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Alternating Quotients of Fuchsian Groups
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It is shown that any finitely generated, non-elementary Fuchsian group has among
its homomorphic images all but finitely many of the alternating groups An. This
settles in the affirmative a long-standing conjecture of Graham Higman. © 2000

Academic Press

1. INTRODUCTION

It all started with a theorem of Miller [14]: the classical modular group
PSL2�Z� has among its homomorphic images every alternating group, ex-
cept A6; A7; and A8. In the late 1960s Graham Higman conjectured that
any (finitely generated non-elementary) Fuchsian group has among its ho-
momorphic images all but finitely many of the alternating groups. This re-
duces to an investigation of the cocompact �p; q; r�-triangle groups, and in
the series of papers [3, 4, 9, 15, 16] the conjecture was verified in the affir-
mative when p = 2. Assuming the Fuchsian group is finitely generated and
non-elementary, and taking “almost all” to be synonymous with “all but
finitely many,” and “surjects” with “has among its homomorphic images,”
we build on this earlier work to prove

Theorem. Any Fuchsian group surjects almost all of the alternating
groups.
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There are several motivations behind the conjecture: Fuchsian groups
have an algebraic structure that is somewhat complicated, and to get a
firmer grip on this situation, one may be tempted to consider their finite,
or even simple, homomorphic images. There is also a geometric incen-
tive, namely, any compact Riemann surface (or complex algebraic curve)
of genus > 1 has conformal automorphism group a finite homomorphic
image of some Fuchsian group.

Schreier coset diagrams supply the technology used to prove the theorem,
and they appear in the literature in various guises (see [2, 11] for alternative
formulations as hypermaps or dessin d’enfants). Section 3 has the definition
and the basic properties. Section 4 contains the proof of the theorem.

2. THE PLAN

Suppose X is the 2-sphere S2, the Euclidean plane E2, or the hyperbolic
plane H2. Let G be a finitely generated non-elementary discrete group of
orientation preserving isometries of X. By classical work of Fricke and
Klein (see, for instance, [21]), G has a presentation of the form

generators x a1; b1; : : : ; ag; bg �hyperbolic�;
x1; : : : ; xe �elliptic�;
y1; : : : ; ys �parabolic�;
z1; : : : ; zt (hyperbolic boundary elements):

relations x x
m1
1 = · · · = xme

e = 1;
e∏
i=1
xi

s∏
j=1
yj

t∏
k=1

zk
g∏
l=1
�al; bl� = 1:

When X = H2, G is called a Fuchsian group. The division into spherical,
Euclidean, and Fuchsian is governed by the quantity

µ�G� = 2g − 2 +
e∑
i=1

(
1− 1

mi

)
+ s + t; (1)

with µ�G� < 0;= 0, or > 0 as X = S2;E2, or H2. The quotient X/G is
an orientable 2-orbifold of genus g with e cone points, s punctures, and t
boundary components. Its geometry and the algebraic structure of G are
intimately connected, so that G is determined up to isomorphism by its
signature �gym1; : : : ;mey sy t�, 2 ≤ m1 ≤ · · · ≤ me.

To prove the theorem, it suffices to just consider the cocompact Dyck
groups—the cases where in the signature we have g = s = t = 0. To see
why, we make a few elementary observations.
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1. A group of signature �gym1; : : : ;mey sy t� is isomorphic to one of
�gym1; : : : ; mey s+ ty 0�, and by (1), the former is Fuchsian if and only if the
latter is. We may assume then that t = 0. Write �gym1; : : : ;mey s� instead
of �gym1; : : : ;mey sy 0� from now on.

2. We can surject G = �gym1; : : : ;mey s� onto G′ = �g′ym1; : : : ;m
′
i;

: : : ; m̂j; : : : ;mey s′�, for any g′ ≤ g; s′ ≤ s, and m′i a divisor of mi. The hat
denotes omission. Here is how: map the jth elliptic, s − s′ of the parabolic,
and g − g′ hyperbolic pairs of generators of G to the identity of G′; map
the ith elliptic generator of G to the corresponding elliptic generator of G′

raised to the power mi/m
′
i. All other generators of G map to the corre-

sponding ones in G′. The map then extends to the desired homomorphism.
3. Writing �m1; : : : ;me� when g = s = 0, suppose

ψ:G = �m1; : : : ;me� → Sn

is a homomorphism with transitive image and let Gj be the subgroup
of G consisting of those elements stabilising some fixed point j of
�1; 2; : : : ; n�. By Theorem 1 of [17], Gj has signature �g′yn11; n12; : : : ; n1ρ1

;
: : : ; nr1; nr2; : : : ; nrρr �, where ψ�xi� has exactly one cycle each of lengths
mi/ni1; : : : ;mi/niρi , with all other cycles of length mi, and µ�Gj� = nµ�G�.
Moreover, if Gj is normal in G, and we have the theorem for G, the
simplicity of An for n ≥ 5 gives the result for G1 as well.

