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ABSTRACT 

Let G be a Lie group and L C G a Lie subgroup. We give necessary and sufficient conditions for a family 

of  cosets of  L to generate a subsemigroup with nonempty interior in G. We apply these conditions to 

symmetric pairs (G, L) where L is a subgroup of  G such that G~ C L C G r and r is an involutive 

automorphism of  G. As a consequence we prove that for several r the fixed point group G r is a maximal 

semigroup. 

1. INTRODUCTION 

Let G be a Lie group and L C G a Lie subgroup. In this article we look at 
semigroups containing L or some of its cosets. One of the objectives is to decide 
when L is a maximal subsemigroup of  G, that is, to verify whether L is properly 
contained in a proper subsemigroup of  G. 

Our approach consists in finding necessary and sufficient conditions ensuring that 
a semigroup generated by cosets of  L has nonempty interior in G. Then we apply 
known results on semigroups in Lie groups (specially when G is semi-simple) to 
check that certain subsemigroups with nonempty interior must coincide with the 
whole group. 

Key words and phrases: Semigroups, Subgroup of  fixed points, Symmetric Lie groups, Involutive 

automorphisms, Flag manifolds, Semi-simple Lie groups 

E-mails: lsantos@ime.unicamp.br (L.J. dos Santos), smartin@ime.unicamp.br (L.A.B. San Martin). 

I Supported by FAPESP grant n ° 01/11345-1. 

2 Supported by CNPq grant n ° 305513/2003-6 and FAPESP grant n ° 02/10246-2. 

135 



This method works well in case G / L  is an effective irreducible symmetric space, 
that is, there exists an involutive automorphism r of  G such that G~ C L C G r, 
where G T is the group of r-fixed points and G~ its identity component. In this 
context we can prove that in most of  the cases G r is not contained in a proper 
subsemigroup of  G. Such semigroups where extensively studied in the literature 

in connection with causal symmetric spaces (see for instance the monograph by 
Hilgert and 01afsson [4], and references therein). 

This way we let B be a collection of  cosets of  L and write S(L, B) for the 

subsemigroup of  G generated by B. To give necessary and sufficient conditions 
for S(L, B) to have nonempty interior we consider product maps 

LXl × "'" × Lxn > G, n >~ 1, 

with x I . . . . .  X n ~ B. The semigroup S(L, B) is the union of  the images of  these 
maps. We work out our conditions in terms of  the differentials of these product maps 
(see Theorem 2.4). As a result we can prove that S(L, B) has nonempty interior in 
case B is not contained in the normalizer N([) of  the Lie algebra [ of  L and the 
quotient representation of  L on 9/l  is irreducible (see Theorem 2.6). 

In the case of  a symmetric Lie group its Lie algebra 9 decomposes as 

(1) 9 = t ~ q ,  

where [ and q are the eigenspaces associated with the eigenvalues 1 and - 1 of  r ,  

respectively. This decomposition is sometimes called the canonical decomposition 

of  9. Note that 

(2) [ [ , [ ] c [ ,  [ [ , q ] c q ,  and [q ,q ]CL 

Also [ is the Lie algebra of  G r . 
Let L be a subgroup of  G such that G~ C L C G r and x ¢ N([). If Ad(L) is 

irreducible on q, then the semigroup generated by a coset Lx has nonempty interior 
in G by the general result. An example of  the irreducible case is a Caftan involution 
in a simple Lie group G. In this case the fixed point group K is maximal as a 
subsemigroup of G since any semigroup S containing K properly has nonempty 
interior and acts transitively on the flag manifolds of  G. For general involutions 
we combine our results with those of  [9] to conclude that if the pair (g, r) is not 
regular (see Section 4 below), then the only semigroups which contain L are those 

contained in N(0. 
For the reducible case a detailed study of  the structure of 9 is necessary. In 

this case we have found a subset ® of the simple system of  roots such that if  

x q~ N+N([o)  U N~N([o)  (for the notation see Section 4), then the semigroup 
generated by Lx has nonempty interior. Consequently, the semigroups that contain 
L are the same as those contained in + NoN([o)  U N(~N([o), when (9, r) is not 
regular. 
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2. S E M I G R O U P S  G E N E R A T E D  B Y  C O S E T S  

