists some equivalent Tm to A&i) which
runs in time T(n) everywhere by means of a table look-up for the initial input
values. I7

It follows from Theorem 12 that if A can be accepted in time T(n), then there is
a formal proof that there exists a Tm which accepts A in time T(n). Though we
know from Theorem 3 that for many time bounds T(n) and any formal system F
there are sets which are acceptable in time T(n) 5ut for no Tm accepting these sets
can it be shown that they run in time T(n). This shows an interesting difference in
what can be formally proven about the existence of time bounds without being able
to prove these bounds for any specific Tm. It is an example of the difference
between existence proofs and constructive proofs.

There exist monotonically increasing, arbitrarily large recursive

Diagonalization, proof systems and complexity gaps

functions T(n) such that

{L(M) 1 bWW T(n)}

s {L(Mi) 1 ~-F[(W.)[L(M)= L(M’) and ‘C(n& T(n)l}.

Proof. Follows directly from Theorems 3 and 12. Cl

References

253

PI

RI
i31
WI

PI

if51

r71

I31

PI

A.B. Borodin, Computational complexity and existence of complexity gaps, L Assoc. Comput.
Mach. 19 (1972) 158-174.
P.C. Fischer, Theory of.provable recursive functions, Trans. Amer. Math. Sot. 117 (1965) 494-520.
D. Gordon, Complexity class of provable recursive functions, Typed paper (February, 1977).
J. Hartmanis, Computational complexity of one-tape Turing machin compc?ztions, J. Assoc.
Comput. Mach. 15 (1968) 352-339.
J. Hartmanis and J.E. Hopcroft, An overview of the Theory of Computational Complexity, J.
Assoc. Comput. Mach. 18 (1971) 444-475.
J. Hartmanis and J.E. Hopcroft, Independence results in computer science, ACM SIGACT
NEWS, 8 (4) (October-December 1976) 13-24.
F.C. Hennie and BE. Stearns, Two-tape simulation of multi-tape Turing machines, J. Assoc.
Comput. Mach. 13 (1966) 533-546.
W.J. Paul, On time hierarchies, Proc. Nintrz Annual ACM Symp. on Theory of Computing (May 2-4,
1977) 218-222.
P. Young, Optimization among provably equivalent programs, J. Assoc. Comput. Mcch. 24 (1977)
693-700.

