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Let X be a homogeneous tree. We study the heat diffusion process associated
with the nearest neighbour isotropic Markov operator on X. In particular it is
shown that the heat maximal operator is weak type (1, 1) and strong type (p, p).
for every 1 < p<oc. We estimate the asymptotic behaviour of the heat maximal
function. Moreover, we introduce a family of H” spaces on X. It is proved that
H?”={7(X) for 1 < p< > and is conjectured that H”, for p less than 1, is trivial.
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1. HEAT MaxiMAL OPERATOR ON TREES

This paper deals with the following question. We are given a
homogeneous tree whose edges have the same thermal conductivity.
Suppose that one vertex is at a positive temperature at time zero, whereas
the others are at temperature zero. What is the highest temperature that
the generic vertex x attains?

The asymptotic behaviour, for n — 20, of the temperature distribution
@(x, n) at time » is given by the local limit theorem, extensively studied in
the literature [Sa, Pi, Ge]. These asymptotic estimates are not sufficient to
yield bounds for the highest temperature @(x)=sup, ., @(x, n). Explicit
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formulas for ¢(x, n) are given in [Gr, LM, Pa] but these formulas seem
inadequate to answer our question. This paper gives an estimate for @(x)
and investigates its role as a maximal operator on trees, which can be of
interest to introduce and study suitable Hardy spaces.

More precisely, X is a homogeneous tree, that is, a graph without loops,
and with the same number of edges joining each vertex. We denote this
number by ¢+ 1, with ¢ > 1. The case g=1 corresponds to a linear tree,
isomorphic to the integers. The case ¢>1 gives rise to a nontrivial tree
(which is a transitive and simply transitive homogeneous space under
groups of type ¢+ Z, and other free products and free groups: see [BP]).
We write x ~ y if two vertices x and y are neighbours, i.e., if they are joined
by an edge of X.

Let us equip X with the isotropic nearest neighbour transition operator
P, defined by p(x, y)=1/(g+ 1), if x~ y, p(x, y)=0 otherwise. We often
regard P as an operator acting on functions defined on the vertices of X,
by the rule Pf(x)=3. p(x, y)f(y). By iteration, P gives rise to a semi-
group. Regarding P as the generator of a Brownian motion on X with
discrete time, ie., a random walk, it is natural to think of its associated
semigroups as a heat diffusion semigroup. In other words, we may identify
the semigroup with the countabe diffusion process where all the heat is
concentrated at a reference vertex o at time 0 and, at time »n, the
temperature of a vertex x is exactly p"(o, x) (here P denotes the nth
iterate of P). In other words, the map (n, x) p'")(o, x) is the fundamental
solution of the heat equation with singularity in x =0 for n=0. The reader
is referred to [Pa] for more details on the heat equation on homogeneous
trees, and for an explicit formula for its fundamental solution; see also
[LM].

It is now natural to introduce a heat maximal operator. For fel'(X) (the
space of summable functions defined on the vertices of X), define

Mf(x)=sup (P"f(x)) = sup ( Y i y) f(,v))-

nz0 nz=0 veEX

It is not easy to obtain explicit formulas for this nonlinear operator. But we
can estimate .# by introducing another linear operator M which dominates
it,

Mf(x)= 3, (Sup P, y))f(}'l

rex \nz0

The operator M is linear. Recall that X is a simply transitive homogeneous
space under a suitable countable group /" and P is a group invariant
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transition operator. Then M is naturally identified with the left convolution
operator (under the group I') by the heat maximal function

®(x)=sup p"(o, x).

nz0
Obviously,
[ Af(x)] < M(| fINx)= (D * [ f])x).

Therefore any /” or weak /# estimate that we may be able to prove for M
will also hold for .#. Actually, with abuse of terminology, from now on we
refer to M as the heat maximal operator on X.

Some preliminary estimates on M are essentially known.

ProposiTioN 1.1.  The operator M is of weak type (1,1), and it is
bounded on 17(X), for every 1 <p < c0.

COROLLARY 1.2. .# is weak type (1, 1) and strong type (p, p), for every
I<p<oo.

Proof of Proposition 1.1. Let us denote by G(x, y) the Green function
with singularity at x=0. That is, G(x, y)=3,., p"'(x, ») (the expected
number of visits to the vertex x of the random walk generated by P,
starting at x) is the fundamental solution of the “Laplace operator” P—1
(here [ denotes the identity operator):

(P-0)Gf=—1, for every fel'(X).