Let G be a Lie group and g its Lie algebra. Let L C G be a Lie subgroup with 
Lie algebra [. We assume throughout that G and L are paracompact. In this section 
we consider semigroups generated by cosets of  L. The goal is to get necessary and 

sufficient conditions for the semigroups to have nonempty interior. 
Given a subset B C G we denote by S(L, B) the semigroup generated by the 

cosets Lx, x c B. The elements of  S(L, B) are finite products s = sl -..sk with 

si E Ux~8 Lx. Also, we write G(L, B) for the subgroup of  G generated by the 
cosets Lx, x E B. Note that B C G(L, B) hence B -1 and L = Lxx -1 (x ~ B) are 

contained in G(L, B). Moreover, it is easy to see that G(L, B) = S(L, B U B - l )  so 
that we can give a unified treatment for the semigroups and subgroups generated by 
sets of  cosets. I f  B = {x} is a singleton we write simply S(L, x) and G(L, x). 

Let us denote by p~, n ~> 2, the product map p~ : G ~ -+ G: 

p n : ( S l  . . . . .  Sn) l > Sl " " S n .  

Given a n-tuple x = (xl . . . . .  xn) 6 B n the subset Lx := Lxl x . . .  x L x  n is a 

submanifold of  G ". We denote by qx : Lx --~ G the restriction of  pn to Lx and 
let imqx be the image of  qx. Clearly, S(L, B) = [..J imqx with x running through 
the n-tuples of  elements of  B, n ~> 1. Presently we shall apply Baire's categories to 
give necessary and sufficient conditions to have int S(L, B) ~ 0. 

First let us recall that if  M and N are finite-dimensional manifolds with M 

paracompact then for a smooth (C °~) map f : M ~ N there are two possibilities: 

1. For some x c M the rank of the differential dfx is dim N. In this case the 
implicit function theorem ensures that the image f ( M )  of f has nonempty 
interior in N. 

2. rankdfx < dim N for all x ~ M. Then the f ( M )  is a set of  first category (meager 
set) in N, that is, is the union of at most countable closed sets with empty 
interior. In fact, M is the union of  at most countable compact subsets and if 
K c M is compact then f ( K )  is compact and by Sard's theorem has empty 
interior. In this case f ( M )  has empty interior. 

Now it is obvious that int S(L, B) -¢ 0 if  imqx has nonempty interior for some 
n-tuple x. The converse is also true in case B is countable. 

Proposition 2.1. Suppose that B C G is at most countable. Then int S(L, B) ~ 0 
i f  and only i f  there exists n >>. 1 and x ~ B n such that imqx has nonempty interior. 

Proof. The condition is obviously sufficient. The converse is a consequence of 
Baire's categories theorem and the above comments. In fact, each qx is a smooth 

map and if all the images imqx were meager sets then S(L, B) would be meager, 
contradicting the assumption that int S ( L , B) ¢ 0. [] 

Now we compute the image of  differential of  the maps qx. 
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Lemma 2.2. Given an n-tuple x c B n the image o f  the differential d(qx)~ at ~r = 

(sl . . . . .  s~) ~ Lx  is the subspace 

d(TP~s)l ([ + Ad(sl)([) + - - .  + Ad(s l . . .  Sn-1)([)), 

where s = sl . . .  Sn and T¢ is the right action. 

Proof. Denote by £ the left action. Then 

qx(sl . . . . .  Sn) -~- SI " . ' S  n = ff~Sl ...Si_l o 7~Si+l...Sn (Si ) .  

The tangent space to a coset Lx  at a point r is d(T~r)l([). Therefore the image of  
the i-th partial derivative ofqx at (Sl . . . . .  s,) is given by 

Oiqx = d(•sl...si_ I o T~si+i ""Sn)Si (d(7~si)l (D) 

= d(f~Sl ...si-1 o ~Si+l ""Sn 0 "]P~si ) 1 ([) 

= d(TP~si...Sn o £sl ...si-I )1 ([) 

= d(7Cs) 1 o Ad(sl - - -  s i _  1 ) ([). 