4. Finally, any k-cycle �a1; : : : ; ak� ∈ An can be written as a product

�a2; ak��a3; ak−1� · · · �ak/2+1/2; ak/2+3/2��a1; a2��a3; ak�
· · · �ak/2+1/2; ak/2+5/2�

of two involutions in An. Similarly any cycle of even length in Sn can be
written as a product of a involution in Sn and an involution in An. Thus,
if we have the result for �m1; : : : ; k; : : : ;mey s� we have it for �m1; : : : ;
2; 2; k̂; : : : ;mey s� too.

Lemma 2.1. The theorem is true for every Fuchsian group if it holds for
every Dyck group.

Proof. Proceeding according to the genus, suppose G has signature
�g;m1; : : : ; mey s� with g ≥ 2. Map G onto �x; y�–�, free of rank 2, by
sending a1 7→ x, a2 7→ y, and all the other generators to the identity. Since
An is 2-generated for n ≥ 3 (see [5]), we are done.

A group of genus 1 with e ≥ 1 can be surjected onto �1ym1y 0� for m1 ≥
2, by comment 2 above. The map ψ: �0y 2; 2; 2; 2m1y 0� → S2 sending all
generators to the permutation �1; 2� has kernel isomorphic to �1ym1y 0� by
comment 3 above; hence the result holds for groups of genus 1 with e ≥ 1
by the assumption of the Lemma. For groups of genus 1 with no elliptic
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generators or periods, hence signature �1y –y s� for s ≥ 1, we may surject
onto �1y –y 1�. But this is easily seen to be free of rank 2, so the result holds
here also.

A group of genus 0 with no periods must, by (1), have at least three
parabolic generators, and hence surject �0y –y 3�. But this is free of rank 2
also. With a single period we have s ≥ 2, and the group surjects �0ym1y 2� ∼=
Zm1 * Z, the free product of Zm1

and Z. This surjects Zm1 * Z3, which in turn
surjects any Fuchsian triangle group of the form �0y 3;m1; ry 0� for which
the result holds by assumption.

With two periods and one parabolic, we have �0ym1;m2y 1� ∼= Zm1 * Zm2
,

where m2 ≥ 3, so we can surject any Fuchsian triangle group like
�0ym1;m2; ry 0�. A group with more parabolics, �0ym1;m2y s� for s ≥ 2,
surjects �0ym1y 2� done above. Finally, �0ym1; : : : ;mey s�, e ≥ 3, surjects
either Z2 * Z2 * Z2 or Zm1 * Zm2

for m2 ≥ 3. Surject the former onto a
Fuchsian �0y 2; 2; 2; py 0�. The latter has already been handled.

Lemma 2.2. The theorem holds for every Dyck group if it holds for the
following:

1. the Fuchsian triangle groups �p; q; r� with 2 ≤ p < q < r distinct
primes;

2. the triangle groups �2; 4; r� for r ≥ 5 a prime;
3. the groups �2; 3; 8�, �2; 3; 9�, �2; 3; 10�, �2; 3; 12�, �2; 3; 15�,

�2; 3; 25�, �2; 4; 6�, �2; 4; 8�, �2; 4; 9�, �2; 5; 6�, �2; 5; 9� and �3; 4; 5�;
4. the groups �2; 3; 3; 3� and �3; 3; 3; 3�.

Proof. The hyperbolic triangle group �2;m1;m2� surjects �2; q; r� for q
and r some prime divisors of m1 and m2. If �2; q; r� is Fuchsian, we have
by (1) that 1/q + 1/r < 1/2. If q and r are distinct, we have a group listed
in part 1 of the lemma. If q = r, the map ψ: �2; q; 4� → S2 that sends the
generators of orders 2 and 4 to the permutation �1; 2� and the generator of
order q to the identity has kernel �q; q; 2� ∼= �2; q; q�. We have 2/q < 1/2,
hence q ≥ 5, and the theorem holds for �2; q; q� as it holds for �2; 4; q�, a
group listed in part 2 of the lemma.