By Theorem 21 of [RT], the operator G is weak type (1, 1} and bounded
in [7(X) for 1 < p< 0. On the other hand,

B(x) = sup p™(o, x)< ¥ p™(o, x) = G(o, X).

n=0

Hence G dominates M and also M is bounded in /7, 1 < p < oc, and weak
type (1, 1). 1

By its definition, the heat maximal function has a natural interpretation
in the heat diffusion model introduced above: &(x) represents the maxi-
mum temperature reached at the vertex x if heat is concentrated in the
vertex o. By the local limit theorem (see [Sa, Pi]), the temperature of the
vertex x decays, when the time n grows, as C(x)(2/q/(g+1))n~??,
where C(x) is independent of n. But this does not say anything about the
maximum temperature attained by x.

In Section 2 we determine exactly the asymptotic behaviour of @(x). In
particular, we show that @ e/?, for every p> 1, but @ ¢/'. Here is a sketch
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of our approach towards an estimate for @. We reduce the diffusion
process to an analogous process on N with transition rules r(n, n—1)=
(Ljg+ 1), rin,n+1)=¢q/(g+1) for n21, and r(0, 1)=1. This process, in
turn, is approximated with the shift invariant process on 7 given by
rin,n—1)=1/{g+ 1), r(n,n+ 1)=g/(¢+ 1), for every n. The latter process
can be studied explicitly, and by a careful control of the approximation
errors, we are able to determine how much time elapses before x reaches
its maximum temperature, after being reached by the “heat wave”
generated at the vertex o at time 0. The exponential growth of X might
suggest that heat disperses very quickly, and therefore this time delay
should be small, much smaller than the time needed for the heat to reach
x (which is exactly |x| =dist(o, x), of course). But, surprisingly, this is not
so: the time delay is of the order of | x|/{¢ — 1), linear in | x]. Because of this
fact, @ is not so small as to belong to /'(X), although it does belong to /7,
for every 1 < p< o,

A potential application of this estimate is a new theory of H” spaces on
X. H" spaces associated to a large class of transitive operators on general
{not necessarily homogeneous) trees were studied in [KPT, DP], as spaces
of harmonic functions on the vertices of the tree. The boundary values of
these functions may be regarded either as functions or as “distributions” on
the boundary Q of the tree. Our maximal operator gives rise to a different
notion of H”, whose functions are defined on the vertices of X but are not
harmonic. In a natural sense they may be extended to “harmonic” func-
tions on the “half-space” X' x N. In other words, H”-functions on X now
play the role of boundary values of a suitable class of harmonic function
defined on a larger space, whose boundary is X.

We say that a function fe/'(X) belongs to H” if M/ belongs to /'(X).

Since ¢ e/7(X), for every p> 1, the Dirac masses all belong to H?, for
p>1, hence H?=17(X), for p>1. But @¢/'(X) and a function f may
belong to H' only if it has enough cancellation to allow @  f'to decay at
infinity at a sufficiently fast rate. By analogy with some symmetric spaces,
one may expect H” to be trivial (that is, H”={0}), for p < 1. In Section 3
we gather some computational evidence in support of this conjecture, by
producing a large class of typical test functions in /”(X) that do not belong
to H”.

2. AN ESTIMATE FOR THE HEAT MaAXIMAL FUNCTION

For two functions f/ and g of a variable x we use the notation [~ g if
there exist constants C,, C, with 0 <, < (5 such that

Cgx)< fix) < Crglx), for every .
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THEOREM 2.1 (An estimate for the Heat Maximal Function). There
exists a sequence {h,}, with h,x j~"2q~/ such that, if |x| = j, we have

P(x)=h,+O0(j Y2y 1),

Proof. We split the proof into several lemmas. The basic idea of the
proof is that, because of the isotropy, the random walk generated by pu,
can be considered as a random walk on N with one-step transition
probabilities given by

1
r(0,1)=1, r(n,n+1)=m, r(n,n—l)=;—:f (for ne N).

Letr, =r(n,n+1)and r =r(n,n—1). Let R be the operator on N given
by the above transition probabilities, Then P!"(x), the nth convolution
power of P, is given by
(n)
po, x) =,
W,
where w,=(g+1)¢" "' is the cardinality of the set W, of vertices at dis-
tance n from the origin of X. The random walk on N generated by R was
studied in [Gr].

