A Markov Inequality in Several Dimensions*

Don R. Wilhelmsen
Department of Mathematics, University of Georgia, Athens, Georgia 30602
Communicated by Philip J. Davis

1. Introduction

If p is a polynomial of degree k or less whose modulus is bounded by one on $[-1,1]$, then

$$
\begin{equation*}
\max _{t \in[-1,1]}\left|p^{\prime}(t)\right| \leqslant k^{2} \tag{1.1}
\end{equation*}
$$

This result was first proved by A. Markov [7] and later generalized for higher derivatives by W. Markov [8]. Equality occurs in (1.1) if and only if p is the k th Tchebycheff polynomial of the first kind. Duffin and Schaeffer [1] demonstrated a more fundamental connection between (1.1) and the Tchebycheff polynomials: One need only assume $|p(\cos [\nu \pi / k])| \leqslant 1$, $\nu=0,1, \ldots, k$, in order for the same conclusion to hold. Modifications of (1.1) have been studied by Hille, et al. [3], Scheick [9], and others. Observe that if $|p(t)| \leqslant 1$ for $t \in[-d, d]$, then

$$
\begin{equation*}
\left|p^{\prime}(t)\right| \leqslant \frac{k^{2}}{d}, \quad t \in[-d, d] \tag{1.2}
\end{equation*}
$$

Inequality (1.2) is essential in the study of oscillatory properties of polynomials. During the author's investigation of numerical integration in several variables [11], a multidimensional analog was required; it was given for arbitrary convex, compact sets in Euclidean n-space. That result is improved in this paper, using a considerably simplified approach.
O. D. Kellogg [6] obtained an analog of (1.2) for the sphere in E_{n}. His bound is sharp, and to the author's knowledge this is the only other extension of the Markov inequality to several dimensions.

[^0]
2. Preliminaries

Throughout this paper T will be a compact, convex set in E_{n} with boundary ∂T and nonempty interior T^{0}. The Euclidean norm of an n-vector v will be denoted by $\|v\|$, and we shall define set-related norms for a continuously differentiable function p and its gradient ∇p by

$$
\begin{equation*}
\|p\|_{T} \equiv \max _{t \in T}|p(t)| \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\|\nabla p\|_{T} \equiv \max _{t \in T}\|\nabla p(t)\| . \tag{2.2}
\end{equation*}
$$

Let $\mathscr{P}_{k, T}$ be the set of algebraic polynomials of total degree k or less in n variables which satisfy the condition

$$
\begin{equation*}
\|p\|_{T} \leqslant 1, \quad p \in \mathscr{P}_{k, T} . \tag{2.3}
\end{equation*}
$$

For $k=1,2, \ldots$, define

$$
M_{k, T} \equiv \max \left\{\|\nabla p\|_{T}, p \in \mathscr{P}_{k, T}\right\}
$$

which we shall refer to as Markov numbers. Our aim is to find upper bounds for the Markov numbers. (For a general exposition of multivariate polynomials, the reader is referred to Hirsch [4], Stroud [10], and Jackson [5].)

Fix $t_{0} \in \partial T$, let u be a unit vector, and consider the hyperplane with normal u (see Goldstein [2])

$$
\mathscr{H}_{u} \equiv\left\{t \in E_{n}:\left(t-t_{0}, u\right)=0\right\}
$$

where (\cdot, \cdot) denotes scalar product. \mathscr{H}_{u} is a support hyperplane of T at t_{0} if and only if it contains no interior points of T. One may arrange things so that $(t, u) \leqslant 0$ when $t \in T$, in which case u is called an outer normal to T at t_{0}. The following facts are easily verified and will be used later (recall that T is convex).
(i) If $t_{0} \in \partial T$, there exists at least one support hyperplane for T at t_{0}.
(ii) For any direction u, there exist precisely two support hyperplanes of T, one with outer normal u and the other with outer normal $-u$. They are separated by a distance $\lambda_{u}>0$.
(iii) If \mathscr{H}_{u} is not a support hyperplane, then one can find two points t_{1} and t_{2} in T such that $\left(t_{1}-t_{0}, u\right)<0$ and $\left(t_{2}-t_{0}, u\right)>0$, where $t_{0} \in \mathscr{H}_{u} \cap \partial T$.
(iv) If the distance of t from \mathscr{H}_{u} is d and $t_{0} \in \mathscr{H}_{u}$, then $\left|\left(t-t_{0}, u\right)\right|=d$.