If �2; q; r� is not Fuchsian, it must be, after a possible reordering, one
of �2; 2; r� for r ≥ 2, �2; 3; 3�, or �2; 3; 5�. The first gives that �2;m1;m2�
must have the form �2;m1; 2l�, for m1 ≥ 3 and l ≥ 2. If m1 = 3 or 4
then l ≥ 3, as �2; 3; 4� is spherical and �2; 4; 4� Euclidean, so the group
surjects �2; 3; 8� or �2; 4; 8�, both of which are listed in the lemma. For
m1 ≥ 5, �2;m1; 2l� surjects �2;m1; 4� ∼= �2; 4;m1�. This in turn surjects
�2; 4; r�, r prime, and we have a group listed in part 2 unless r = 2 or
3. In the first case, m1 = 2n ≥ 8, so �2; 4;m1� surjects �2; 4; 8�. In the
second, m1 = 2l1 3n1 , and the group surjects �2; 4; 9� when l1 = 0, or �2; 4; 6�
otherwise. The cases �2; q; r� = �2; 3; 3� or �2; 3; 5� are entirely similar.
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This accounts for the �2;m1;m2� Fuchsian groups, and the case of gen-
eral triangle groups is much the same. Similarly for the groups with four
or five elliptic generators—either they can be surjected directly onto trian-
gle groups or they can be eliminated from consideration using comment 4
at the beginning of the section. The only exceptions are those listed in the
lemma. Finally, a group with six or more elliptic generators can always be
surjected directly onto a Fuchsian group with five. No doubt the reader can
fill in the details.

In [3, 4, 9], the groups �2; 3; r� for all r ≥ 7 and �2; 4; r� for all r ≥ 5
were dealt with. Theorems 1–3 of [15] take care of the �2; q; r�, 5 ≤ q < r
prime, with the exception of 60 cases. These 60, and those from parts 3 and
4 of Lemma 2.2 can be found in the preprint version of this paper [7, Sect.
6]. This leaves the triangle groups �p; q; r�, 3 ≤ p < q < r, to consider, and
they can be found in Section 4.

Later we will construct permutation groups as homomorphic images of
Fuchsian groups and will identify the images as alternating, using

Theorem 2.1 ([12]; Refer to [19, Theorem 13.9]). Let G be a primitive
permutation group of degree n containing a prime cycle for some prime q ≤
n− 3. Then G is either the alternating group An or the symmetric group Sn.

The following lemma, well known to the cognoscenti, allows one to re-
place primitivity by more easily verifiable criteria. Recall that the support of
a permutation σ ∈ Sn consists of those elements of �1; 2; : : : ; n� not fixed
by σ .

Lemma 2.3. Let G = �σ1; σ2; : : : ; σk� be a transitive permutation group
of degree n containing a prime cycle µ. For each σi, suppose there is a point
in the support of µ whose image under σi is also in the support of µ. Then G
is primitive.

Proof. Suppose on the contrary that G is imprimitive with block system
". For σ ∈ G, let σ̄ be the permutation induced by σ on ", and let G be
the group generated by the σ̄i. The map σ 7→ σ̄ is an epimorphism from G
onto G, and G acts transitively on ". All blocks B ∈ " thus have the same
size, say �B�. If B ∈ " is in supp�µ̄�, the support of µ̄, then B and its image
under µ are distinct blocks, and so B is contained in supp�µ�. Taking the
union of all the blocks in supp�µ̄� thus gives

�B� �supp�µ̄�� ≤ �supp�µ��: (2)

Now µ has order q a prime, and µ̄ is a homomorphic image of µ. Thus,
if µ̄ 6= 1, then µ̄ has order q, and so �supp�µ̄�� ≥ q. Since " is non-trivial,
we have �B� > 1, and hence, by (2), �supp�µ�� > q. This contradicts the fact
that µ is a q-cycle, so we must have µ̄ = 1. This means that µ̄ fixes every
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block, or equivalently, any point and its image under µ lie in the same
block. But µ is a single cycle, so there is a block B∗ with supp�µ� ⊆ B∗. By
the condition stated in the lemma, B∗ and its image under σi intersect for
all i, and so are equal. Since the σi generate G, the whole group must fix
B∗, and by transitivity, B∗ = �1; 2; : : : ; n�, so there is just one block. This
is the desired contradiction.

3. COSET DIAGRAMS

Suppose G is a group with a finite presentation �XyR �, and let K0 =
K0�XyR� be the standard 2-dimensional CW-complex with π1�K0� ∼= G.
The 1-skeleton of K0 consists of a single vertex incident with oriented loops
or edges that are in one-to-one correspondence with the generators X. Each
edge x ∈ X is a pair of oppositely oriented arcs, an x-arc and an x−1-arc.
The former coincides with the edge under its given orientation and the
latter with the edge with the reverse orientation. The faces of K0 are in
one-to-one correspondence with the relators R and are obtained by sewing
discs onto the 1-skeleton, each with boundary label a relator word r ∈ R;
see [10, Sect. 6.3].

A Schreier coset diagram for G is a cellular (that is, k-cells lift to k-
cells) covering of K0 (see [18, Sects. 2.2.1 and 4.3.2] or [1]). A covering K
realises a subgroup H ∼= π1�K� of G, with the vertices of K in one-to-one
correspondence with the cosets of H in G. Conversely, every subgroup is
realisable in this way from some diagram.

Their usefulness for our purposes stems from the fact that any coset di-
agram K yields a homomorphism θK:G→ Sym�vertices of K� ∼= Sn. Here
n is the sheet number of the covering, hence the number �K� of vertices in
K. For any g ∈ G the image of vertex v under the permutation θK�g� is the
terminal vertex of the path starting at v with label g. In particular, θK�G�
is transitive if and only if K is path-connected.