We consider the transition invariant operator R on Z given by
Fn,n+1)=r,, Fin,n—1)=r_ and we compare the probabilities of
getting from O to j under the operators R and R, both regarded as
operators on Z. Observe that all paths from O to j in » steps, with n > j,
must include loops. That is, there are k edges in Z that are crossed at
least twice in opposite directions. Note that there are exactly (}) such
paths and n=j+ 2k. Each such path yields the same contribution to the
probability #(0, j): namely r/*“r* . Therefore

S+ 2k TH2RN ks _ J+ 2k g’ "
r (]) ( k reyr k (q_+_1)i+2k'

LEmMMAa 2.2, For each x, with |x| = j, one has

r'"(j) = sup 7"(j).

nz0

sup

nz0

Proof. To prove the lemma we make use of an explicit formula for
r'")(j) given in [Gr, Lemma 4.1]. We have
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ji2
PG = (et <L>
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X{(j+2k>+£_<j.+2k)_r+—ri &)’@j-&ﬂ(
k r. \j+k ror [\ +k+1

__ g {q+l<j+2k>_q2—l§": L Jt2%k )}
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q

Moreover,

O {(j+2k)+1<j+2k)_42—1 S ,<j+2k )}
J (q+”)+2k k g k q J 1+k+[

t=
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But, since 1= 1 and j+ & >n/2 = (j+ 2k)/2, we have

(J_/+2k )<<j+2k>_<j+2k)
i+k+1t j+k) \ k)

Therefore

_ ek ok 2y k
(/+2k>~> 4 ! -1+ ){l—q :}
e (" ;A

= 1= g 4]
q

1.
2,_;.(/+2k) ).
p 1
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To prove the theorem we must find the value of n=n(j) for which 7"'(j)
attains the maximum, i.e., we must find the maximum point, denoted by

ko, for the function
n .
ki (k) ri ek
For such &k, we must have

AN X
(i3t <) e (1)

(i)

B(.k)_<n>/<n+2)_ k+1) (+k+1)
PO\ )\ e+1) TGy kv ) Gr2k+ 1)

but

Set

Then (1} is equivalent to

(qfl)2=r,r+<3(j,k). (2)

LEMMA 2.3. For j=2, the function
ks B(J, k), Jor keN

has a unique extreme point.

Proof. ForkelZ

=222k Y2

d
2 B k)=
& B0 R) G+2k+2)7 G+ 2k+1)

Therefore, for k=10,

d U .
sen (¢ BULK) ) =senl* + /'~ 21=2)

and this is positive if j>2. Moreover, if k— +oc, the numerator in
(d/dk) B(J, k) tends to —oc. Therefore (d/dk) B(J, k) =0 has exactly two
real solutions, only one of which is positive. |
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Let c=gq/(g+ 1)
COROLLARY 24. For each j =2, the equation
B(j, k)=c (3)
has only one positive (real) solution.

Proof. For every g2 1,

In the proof of Lemma 2.3 we showed that for j= 2, B(/, k) is monotoni-
cally decreasing for large k. Thercfore, if B(j, ky)=¢, then B(j, k) must
have a maximum point for some k > k,. Now, if there were two solutions
ki, k, of the equation in the statement, then (d/dk) B(j, k)=0 for some
k'e[k,,k,] and for some other A" >k,. |}

This proves that there exists exactly one value k, of k such that (2) is
true for k&, but not fgr ko— 1.
Let us denote by A, R* the positive solution of {3), which is given by

ko=kolj)= ‘?}/‘g (o + f3j — \/7 + ﬁ/z),
where x=2(1 —3¢), f=1—4¢, and y =42
Now we ask the following question: How long does it take for a vertex
of the tree to reach the maximum temperature, after having been hit by a
“heat wave” originating at the reference vertex o? The next lemma gives an
approximate answer (the expected delay computed in its statement is real,
but not necessarily integer).

LEMMA 2.5 Z’H:E(,(j)zj,/(q— N+ K,+0() N, where

_(P—g+1)
T (g—1)?
Proof.  Observe first that
j 1

= WV

Hence,

~ j ~ 1 —
ko(J) —";L:k()(_f)_<“2‘/), (Bi— \/’ﬁ.ﬁ))

! CEATTYED
=35 (VBASTH B~ 1) — )
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(VP aip)) v

a ) g?—q+1
—_—4+0 1 =
2tV =Ty

We want to estimate @(x)}=sup,., p""(0, x). By Lemma 2.2, if |x| =,

+0(; ") 1

=+ 2ko)( ; FU+ 2ko)( ¢
(p(.\,):p([+2k())(0, x)zr (]): r (.])