Adding up on i the lemma follows. [] 

T a k e  s 1  . . . . .  Sn c UxeB Lx. In the sequel we write 

(3) V(sl  . . . . .  sn) = [ + Ad(sl)([) + - . .  + Ad(sl . . .sn)([)  

for the subspaces of g whose right translations give the images of  the differentials 
of  the maps qx. It follows easily from the definition that 

(4) V(s1 . . . . .  Sr ,  t l  . . . . .  tin) = V(sl . . . . .  s~-I) + Ad(s )V( t l  . . . . .  tin), 

where s = s 1  . , .  Sr. Now let d be the maximum of  the dimensions of these subspaces 
and take two of  them, say V(sl . . . . .  Sr-~) and V(tl . . . . .  tin), having dimension d. 
If we fix (an arbitrary) s~ e [.-JxeB Lx  and apply (4) we conclude that 

V (s1 . . . . .  S r - 1 )  ---- A d ( s l " "  " Sr)  V ( t l  . . . . .  t in),  

that is, V(tl . . . . .  tin) = Ad(sl ""Sr)  - l  V(s! . . . . .  S r _ l ) .  This means that all the 
subspaces having maximal dimension are equal to one and the same Ad(sl --. st) -1 

V(sl  . . . . .  Sr--1). We denote this subspace by V(L ,  B). We have 

Lemma 2.3. The subspace V = V (L, B) satisfies the fol lowing properties: 

(1) [ C V. 
(2) Ad(x)V = V f o r a l l x  c B. 

(3) Ad(I)V = V f o r a l l l  ~ L. 

Furthermore V (L,  B) is the smallest subspace o f  g with these properties. 
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Proof. Clearly [ C V(L,  B) by definition of  the subspaces V(st . . . . .  sn). Now write 
V(L,  B) = V(tl . . . . .  tin) and take x 6 B. Then by (4) we have V(x, tl . . . . .  tin) = 

[ + A d ( x ) V ( q  . . . . .  tm), SO that 

V (L, B) = V (x, tl . . . . .  tm) = Ad(x)  V (tl . . . . .  tm), 

showing the second statement. For the third property note that if I c L then by (3) 
we have V (ltl . . . . .  tm) = Ad(l) V (q . . . . .  t m ) .  So that V ( L, B) is Ad(l)-invariant for 
every l 6 L. Finally, if V(L,  B) = V(q . . . . .  tm) then any subspace of  9 satisfying 
the above properties must contain V(q . . . . .  tin), by definition of  this subspace. [] 

Clearly, V(L,  B) = 9 if and only if there exists an n-tuple x E B n (some 
n ~> 1) such that the rank of  qx at some point is dimG. Therefore, combining 
Lemma 2.3 and Proposition 2.1 we get at once the following criteria for S(L, B) 

to have nonempty interior. 

Theorem 2.4. Suppose that B C G is at most countable. Then intS(L, B) 5~ 0 
i f  and only i f  V(L,  B) = ~. Equivalently, intS(L, B) ~ 0 i f  and only i f  every 

subspace V o f  ~ satisfying the three properties o f  Lemma 2.3 is equal to 9. 

Corollary 2.5. Suppose that B C G is at most countable. Then intS(L, B) ¢ 0 
i fandonly  ifint G(L, B) ~ 0. 

Proof. Of  course intG(L, B) ~ 0 if int  S(L, B) ~ 0. On the other hand G(L,  B) = 

S(L, B U B -~) so that if intG(L, B) ~ 0 then V(L,  B t3 B - l )  -= 9. But by finite 
dimensionality a subspace V C g is Ad(x)-invariant if and only if it is Ad(x- l )  - 
invariant. Hence V (L, B) = ~ as well so that int S(L, B) ~ 0. [] 

Remark.  The hypothesis that B is at most countable in Theorem 2.4 is required 
in the proof of  the only if part alone. Note however that the proof of  the corollary 
uses that the conditions are necessary and sufficient so that it needs the hypothesis 
that B is at most countable. We do not know if the corollary is true without this 
assumption. 

As a consequence of  the above criteria we derive an algebraic sufficient condition 
to be used later. Recall that there is a representation of  L in the quotient space ~/[ 
given by factorizing the adjoints Ad(l), 1 6 L. Also, let 

N([)---- {x c G: Ad(x)([) ---- [} 

be the normalizer of  l in 9. 

Theorem 2.6. Suppose that the quotient representation o f  L on 9/~ is irreducible. 

Take x c G \ N([). Then int S(L, x) ¢ 0. 