All of this is, of course, well known. The CW-complexes that form coset
diagrams for G are characterised by two simple properties:

1. For each vertex v and generator x ∈ X, there is precisely one x-arc
and one x−1-arc having initial vertex v.

2. The faces are in one-to-one correspondence with the paths ob-
tained by starting at some vertex v and traversing a path with label some
r ∈ R.

Condition 2 indicates that, in their unrefined form, coset diagrams are a
little unwieldy—there will be many faces sharing the same set of boundary
edges. To alleviate matters, we use an equivalent construct, suggested by
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Higman and used in [3, 4, 8, 9, 15, 16]. It is what results by identifying such
multiple faces.

Let G = �m1; : : : ;me� be some fixed but arbitrarily chosen Dyck group.
A more convenient presentation than given in the Introduction is

�x1; x2; : : : ; xe−1 �xm1
1 = xm2

2 = · · · = xme−1
e−1 = �x1x2 : : : xe−1�me = 1�:

A G-graph is a directed graph with edges labelled x1; : : : ; xe−1 satisfying
property (1) above. Ordering the edges incident with every vertex as shown
in Fig. 1 yields a 2-cell embedding of a G-graph into a closed orientable
surface (see [20] for more details on graph embeddings). Each face of this
complex S will have boundary label some power of xi or x1x2 · · ·xe−1. Call
S a G-diagram if, for each face, this power divides the order of the appro-
priate word given in the presentation.

In a G-diagram, a path starting at v with label xmi

i or �x1 · · ·xe−1�me

circumnavigates a face an integral number of times. Taking the underlying
G-graph and sewing in a 2-cell for each such vertex–relator pair yields a
coset diagram for G. Conversely, the 1-skeleton of a coset diagram is a
G-graph in which a path from any vertex with label a relator is closed (as
it bounds a face). Embedding the graph as above gives a G-diagram. We
therefore have

Lemma 3.1. A coset diagram for G yields a unique G-diagram, and vice
versa.

Consequently, we use the same terminology for G-diagrams as for coset
diagrams. In particular, call a face an xi-face or �x1 · · ·xe−1�-face whenever
it has boundary label some power of xi or x1 · · ·xe−1.

The key property of G-diagrams, as Higman observed, is that they can
sometimes be combined to form new ones. For this we use handles, that
is, pairs of vertices α and β, each incident with x1-loops, so that the path
starting at α with label x1 · · ·xe−1 terminates at β.

Let K1; : : : ;Kt , t ≤ m1, be a collection of disjoint G-diagrams, and the
2m1 distinct vertices α1; β1; : : : ; αm1

; βm1
a collection of m1 handles with

FIGURE 1



464 brent everitt

at least one in each diagram. Take the disjoint union of all the underly-
ing G-graphs, remove the x1-loops at the vertices αj and βj , and replace
them by x1-edges from αj to αj+1 and βj to βj−1, subscripts taken modulo
m1. Embed the graph in the usual way, and call the resulting complex the
composition of K1; : : : ;Kt denoted by ��K1; : : : ;Kt��.

Proposition 3.1. ��K1; : : : ;Kt�� is also a G-diagram with
∑ �Ki� vertices.

Proof. The underlying graph of ��K1; : : : ;Kt�� is clearly a G-graph, so it
remains to show that all faces have boundary labels of the required form.
If the boundary of a face does not contain an x1-edge with initial vertex
one of the αj or βj , then all edges are contained in a single G-diagram Ki,
and we are done.

Otherwise, we obtain the boundary label for the face by starting at an
αj or βj and traversing a path with label some power of x1 or some
power of x1 · · ·xe−1, until it closes (which it does by repeating an arc).
The path obtained by traversing just x1-edges passes through the vertices
αj+1; : : : ; αm1

; α1; : : : ; αj or βj−1; : : : ; β1; βm1
; : : : ; βj , before closing with

label xm1
1 , so such faces are as they should be. Observe that before composi-

tion, the path starting at αj with label some power of x1 · · ·xe−1 arrived at
vertex βj after e− 1 directed edges, and proceeded to traverse the x1-loop
at βj and then an x2-edge. After composition, the path from αj with such
a label arrives instead at βj+1 after e− 1 directed edges, traverses the new
x1-edge to βj , and is then identical with the path before composition. So
the boundary label behaves as if the composition never happened and is
thus of the required form. The number of vertices is obvious.

Now suppose G is the triangle group

�x; y �xp = yq = �xy�r = 1�; 3 ≤ p < q < r;

with p; q, and r prime. In practice, we simplify �p; q; r�-diagrams when
drawing them: a shaded q-gon indicates a y-face with boundary label yq,
and a shaded wedge a y-face with label y; the orientation on arcs runs
anticlockwise around any face they bound unless indicated otherwise; x-
faces with boundary x are removed completely, leaving only the incident
vertex which will be called free. On occasion, we will talk of attaching x-
arcs to free vertices, by which we mean attach the arcs to the underlying
G-graph and re-embed.