Defintion 2.1. Define the width of T to be

$$
\omega_{T} \equiv \min _{\|x\|=1} \lambda_{u} .
$$

Note that $\omega_{T}>0$, given our assumptions on T.
Finally, we shall use the two properties of polynomials listed below.
(v) Fix $t_{0} \in E_{n}$. If $p(t)$ is of degree k or less in n variables, then $p\left(t_{0}+\lambda u\right)$ is of degree k or less in λ.
(vi) Let u be a unit vector. The derivative of p at t_{0} in the direction u is given by

$$
\left.p_{u}\left(t_{0}\right) \equiv \frac{d}{d \lambda} p\left(t_{0}+\lambda u\right)\right|_{\lambda=0}=\left(\nabla p\left(t_{0}\right), u\right)
$$

3. Derivation of bounds

Lemma 3.1. Given $p \in \mathscr{P}_{k, T}$, let $t^{*} \in T$ satisfy $\left\|\nabla p\left(t^{*}\right)\right\|=\|\nabla p\|_{T}$. If also $\left|p\left(t^{*}\right)\right|=1$, then

$$
\begin{equation*}
\|\nabla p\|_{T} \leqslant \frac{2 k^{2}}{\omega_{T}} \tag{3.1}
\end{equation*}
$$

Proof. We omit the trivial case when p is constant. Since $|p(t)|$ cannot exceed 1 , we must have $t^{*} \in \partial T$. Let $u=\nabla p\left(t^{*}\right) /\left\|\nabla p\left(t^{*}\right)\right\|$, and let \mathscr{H}_{u} be the hyperplane with normal u which passes through t^{*}. We claim \mathscr{H}_{u} is a support hyperplane of T. If not, and if $p\left(t^{*}\right)=1$, we can find a point $t_{1} \in T$ for which by (vi) $p_{v}\left(t^{*}\right)=\left(\nabla p\left(t^{*}\right), v\right)>0$, where $v=\left(t_{1}-t^{*}\right)\left\|t_{1}-t^{*}\right\|$. Since this implies $|p(t)|$ must exceed 1 somewhere on the segment $\left[t^{*}, t_{1}\right]$, we have a contradiction. The case $p\left(t^{*}\right)=-1$ follows similarly.

Now, assume u is an outer normal for T (or arrange things so), and let \mathscr{H}_{-u} be the support hyperplane with outer normal $-u$ lying a distance λ_{u} from \mathscr{H}_{u}. Let $t_{0} \in \mathscr{H}_{-u} \cap T$. The line segment $\left[t_{0}, t^{*}\right]$ lies in T, and $p\left(t^{*}+\lambda w\right)$, where $w=\left(t_{0}-t^{*}\right) /\left\|t_{0}-t^{*}\right\|$, is a polynomial in λ of degree k or less which is bounded by 1 on $\left[0, \| t_{0}-t^{*}| |\right]$. Since polynomials are translation invariant, inequality (1.2) yields

$$
\begin{aligned}
\frac{2 k^{2}}{\left\|t_{0}-t^{*}\right\|} & \geqslant\left|p_{w}\left(t^{*}\right)\right|=\mid\left(\nabla p\left(t^{*}\right), w \mid\right. \\
& =\frac{\lambda_{u}\left\|\nabla p\left(t^{*}\right)\right\|}{\left\|t_{0}-t^{*}\right\|} \\
& \geqslant \frac{\omega_{T}\left\|\nabla p\left(t^{*}\right)\right\|}{\left\|t_{0}-t^{*}\right\|}
\end{aligned}
$$

from which (3.1) follows.

Theorem 3.1. If $p \in \mathscr{P}_{k, T}$, then

$$
\begin{equation*}
\|\nabla p\|_{T}<\frac{4 k^{2}}{\omega_{T}} \tag{3.2}
\end{equation*}
$$

Proof. Find $t^{*} \in T$ such that $\left\|\nabla p\left(t^{*}\right)\right\|=\|\nabla p\|_{T}$ and assume p is not constant. If $\left|p\left(t^{*}\right)\right|=1$, we cite the previous Lemma. Otherwise, let $u=\nabla p\left(t^{*}\right) / \| \nabla p\left(t^{*}\right)| |$. Let \mathscr{H}_{u} and \mathscr{H}_{-u} be the support hyperplanes of T with outer normals u and $-u$, respectively. Let $t_{0} \in \mathscr{H}_{u} \cap T$ and $t_{1} \in \mathscr{K}_{-u} \cap T$. Clearly t^{*} must be a distance $\left(\lambda_{u} / 2\right) \geqslant\left(\omega_{T} / 2\right)$ or more from \mathscr{H}_{u} or \mathscr{H}_{-u}. Suppose it is \mathscr{H}_{u}. Since $\left|p\left(t^{*}\right)\right|<1$, we may travel a little distance from t^{*} in the direction $\left(t^{*}-t_{0}\right)$ to a point t_{δ} such that
(a) $|p(t)| \leqslant 1$ on $\left[t_{0}, t_{8}\right]$ and
(b) the distance of t_{δ} from \mathscr{H}_{u} is $\lambda_{8}>\omega_{T} / 2$.