Proof. Let V C 1~ be a subspace satisfying the properties of Lemma 2.3. Since 
x ~ N([), it follows that V ¢ [. Hence its projection V on ~/[ is not {0} and is 
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L-invariant. By irreducibility we have V = q/I, that is, V = g, concluding the 
proof. [] 

Corollary 2.7. With the assumptions as in the theorem suppose that S is a 

semigroup of  G containing L and not contained in N([). Then int S ¢ 0. 

Proof. Just apply the theorem to the coset Lx with x ¢ S \ N([). Since L C S we 
have S(L, x) C S showing that int S ~ 0. [] 

Remark.  A special case which will be discussed later is when there exists a 

subspace q c g with g = [ @ q and such that q is Ad(L)-invariant. In this case the 
representations of  L on q and g/[ are isomorphic and hence the result of the above 
theorem holds if the adjoint representation of  L on q is irreducible. 

Remark.  By applying the inversion x w-~ x -  1 of  G it follows easily that the results 
above are also true for cosets xL,  x c G. 

3. FLAG MANIFOLDS AND SEMIGROUPS 

In the next section we apply Theorem 2.6 to semigroups in symmetric Lie groups. 
For that we recall here some concepts and results about flag manifolds and 
semigroups in semi-simple Lie groups. For more details we refer to [2,3,13] and 
[14] (for flag manifolds) and to [8] and [12] (for semigroups). 

Let g be a real noncompact semi-simple Lie algebra and let g = t~ ~ s be a Cartan 
decomposition with ~ a maximal compactly embedded subalgebra of  g and ~ its 
orthogonal complement with respect to the Cartan-Killing form (-, -). Let a c s be 
a maximal abelian subspace and denote by I-I the set of  restricted roots of  the pair 
(~, a). Also let 

~la = {X cO: ad(H)(X) = a ( H ) X  for all H 6 a} 

be the root space corresponding to the root a. Select a simple system of  roots E C I-I 
and let I7 + and a + denote the corresponding set of  positive roots and Weyl chamber, 
respectively. The subalgebras 

n + =  Z g ~  and n - =  Z g ~  
~EFI + ~EFI -  

(where I-1- = -1-I +) are nilpotent and the Iwasawa decomposition of  0 reads 0 = 
+ a + n +. Let m be the centralizer of  a in ~. The standard minimal parabolic 

subalgebra o fg  is p = m + a + n +. More generally let ® be a subset of  E, (6)) the 
set of  all linear combinations of  (9, and (6))± = (6)) A I-1 ±. 

Also, take the subalgebras 

n+(6))= E g±'~ and n~ = E g+'~" 
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The standard parabolic subalgebra associated with O is 

Po = n - ( O )  +p .  

Let a(O) be the subspace of a generated by H~, where o~ 6 0  and H~ is defined 
by ~(.) = (H,~,-). Furthermore, let tto denote the orthogonal complement of  a(O), 
in a, with respect to (., .). Then we have the following decomposition: 

Po -- [o + n~, 

where m o =  m + a(O) + n+(O) + n- (O)  and [o = m o  + ao. 
If G is a Lie group with Lie algebra ~1 we put K = exp tL The parabolic subgroup 

Po is the normalizer o f p o  in G. Theflag manifold associated with O is defined by 
Fo = G/Po. The subgroup P = Pe is a minimal parabolic subgroup, and F = G/P 
is a maximal flag manifold. 

We consider now subsemigroups of G having nonempty interior and recall the 
results to be used later. To this purpose we give a rough picture of  their actions on 
the flag manifolds of  G. We do this by analogy with the action of one-parameter 
subgroups of G. 

Thus let us take an element H 6 a. It induces vector fields on the flag manifolds 
Fo which we denote indistinctly by v;4. Clearly, the flow of  v;4 is the one-parameter 
subgroup exptH.  Recall that vi4 is a gradient vector field with respect to some 
K-invariant Riemannian metric on Fo (see [2, Proposition 3.3]). As such its flow 
has either fixed points or noncompact orbits linking asymptotically the fixed points. 
There is recurrence inside the set of fixed points and the flow is transient outside it. 