W, (C]+1)q”1
But
,7(,/'+2A»0)( ) = J+ 2k, _qH_ki___ “
/ kg (g+ 1)/ 7%

Let 9,=[j/(¢g—1)]. Then

F(j+2k0’(j)= J+ 23’/ q/w‘-’)l
8, Jlg+1yr¥

7

With notation as in (4), it is easy to check that

’~.(i+2(kn+llb(j) 1 q
’71/+2ku)(j) =B(j,k0)((]+1)2’
and
Ui+ 2k =10 ) ) (g+1)?
WZBU’ ko—l)—q—~

Therefore, by Lemma 2.3, FV/+ 2ketnz1ng iy ptiv 2keling i) s bounded above
and below with respect to j. By Lemma 2.5, k=3, + K, + O(j ). Iterating
the above argument we see that

F(j+2kol(j) ~ f(j+n9,|(j)‘

Now it is enough to give an estimate of the binomial coefficient (’*>").
We achieve this by making use of the Stirling formula

2rnn'e " <nl< . /2nnn"e e
Let

1 Ji+29, (1+428) % )

}.(_j): — - T g
S2r S+ 88, (1+8) 9y
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The Stirling formula yields

) 1 1 1 Jj+ 29 L 1
Aj)exp (Z (/——,+9/+§j>)<< 3 ><A(j)exp (————~4(j+29])>. (6)

LEMMA 2.6. Let

(1+25)'*2

SUNTERIES

Then A(s)yx A[s], if 0<s < K, with constants depending only on K.

Proof. It is enough to show that, for every s>0, (1 +5) T
(1+[sD'*0), and s~ [s]™). On the other hand, (1 +s)'*" is monotone
increasing for s> 0, and s* is bounded if 0 <s< 1. Therefore it suffices to
show that, for s> 0,

(l+S)I+,\-z(1+(S+1))I+(A‘+||:(2+S)2+-.\-.
But

(2+>§)2+.\_<

1 I+
m— 1+——"‘) (2 +3),

t+s

and the lemma follows by the fact that (1 + 1/(1+s))'** is bounded with
respect to 5. |

For j large enough, Lemma 2.6 allows one to replace §, with j/(¢—1) in
{5) and (6). Therefore we obtain the following corollary.

COROLLARY 2.7.

) 1 ( _+_])I'(ll+liu‘(¢/"|)
i(,/)=C(,~——q—~———~—~—,

\/j_. q,lqﬁ'(q 1)

where C,=(1//2n) /(¢° — 1)/q and

] 1g—1 14293, . 1q2—l
y) —— ! s — .
(~”exp(4jq+1><( 3, ><””e"p(4/ 7 )

End of the proof of the Theorem. We show that

1428

A(7)(1 ~8(j))<( 9 ‘ ’)<)v(,i)(1 +e(/)),
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where &(j)=0(j ~'). Indeed,

1 q2—1>
€X - =
p(@ q

1g—1 1g—1
—_—— =1 — 0 --2’
6XP<4J'£1+1) +4jq+1+ G

1429, ] L 1g°—1 1g-1t
t( 3, )ﬁMJWSM”<“p<5 q )_ap<@q+in

(L=t 2
“(”<4fq(q+1)+0“ ’)‘

2

qg°—1

1
— 0 '—2’
py +0(j™7)

hence

For j large enough, these estimates imply that

J+ ko J+ka

_art
(g+ 1)

q

(1 —8(1))<f("+2k°)(j)<i(j)m

A(J) (1+e())),

with £(j)=0O(j !). In other words,
g’th 0 Mj) gtk

(g + 1)+ ( j (q-+1)’*2“)

1 (q+1)1'(q+1)s‘(qfli .

:Cqﬁ qf‘l"‘(‘/*” +O(qu 3“2)
C s

=;%+OU )

;lj+2ko)(j)‘ C
q J

PR ) = ()

Hence

D(x)x

and the theorem is proved. |

COROLLARY 2.8 (/”-behaviour). ®el”, for every p> 1, but ®¢l".

3. A CONJECTURE ON THE RADIAL H? SPACE ASSOCIATED WITH
THE HEAT MaxiMAL FUNCTION

Let
HAX)={fel?(X): D *fel?(X)}.
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Equipped with the /”-norm, H4 is a closed subspace of /7. Note that this
is not the H” space of [KPT].

For p> 1, @el”(X), so é,e H}(X), for every xe X. Hence H# contains
all finitely supported functions, for p> 1. Therefore H/{=1{" for every
p> 1

But @ ¢ /' What is H,? More generally, what is H}(X), for 0<p<1?