As a consequence, the unshaded faces are precisely the x- and xy-faces,
and for an embedded G-graph to be a G-diagram, it is sufficient that the
xy-faces have a number of y-arcs dividing r in their boundaries, and the
x-faces a number of x-arcs dividing p. These criteria can usually be verified
at a glance.
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We devote the remainder of this section to diagrams for triangle groups.
An x-face is of type �l1; : : : ; lλ; : : : ; l̄µ; : : : ; lt�,

∑t
i=1 li = p, if it has bound-

ary label xp, and in traversing the boundary with the orientation

• vertices �∑i<λ li + 1� through �∑i≤λ li� are consecutive on some q-
gon,

• vertices �∑i<µ li + 1� through �∑i≤µ li� are incident with shaded
wedges.

Of course the face also has type X for X any cyclic permutation of the li,
but in practice this ambiguity causes no confusion. We tend to say type X
x-cycle rather than x-face of type X. Fig. 2 shows a type �k;p− k� x-cycle,
1 ≤ k ≤ p, or type k pendant.

Suppose we have k consecutive free vertices on a q-gon, all in the bound-
ary of the same xy-face F . Attaching a type k pendant to these vertices
increases the number of y-arcs in the boundary of F by p − 2k + 1. The
modification also produces a new x-face with boundary xp and some y- and
xy-faces with labels y and xy.

Suppose q = lp + s for l ≥ 1 and 1 ≤ s ≤ p − 1. Take a shaded q-gon,
and attach l − 1 type p pendants to p�l − 1� consecutive vertices. Attach
a single type s pendant so that p consecutive vertices are left free. The
resulting q-gon together with the attachments will be called a booster.

Let Xi = �li1; l̄i2; li3; l̄i4�, i = 1; : : : ;m. Suppose that, for integers
1 ≤ k1; : : : ; kt ≤ p, we have l11 +

∑
ki consecutive free vertices on

a q-gon and in the boundary of an xy-face F . By attaching a type
�k1; : : : ; kt yX1; : : : ;Xm� array to these free vertices we mean

• attach t pendants of types k1; : : : ; kt , and

• a collection of m boosters, joined into a chain, with li3 vertices of
the ith booster connected to li1 vertices of the �i − 1�st by an x-cycle of
type Xi (taking the 0th booster to be the original q-gon)—see Fig. 3

Write �k1; : : : ; k
δi
i ; : : : ; kt y X1; : : : ;X

δj
j ; : : : ;Xm� when the array includes

δi type ki pendants and δj x-cycles of type Xj . Notice that a type �ky –�

FIG. 2. Type k pendant.
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FIG. 3. Type �k1; : : : ; kt y X1; : : : ;Xm� array.

array is merely a type k pendant. In attaching an array, the number of
y-arcs in the boundary of xy-face F increases by

m�p+ l + 2 − s� +
t∑
i=1

�p− 2ki + 1� + 2
∑
l̄ij∈Xi

lij; (3)

together with the creation of the usual complement of x-, y-, and xy-faces
having boundary x, xp, y; and xy. All other faces are unaffected. To see (3),
start with each Xi = �1; p− 1�, and observe that replacing it by �1; 1̄; p− 2�
increases the y-arc count by 2, while a change to �2; p− 2� has no effect.

If K is a �p; q; r�-diagram with g ∈ �p; q; r�, the cycle structure of θK�g�
is a function s: Z+ → Z+ ∪ �0�, such that s�i� is the number of cycles of
length i when θK�g� is written as a product of disjoint cycles. Given two
structures s1 and s2, let s1 + s2 be their pointwise sum as functions. In
Section 4 we will be interested in the structure of the element x−1y.

Lemma 3.2. Suppose K1; : : : ;Kt are �p; q; r�-diagrams with si the cycle
structure of θKi�x−1y�. If K = ��K1; : : : ;Kt��, then θK�x−1y� has cycle struc-
ture

∑
si.

Proof. Only cycles in θKi�x−1y� that pass through handle points are af-
fected by the composition. If αj and βj lie in such a cycle, then in θK�x−1y�
the cycle is identical, except that βj is replaced by βj−1.

Consequently, consideration of the cycle structure of θ��K1;:::;Kt ���x−1y� re-
duces to an investigation of the θKi�x−1y�.

We determine the effect on θK�x−1y� of attaching an array by considering
the various ingredients. From now on, when we talk of a cycle in K, we will
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mean a cycle of θK�x−1y�, and the context should make clear which cycle we
mean. Notice first that consecutive free vertices on a q-gon are contained
in the same cycle. Attaching a type k pendant to these vertices increases
the length of this cycle by p− k when k is odd. When k is even, the length
decreases by k/2, and a new cycle of length p− k/2 is created. Next, the
vertices of an isolated booster are organised into a single cycle of length

q+
{
p− s; s odd,

− s
2
; s even.