For instance, if H is split regular (that is, or(H) ~ 0 for all root ot) then vH 
has a finite number of isolated singularities, namely the points bw = ~bl with w 
running through the Weyl group W. Here bl is the origin corresponding to the 
Weyl chamber a + containing H and ~ is a representative of w in the normalizer 
M* of a in K. In general we take H 6 cla +. Then the set of  fixed points is given 
by the union of the orbits K;4 • b,~, w E W, where KH is the centralizer of  H in K. 
Each orbit KH • bw is a connected component of  the set of fixed points and these 
components are parametrized by the set of  double cosets WI-I\W/Wo,  where WI4 
is the subgroup of  W fixing H and Wo is the subgroup generated by the simple 
reflections in O (see [2, Section 1]). 

A fixed point component KH • bw, precedes K/4 • bw2 if there exists a noncompact 
orbit flowing from the first component to the second one. This order the components 
in such a way that there is just one maximal component (that is, an attractor) which 
is the orbit KH. bl as well as a unique minimal component (a repeller) which is the 
orbit K/4 • b~ o where w0 is the element of  maximal length of  W. 

Now, let S C G be a semigroup with int S % {3. Then we obtain a similar picture 
for the S-action on the flag manifolds. Here, instead of  the fixed point components 
we take the control sets of S (by definition a subset D with int D % 13 is a control set 
if D C cl(S. x) for all x c D and D is maximal with this property (see [8] or [12])). 
In fact, the main results of  [8] and [12] show the following facts: 
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1. The control sets for the S-action on a flag manifold Fo are parametrized by a 

set of  double cosets Wt-l(S)\W/Wo for some H(S) e a, depending on S. 
2. There exists just one invariant control set Co C Fo ( i .e .S.  x C Co i fx  ~ Co). 

The invariant control set plays the role of  the attractor for the S-action. 

3. In particular consider the maximal flag manifold F and the flag manifold 

Fo(s) ~ K/KI4(S) (the K-adjoint orbit of  H(S)) where H(S) is given by (1). 
Then we have the following properties: 

(a) The invariant control set Co(s) C Fo(s) is contractible in the sense that for 

every h 6 int S the iterations h n Co(s) shrink to a single point (the attractor 

o f h  in Fo(s)). 

(b) The invariant control set C c IF on the maximal flag manifold is 

zr -1 (Co(s)), where zr :F ---~Fo(s) is the canonical fibration. 

These two properties together characterize the flag manifold Fo(s) and afortiori 

determines a choice of  H(S). The flag manifold lFo(s) (or rather the conjugacy 

class of  the corresponding parabolic subgroup Po(s)) is called the parabolic or 

flag type of  S (see [1 l]). (Note that similar properties hold for the attractors on 

F and Fo(s) for the single flow exptH(S).) 

In the particular case when H(S) = 0 the flag manifold Fo(s) degenerates to a 

point. Then the above characterization of  Fo(s) ensures that the invariant control 

set C of  S in F is the whole F. This means that S acts transitively on F. In this case 

and when G has finite center one can exploit the compactness of K to prove that S 

must be G. Let us describe the main ideas of  this proof. 

First note two elementary and general facts: (i) S = G if G is a connected group 

and the indentity 1 of G belongs to int S; (ii) An open semigroup of  a compact 

group contains its identity component. Hence one gets S = G if int S intersects a 
compact subgroup of  G. If G is a semi-simple Lie group and has finite center there 

are easy ways of  getting compact subgroups. Namely the closure of  a one-parameter 

subgroup exp tX is compact if the eigenvalues of  ad(X) are purely imaginary, i.e., 

X is elliptic. Here the finiteness of  the center is essential. 

On the other hand, let Y e g be a nilpotent element, i.e., ad(Y) is a nilpotent 

operator. Then an application of the Borel-Morozov theorem permits to prove that 

there exists an elliptic element X close enough to Y (see [8]). Therefore the strategy 

reduces to show the existence of  a nilpotent element Y E ~ with exp Y e int S, 

implying that there exists an elliptic element X with exp X e int S as well. 

Here is where the transitivity of  S on F comes in. In fact, by transitivity it 

follows the existence of  h = exp H c int S with H E a + as well as the existence of  

h I n 6 int S with h I = exp H1, H1 E - a + and n e N = exp n +. Then one can manage 

to get rid of  the hyperbolic parts h and hi and show that N N intS ¢ 0 (see [8], 

Theorem 3.5). Thus one concludes that S --- G if S is transitive on maximal flag 

manifold. Furthermore, there is the following result, proved in [12], exploiting the 

parabolic type of  the semigroup and the above description of  the action of  S on an 

arbitrary flag manifold Fo.  
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Theorem 3.1. Suppose that G is simple and has finite center. Let S be a semigroup 

o f  G with nonempty interior. I f  S is transitive on Fe, then S = G. 