We conjecture that, at least for p <1, the only radial function in H/(X)
is the zero function. Here is some evidence.

Let f be a radial function in /7. If |x| =n, write

1
fx)==h,
q

Therefore h={h,} is a sequence in /”. Now, by writing /, instead of f{x)
when |x| =n, a direct computation shows that, for |x| =n,

no1

: . e : ,
(D*/(r): Z <fn /+TZ 614//11 j+2/+[{.,fn+[>¢(./)
[

ool
1

. . ., i '
+Z ( ’fk n+-—q_z qk *A[/A n+2/+qk.fn+k)(p(k)'
11

By Theorem 2.1 this amounts to

1 no1 1
d’*f(ﬂ)%_/)ﬁr—zz (h /+q
q

—1/ ! ,
Z ‘I hn i+ 2/+q Ihn+/>
1\//

4 =y
1 £ q - .

7 Z hA n+ Z (1 hl\ nt ’[+q hn+k
9 Ty kq 4

{=1

=f,+1,(n)+1,(n)

Hence

Dxfelle Y ¢ (n)+1,(n)" <.

nz 0

For the sake of concreteness, the sequence 4 is in /7. We confine ourselves
to the case where |4| is non-increasing. Then

i1

!
Z ([ hn i+ 2

=1

xh, ;.
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By the same token,

g ’h,, ;xh

n—j-
Hence,

1 n—1
I (n) = 7 > \/, he e (7)

j=1

Now, A, must vanish at infinity faster than 1/n. Suppose, to begin with,
that 4, decays slowly, that is,

lh,|=n"7*+H (>0), or () =n Yrlogn) PP (B>0),

or something similar. Then in the former case,

n—1 w- 1
Z \/— Il*)) Z jil”‘z(n—j)ilﬁ‘piﬂ

i=1 J=1

n—1 s\ —172 N —lip—f
o) ()
PN n

12 . (n--1}n ” )
<n Y l"""”] x V1 —x)" B gy
0

1—1/n
<n ¥ 1"””’<C +——~J (1—x) Y- ”d\’)
l7

=n 3;"2*]J’,”[1(C‘_C2n 1ip /3\1)

32 lp—§
,

xh

where C, and C, are constants.
Therefore,

lqnl/lv(n}l %"q"“ ﬁp)ll (f+32)yp— I’

where C is a constant. The other cases yield the same estimate.
On the other hand, by the same argument, we see that

1 =
Ln)x— (8)
q

i 1
—ly_,.
kgn \/Z qk -n k
As we are assuming that 4, decays polynomially, it follows from (8) that

12 n

Ln)x~n "¢

607:110,2-2
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Therefore I, {n)/I,(n) —» 0 when n— x, and

Y g+ L) 7 Y @) "= o0,

nz0 nz=0

for every p< 1.
Hence & f'¢ /7, for p< 1, if h,=¢q"f, decays polynomially.
Now let us assume that h, decays faster, say

11

lht=——, for some x>0, #>0.
g n

Actually, since « is arbitrary, it is enough to look at the case |h,| = 1/¢*".
Then, by (7),

] no (i on) ~1/
) x— Y 4 (1+" y
i

5 i

2 - 2 ;
q 1|+_1)/+q (l+-:(i[>

P

< |-
it
M
&

p
QA

:
%

Therefore,

Y ¢ (n)=x.

nzl

On the other hand, (8) yields

1(n) 1 i 1 1
sa)x— — = .
2 an:” \/k q(l +adk  u) \/';qlr

Indeed,
. h n h() - hk "
e R I
/\':Il\/i\qu\ " \/; k;n+1\/qu "
lh()l < |hA nl

/\/; k:n+l\/ﬁlzqk "
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But

& &
——— <Ay ——
k=n+1\/1:qk7" l k=zn:+1\//:qk7"

i 1

where C is a constant independent of n. Therefore,

i hy S C
NS ENE
Now g"I5(n)= Cg"' ~7'n=772 hence I,(n) and I,(n) are of the same order
of magnitude. It does not seem to be possible, however, to construct a
sequence # such that the dominant terms in 7, (n) and I,(n) cancel out for
each n. At least, it appears that this cannot happen in the case p < |, where
both /,(n) and I,(n) diverge, and there does not seem to be a way to find
a function f such that I,(n) + I,(n) decays sufficiently fast. This motivates
our conjecture. (Of course, such a system of cancellations, if available,
should necessarily arise from oscillating terms in h,, for instance,
alternating signs, because @ * f¢/”, if f=0).
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