MONOCYTE SUBSETS PREDICT VASCULAR INFLAMMATION BEYOND TRADITIONAL RISK FACTORS OF CARDIOVASCULAR DISEASE IN PSORIASIS

Poster Contributions
Hall C
Saturday, March 29, 2014, 3:45 p.m.-4:30 p.m.

Session Title: Peripheral Artery Disease
Abstract Category: 32. Vascular Medicine: Non Coronary Arterial Disease
Presentation Number: 1139-74

Authors: Elena Stansky, Shawn Rose, Parasarum Krishnamoorthy, Elizabeth Weiner, Jenny Dave, Nehal N. Mehta, National Institutes of Health, Bethesda, MD, USA, Englewood Hospital, NJ

Background: Psoriasis (PSO), a systemic inflammatory disorder, is associated with increased susceptibility to cardiovascular disease (CVD), and circulating blood monocytes are thought to play a role. Monocytes are considered to be a heterogeneous population, and while the CD16-classical monocytic subset has been associated with early atherosclerosis, the role of CD16+ subsets is unclear. The current study utilized 18-Fluorodeoxyglucose (FDG)-positron emission tomography (PET) computed tomography (CT) imaging, a reliable indicator of vascular inflammation, atherosclerotic plaque activity and future CV events, along with flow cytometry to evaluate the relationship between vascular inflammation and monocytic subsets in PSO.

Methods: In vivo vascular inflammation, defined by maximum standardized uptake value (SUV) in the aorta, was measured by FDG-PET/CT in PSO patients (n=26). Monocytic subsets were evaluated based on differential expression of CD14 and CD16 in the peripheral whole blood: classical (CD14++CD16-), intermediate (CD14++CD16+), and nonclassical (CD14+CD16++). After adjusting for traditional CVD risk factors, demographics, HDL efflux and BMI, the relationship between monocytic subsets and aortic vascular inflammation was determined using linear regression analysis.

Results: FDG-PET/CT imaging demonstrated vascular inflammation in the aorta that significantly correlated with total monocyte count (β=0.26, p<0.01), classical (β=0.02, p<0.01), intermediate (β=-0.30, p<0.01), and nonclassical subsets (β=0.22, p<0.01). In opposition to the other subpopulations, an increase in the intermediate subset was associated with decreased aortic vascular inflammation. These findings were supported by the classical: intermediate (β=0.06, p<0.01), nonclassical: intermediate (β=0.61, p<0.01), and classical: nonclassical ratios (β=-0.05, p<0.01).

Conclusions: Total monocyte count as well as all three monocytic subsets independently predict aortic vascular inflammation beyond traditional risk factors in PSO. For the first time, we demonstrate that CD16+ cell populations may have relevance in CVD, and that intermediate monocytes may protect from CVD.