Note that the assumption that G is simple is essential since semigroups of the 
form S = Gi x $2 act transitively on flag manifolds of  the type (G1 x GZ)/(PI x 

G2), where G1 and G2 are simple Lie groups and Pl is a parabolic subgroup of  G1. 
Finally we mention that the above theorem is part of a series of  similar results 

holding for semi-simple Lie groups. In fact, as shown in [10] it rarely occurs that a 
proper semigroup S C G (with int S ~ 0 and G semi-simple with finite center) act 
transitively on a homogeneous space G / H .  

4. SEMIGROUPS 1N SYMMETRIC GROUPS 

Let (G, ~) be a symmetric Lie group, where G is connected semi-simple and 
noncompact with Lie algebra 9- Let G r denote the subgroup of T-fixed points. 
Consider the canonical decomposition of 9, 

(5) 9 = l • q. 

Also, let L be a subgroup of G such that G~ C L C G ~ . We deal separately with the 
cases where the adjoint representation of  L on q is irreducible or not. 

4.1. The irreducible case 

If Ad(L) is irreducible on q, then by Corollary 2.7 (and the remark following it) a 
semigroup that contains L and is not contained in N(0 has nonempty interior in G. 
We will see now some cases where S cannot be proper. 

We start by considering the case of Riemannian symmetric pairs. Let 9 = ~ ~ 
be a Cartan decomposition of  9 and 0 the corresponding Cartan involution. Let K 
be the connected subgroup of G with Lie algebra ~. 

Theorem 4.1. Suppose that G is simple and let x (~ K. Then the coset Kx  generates 

G as a semigroup. 

Proof. Let S be a semigroup generated by Kx,  x ~ K. Note that K is the normalizer 
of ~ in G and Ad(K) is irreducible on ~ (see [7]). Hence, Theorem 2.6 implies that 
int S :~ 0. 

Now there exists X c 5 and k E K such that x = k exp X, so that Kx = K exp X. 
Without loss of  generality we can assume that X E a. Then by the Iwasawa 
decomposition Kx P = G, which implies that S is transitive on the maximal flag 
manifold F. Therefore by Theorem 3.1 we have S = G if G has finite center. 

To get the proof for general G we check first that the center Z(G) of G is 
contained in S. The quotient G / Z ( G )  is centerless and the semigroup S / Z ( G )  C 

G / Z ( G )  contains the coset ( K / Z ( G ) ) x '  with x' = x Z ( G )  not in K / Z ( G ) .  By the 
first part of  the proof it follows that S / Z ( G )  --- G /Z (G) .  
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Now, x Z ( G )  = Z(G)x  C S because Z(G) C K (see [3]). Also, x-1Z(G) f3 S ~ 0 

because S / Z ( G )  = G/Z(G) .  Let uo ~ Z(G) be such that x - l u o  ~ S and take u E 
Z(G).  Then 

u=(x-'uo)(uo'ux) S, 
so that Z(G) c S. 

Finally take y ~ G. Then yZ(G)  c S / Z ( G )  so that there exists s ~ S such 

that yZ(G)  = sZ(G) ,  i.e., s - l y  = g E Z(G) C S. Hence y = sg ~ S, showing 
that S = G. [] 

I f  S is a semigroup that contains K properly, then there exists an element x c 
S such that x ¢ K. Since S should contain the coset Kx we have the following 
consequence of  Theorem 4.1. 

Corol lary 4.2. I f  G & simple, then K & maximal as a semigroup o f  G. 

The extension of the above results to semi-simple groups is easy. Let g = 

gl • ""  • gs be the decomposition of  g into simple ideals and t~i C l~li a maximal 
compactly embedded subalgebras in ~i such that 1~ = [~l @ ' "  @ ~s. Let Ki denote 
the connected subgroup with Lie algebra t~i. 

Corollary 4.3. I f  S is a semigroup containing K, then S = Al . . .  As with Ai : Ki 

or Gi, where Gi is the subgroup corresponding to gi. 