When contained as the ith booster of an array, vertices may be gained or
lost from this cycle (it may even be fused with cycles from neighbouring
boosters) depending on whether li1 and li3 are even or odd. Fig. 4 shows
the possible orbits on the vertices, illustrated by small circles and squares.

It will be useful to have at our disposal various maneuvers in which an
array is replaced by another. Replacing an array of type �k1; : : : ; kt yX1;
: : : ;Xm� by one of type �k1; : : : ; kt;

p+1
2 y X1; : : : ;Xm� is called spoiling.

A push–pull substitutes �k1; : : : ; ki − 1; : : : ; kj + 1; : : : ; kt yX1; : : : ; Xm�,
while replacing by �k1; : : : ; kt yX1; : : : ;X

′
i ; : : : ;Xm�, where X ′i = �li1 ± 1;

l̄i2; li3 ∓ 1; l̄i4�, will be known as modifying a chain.
A few brief remarks on each then. Suppose K′ is the result of performing

such a maneuver on some array in the �p; q; r�-diagram K:

• K
spoiling→K′: since (3) is unchanged, K′ is also a �p; q; r�-diagram.

The modification requires p+1
2 free vertices and �K′� = �K� + p−1

2 . The
length of the cycle containing these free vertices changes by a non-trivial
amount < q.

• K
push−pull→K′: again (3) is invariant so K′ is a �p; q; r�-diagram. No

free vertices are required and �K′� = �K�. The length of the cycle on the
q-gon to which the array is attached changes by∑

k∈�ki;kj�
k even

(
p− k

2

)
− ∑

k∈�ki;kj�
k odd

k

2
: (4)

FIGURE 4
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• K
modifying chain→K′: again K′ is a �p; q; r�-diagram, with �K′� = �K�.

The operation requires a free vertex on either the �i − 1�st or ith booster,
creating one on the other. Use Fig. 4 to monitor the effect on cycles in
θK�x−1y�.

4. THE PROOF OF THE THEOREM

Higman’s construction, forming the basis of [3, 4, 8, 9, 15, 16], is essen-
tially

Proposition 4.1. Let K1, K2, and K3 be path-connected diagrams for the
triangle group �p; q; r� such that

1. �K1�; �K2� are relatively prime, and �K3� ≥ q+ 3;
2. K1 and K2 each contain at least two handles and K3 one;
3. if si is the cycle structure of θKi�x−1y�, then s1�kq� = s2�kq� = 0,

k ≥ 1, and

s3�kq� =
{

1; k = 1;
0; k > 1y

4. if µ is the q-cycle in θK3
�x−1y� there are i; j ∈ µ, not contained in

the handle, with ix; jy ∈ µ.

Then G = �p; q; r� surjects almost all of the alternating groups.

Proof. Let p1; p2 > p be distinct primes not dividing �K1� and �K2�.
For k1 and k2 arbitrary non-negative integers we construct a sequence of
diagrams C0; C1; : : : ; Ck1

; : : : ; Ck1+k2
x= K as follows: for the 0th step, if

either k1 or k2 = 0, take C0 = K3; otherwise, C0 = K2. At step i, 1 ≤ i ≤
k1, take p1 identical copies of K1 and let Ci be the composition

����· · · ����Ci−1;K1; : : : ;K1︸ ︷︷ ︸
p−1

��; : : :��;K1; : : : ;K1︸ ︷︷ ︸
p−1

��;K1; : : : ;K1︸ ︷︷ ︸
≤p−2

��: (5)

In particular, the two handles on each K1 allow us to perform the com-
position, which is a �p; q; r�-diagram by Proposition 3.1. Observe that each
Ci has at least two handles. For k1 + 1 ≤ i ≤ k1 + k2 − 1, take p2 iden-
tical copies of K2 and let Ci be a composite diagram of the form (5) but
with p2 copies of K2 instead of p1 copies of K1. Finally, at step k1 + k2,
if k1 or k2 = 0, let Ck1+k2

be as in the previous step. Otherwise, take a di-
agram of the form (5) but replace one of the K2’s by a K3 (using its sole
handle).

A quick sketch may help the reader to see what is going on. Now �K� =
k1p1�K1� + k2p2�K2� + �K3�, and since �K1� and �K2� are relatively prime,
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so too are p1�K1� and p2�K2�. By choosing k1 and k2 suitably, �K� can thus
be made to equal any integer greater than �p1�K1� − 1��p2�K2� − 1� + �K3�.
So, if θK: �p; q; r� → S�K� is the homomorphism arising from K, we have
permutation representations of �p; q; r� for all but finitely many degrees.
By Lemma 3.2 the permutation θK�x−1y� contains the q-cycle µ and no
other cycles of length divisible by q, so some power of θK�x−1y� is just µ.
Path-connectedness, Lemma 2.3, and Theorem 2.1 give θK�G� = A�K� or
S�K�, but the generators of G have odd order, so in fact θK�G� = A�K�.