We now repeat the argument of Lemma 3.1 to get

$$
\begin{aligned}
\frac{2 k^{2}}{\left\|t_{\delta}-t_{0}\right\|} & \geqslant\left|\left(\nabla p\left(t^{*}\right), \frac{t_{\delta}-t_{0}}{\left\|t_{\delta}-t_{0}\right\|}\right)\right| \\
& =\frac{\lambda_{\delta}\left\|\nabla p\left(t^{*}\right)\right\|}{\left\|t_{\delta}-t_{0}\right\|} \\
& >\frac{\omega_{T}\left\|\nabla p\left(t^{*}\right)\right\|}{2\left\|t_{\delta}-t_{0}\right\|} .
\end{aligned}
$$

Theorem 3.2.

$$
\begin{equation*}
M_{k}<\frac{4 k^{2}}{\omega_{T}}, \quad k=1,2, \ldots \tag{3.3}
\end{equation*}
$$

Proof. If $k \geqslant 1$, we note that $\|\nabla p\|_{T}$ is a continuous function on the compact set $\mathscr{P}_{k, T}$. The rest follows from Theorem 3.1.

4. A Sharpness Conjecture

For the unit ball $B \subset E_{n}$ Kellogg [6] showed that $M_{k} \leqslant k^{2}$. This is made sharp by the extremal polynomials $\cos \left[k \cos ^{-1} \lambda(t)\right]$, where $\lambda(t)$ is the signed distance of t from a fixed hyperplane passing through the center of B. Note that $\omega_{B}=2$, so that the bound of Theorem 3.2 differs from M_{k} by a factor less than 2.
We conjecture that for arbitrary convex, compact $T, M_{k}=2 k^{2} / \omega_{T}$, $k=0,1,2, \ldots$. This is equivalent to proposing that there always exists an extremal polynomial p and a point $t^{*} \in T$ such that $M_{k}=\left\|\nabla p\left(t^{*}\right)\right\|$ and $\left|p\left(t^{*}\right)\right|=1$.

A stronger conjecture would be the following: Any extremal polynomial must attain its maximum derivative value and maximum magnitude coincidentally at some point in ∂T. This property is satisfied by the Tchebycheff polynomials mentioned above. It would be interesting to determine whether or not these are the only extremal polynomials.

Acknowledgment

I am indebted to Professor Philip J. Davis for bringing to my attention the reference by Kellogg.

References

1. R. J. Duffin and A. C. Schaffere, A refinement of an inequality of the brothers Markoff, Trans. Am. Math. Soc. 50 (1941), 517-528.
2. A. A. Goldstein, "Constructive Real Analysis," Harper and Row, New York, 1967.
3. E. Hille, G. Szegö and J. D. Tamarkin, On some generalizations of a theorem of A. Markoff, Duke Math. J. 3 (1937), 729-739.
4. P. M. Hirsch, Evaluation of orthogonal polynomials and its relationship to evaluating multiple integrals, Math. Comp. 22 (1968), 280-285.
5. D. Jackson, Formal properties of orthogonal polynomials in two variables, Duke Math. J. 2 (1936), 423-434.
6. O. D. Kellogg, On bounded polynomials in several variables, Math. Zeil. 27 (1927), 55-64.
7. A. Markov, Sur une question posee par Mendeleieff, Bull. Acad. Sci. St. Petersburg 62 (1889), 1-24.
8. W. Markov, Uber polynome, die in einem gegebenen intervalle moglichst wenig von null abweichen, Mat. Ann. 77 (1916), 213-258.
9. J. T. Scheick, Inequalities for derivatives of polynomials of special type, J. Approx. Theor. 6 (1972), 354-358.
10. A. H. Stroud, Integration formulas and orthogonal polynomials for two variables, SIAM J. Numer. Anal. 6 (1969), 222-229.
11. D. R. Wilhelmsen, Non-negative approximate integration in several dimensions, Ph.D. thesis, Brown University, 1972.

[^0]: * This work formed a part of the author's Ph.D. thesis completed at Brown University, Division of Applied Mathematics, and supported by an NDEA Title IV Fellowship.