Now we consider the affine symmetric spaces. Let 0 be a Cartan involution that 
commutes with r ,  and let g = t~ @ s be the corresponding Cartan decomposition. Put 
t~+ = t~n  [, t~_ = ~n q ,s+  = s n  [,s_ = ~ n q ,  and [a :{~+ q- £i_. 

We say that the pair (g, r) is regular i f  3(P) n s_ # 0, where 3(b) denotes the 
center of  I). 

The following theorem is the main result of  [9]. 

Theorem 4.4. Let G be a simple Lie group with finite center Suppose that (tJ, r)  is 
not regular I f  S is a semigroup o f  G with L C S and intS ¢ 0, then S = G. 

Combining Theorem 4.4 and Theorem 2.6 we get at once the following result. 

Theorem 4.5. Let G be a simple Lie group with finite center Suppose that Ad(L) 
is irreducible on q, and that (g, r)  is not regular. I f  S is a semigroup such that L C S 

and S is not contained in N(D then S = G. 

4.2. The reducible case 

The reducible symmetric spaces such that the L-representation on q is reducible 
have been classified in [5]. The properties of  these space to be used here are 
contained in Lemma 1.3.4 of  [4], which we reproduce here. 
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L e m m a  4.6. Let (9, r)  be an irreducible effective semi-simple symmetric pair 
l f  q is reducible then the following holds. 

(1) q splits into two irreducible components q+ and q-. 
(2) The invariant subspaces q+ and q- are isotropic for the Cartan-Killing form 

and are abelian subalgebras. 
(3) The subalgebras p+ = l + q+ and p- = [ + q- are maximal parabolic and q+ is 

the nilradical of  p ±. 
(4) The representations of[ on q+ and q- are not isomorphic. In particular q+ and 

q- are the only nontrivial invariant subspaces of  q. 

The aim here is to determine conditions on x E G so that the subspace V(L, x), 
defined in Section 2, is equal to IJ. Before stating the results we note that in the 
notations of  Section 3 we have [ = Io, q+ = n + and q- -- no if we take p+ to be the 

standard parabolic subalgebra Po. 
Put N + = exp(n~) and N~ = exp(n~)) for the subgroups corresponding to the 

irreducible components of  q. 

L e m m a  4.7. Let x c G be such that Ad(x)(l) C p+ (resp. Ad(x)([) C p ). Then 
x c N+N([)  (resp. x ~ NON([)). 

Proof. We have Ad(x)(ao)  N n + = {0}, because the elements of  ao are semi-simple 
(ao c a c s), while the elements o f n  + are nilpotent. Moreover, Ad(x)(me) n n + = 

{0}. In fact, if  X E Ad(x)(mo) n n +, then we have 

( X , Y ) = 0  for all Y 6 p + ,  

because p+ = (n+) ±. Since the Cartan-Killing form of  g when restricted to 

Ad(x)(mo),  is nondegenerate, we have X = 0. Hence, if  x 6 G is such that 
Ad(x)([) c p+, then p+ = Ad(x)(l) + n + Consequently, there exists n 6 N + (.). 

such that Ad(x)([) = Ad(n)(l). Then Ad(n- lx) ( l )  = [. Consequently, n-Ix  ~ N([) 
and x ~ N+N([). Analogously, it is easy to see that i f  Ad(x)(l) C p -  then x 

N~)N(I). [] 

Theorem 4.8. Suppose that G is simple. Take x c G \ (N+N([) U N~N([)).  Then 
the semigroup S( L, x) generated by the coset Lx has nonempty interior in G. 

Proofl Keep the notation of  the proof of  Theorem 2.6. It is enough to show that if  

x ~ N+N([) U N~N(I)  then V(L, x) n q = q. 
It follows by Lemma 4.7 that Ad(x)(I) is not contained in p+ neither in p - .  

Hence V(L, x) n q is not contained in n i Moreover, V(L, x) n q 7~ {0} because ®- 

x ~ N([). Since V(L, x) N q is ad(l)-invariant we have by Lemma 4.6 (4) that 

V ( L , x ) N q = q .  [] 

Combining Theorem 4.4 and Theorem 4.8 we get at once the following result. 
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Theorem 4.9. Assume that G is simple, has finite center and (l~, r) is not regular. 
I f  S is a semigroup o f  G such that L C S and S is not contained in N+N([) U 
NON([ ), then S = G. 
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