It remains then to give the details. For each of the following cases, the
diagrams K1;K2, and K3 are given and parts 1; 2, and 4 of the proposition
are easily established. Part 3 will prove to be somewhat messier.

(1) The Case p ≥ 7 and q ≥ p + 6: Consider Fig. 5. We have q-gons,
Q1; : : : ;Qp−1, with Q1 at the top and the ordering going clockwise. They are
connected by two type �2; 1; : : : ; 1� x-cycles, the number of 1’s being p− 2.
The connections are such that Qi contributes one y-arc to the boundary of
region Fi−1, subscripts taken modulo p − 1. The usual embedding places
Fig. 5 on the 2-sphere, as depicted in the picture in fact. The face Fp−1 has
q− 2 y-arcs in its boundary, faces F1; : : : ; Fp−2 have q, and there are four
other unshaded faces, two each with labels xy and xp.

Similarly for Fig. 6, we have q-gons, Q1; : : : ;Qp, connected by two type
�1; : : : ; 1� x-cycles, the number of 1’s being p. The connections are meant to
allow Qi to contribute q−1

2 y-arcs to the boundary of region Fi−1, subscripts
taken modulo p. The usual embedding places the figure on the 2-sphere
also.

FIGURE 5
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FIGURE 6

Recalling that q = lp + s, and r ≥ q + 2 is prime, let m, δ, and k be
positive integers such that

• m is largest with �q+ 2� +m�p+ l + 2 − s� ≤ r;
• δ is largest with �q+ 2� +m�p+ l + 2 − s� + δ�p− 3� ≤ r;
• k is determined by p− 2k+ 1 = r− q−m�p+ l+ 2− s�− δ�p− 3�.

Notice that 2 ≤ k ≤ p−1
2 . Each q-gon Qi of Fig. 5 has a number of consec-

utive free vertices laying in the boundary of face Fi. Assuming for now that
this number is sufficient to do so, attach to Q1; : : : ;Qp−2 arrays of type
�2δ; ky �2; p − 2�m�, and one of type �2δ; k − 1y �2; p − 2�m� to Qp−1. By
(3) and the definitions of m;δ, and k, each face Fi now has r y-arcs in its
boundary. We thus have a spherical �p; q; r�-diagram, Kr

1. The actual value
of r is usually irrelevant, so we just call this diagram K1.

Take a single q-gon, attach to it a type �2δ; ky �2; p − 2�m� array and
embed. The resulting spherical �p; q; r�-diagram will be our K2 x= Kr

2. Our
third diagram is slightly more complicated. In Fig. 6 attach type �ky –�
arrays to Q1; : : : ;Qp−3 and Qp−1, using free vertices in the boundary of
F1; : : : ; Fp−3 and Fp−1. To Q2; : : : ;Qp−2 and Qp, attach type �2δy �2; p −
2�m�’s, adjacent to F1; : : : ; Fp−3 and Fp−1, while to Q1 and Qp−2, connect
�2δ; ky �2; p − 2�m�’s adjacent to Fp and Fp−2 (the reader should sketch
the positions of the various attachments as a guide). Again assume for now
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that there is sufficient space to do all these things. Each Fi receives r − q
new y-arcs. The resulting �p; q; r�-diagram is K3 x= Kr

3.
Let N be the number of new vertices introduced by an array of type
�2δ; ky �2; p − 2�m�. We have �K1� = �p − 1�q + �p − 2�N + N + 1 and
�K2� = q+N . Thus, any common divisor of �K1� and �K2� also divides

�K1� − �p− 1��K2� = 1; (6)

so that �K1� and �K2� are relatively prime. Clearly �K3� ≥ q + 3 and the Ki
are path-connected.

Let si be as in the proposition, and observe that, in K3, the q+1
2 free

vertices of Qp−1 adjacent to Fp−2, and the q−1
2 free vertices of Qp adjacent

to Fp, form a q-cycle in s3. It is easy to check that this cycle satisfies part 4
of the proposition. Call any other cycle in s1, s2; or s3 with length divisible
by q a bad cycle.

We can always arrange things so that bad cycles dissappear and part 3
of the proposition is thus satisfied. The vertices of Figs. 5 and 6 and the
q-gon that forms the nucleus of K2 (that is, before any arrays are attached
to them) are organised into various cycles. In fact, there are p− 3 q-cycles,
a �q − 2�-cycle, and a �q + 2�-cycle in Fig. 5; p q-cycles in Fig. 6; and a q-
cycle in the q-gon of K2. A crucial observation is that in K1 and K2, each of
these cycles has exactly one array attached. Things are more complicated
with K3—one q-cycle has �ky –� and �2δ; ky �2; p − 2�m� arrays attached,
another has �2δy �2; p − 2�m� and �2δ; ky �2; p − 2�m� arrays, while p − 3
of them have �ky –� and �2δy �2; p− 2�m�. The single q-cycle not mentioned
is our precious prime cycle.

We monitor the effect on these cycles of the attached arrays. First, using
the observations following Lemma 3.2, one can check that the boosters in a
type �k1; : : : ; kt y �2; p− 2�m� array contribute bad cycles only when s = 2.
In this case, the mth booster contains a q-cycle. No problem; just modify
the chain, and replace Xm by X ′m = �1; p− 1�.

Next we examine the effect of the pendants in an array. Consider one of
the q-cycles in K1 or K2. If m = 0, so that a �2δ; ky –� array is attached to
the cycle, its length becomes

q− δ+
p− k; k odd;

−k
2
; k even.

Since k ≤ p−1
2 , we have p−k ≥ p+1

2 , and so the cycle is bad only if δ ≥ p+1
2 .

The definitions of m;δ, and k give δ�p− 3� +p− 3 ≤ p+ l+ 2− s, so the
cycle is bad only if l − s ≥ 7, that is, q ≥ 8p + 1 (in fact, q ≥ 2p + 1 will
do). By an identical argument, the �q− 2�-cycle in K1 becomes bad only if
q ≥ 2p+ 1, and the �q + 2�-cycle suffers the same fate under the addition
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of a type �4y –� array, or only if q ≥ 2p+ 1. Similarly for the q-cycles in K3,
when m = 0, we must have q ≥ 3p before any turn bad, and when m = 1,
we must have q ≥ 2p+ 1.

What do we do with these bad cycles? When m ≥ 1 it is simple. Take one
of the �k1; : : : ; kt y �2; p− 2�m� arrays attached to the cycle and perform a
simultaneous volley of chain modifications: either replace all Xi = �2; p−
2� by X ′i = �1; p − 1�, or all Xi by X ′i = �3; p − 3�, whichever does not
create a bad cycle on the mth booster (they both cannot). When s = 2
and m ≥ 2, change all Xi to �1; p − 1�. If s = 2 and m = 1, change X1 =
�1; p − 1� to X ′1 = �3; p − 3�. In any case the bad cycle is obliterated and
no new bad cycles are created. Remember that when X ′1 = �3; p − 3�, we
are assuming there are two free vertices where the array is attached, but
more on this later.

If m = 0 and a bad cycle arises in K3, spoil one of the attached ar-
rays, assuming for now that there is enough room to do so. If the bad
cycle is in K1 or K2, it would be nice to be rid of it by spoiling the at-
tached array. Unfortunately, spoiling changes the number of vertices, and
(6) would no longer be valid. So, except for when a �4y –� is attached to the
�q+ 2�-cycle, spoil every array in these two diagrams (again assuming there
is enough room). This certainly removes the bad cycle. The danger is that
it may have created a new one elsewhere. If so, remove it by performing a
push–pull on the attached array: replace �2δ; k or k− 1; p+1

2 y �2; p− 2�m�
by �2δ; k − 1 or k − 2; p+3

2 y �2; p − 2�m�, or �2δ; 1; p+1
2 y �2; p − 2�m� by

�2δ; 2; p−1
2 y �2; p− 2�m�. In all the cases that bad cycles arise, q ≥ 2p+ 1,

so the effect (4) of these push–pulls is both non-trivial and < q, so the new
bad cycle is removed.

The bad cycle arising when a �4y –� array is attached to the �q+ 2�-cycle
in K1 is removed by similarly spoiling every array in K1 and K2. It can be
checked that this creates no new bad cycles elsewhere. This accounts for all
situations where bad cycles arise and establishes part 3 of the proposition.

Our final task is to see that there are sufficient free vertices in the ap-
propriate places for all the above to happen. Fix p, and for a given q, let
1 be the maximum value obtained by δ. When m = 0 the largest num-
ber of consecutive free vertices needed anywhere is 2δ + k + p+1

2 : room
for a type �2δ; ky –� array and a possible spoil. Similarly, when m ≥ 1 we
need 2�δ + 1� + k+ 1: room for a �2δ; ky �2; p − 2�m� array and a poten-
tial volley of chain modifications. The m ≥ 1 requirements are less than the
m = 0, and since k ≤ p−1

2 , these in turn are less than 21+ p.
Take four consecutive vertices on the q-gon of K2 and two on each of

Q1; : : : ; Qp−2 of K1. These are the handles for K1 and K2. Thus, before any
arrays are added, the q-gons of K1 and K2 are left with q − 4 consecutive
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free vertices. When p+ 6 ≤ q ≤ 2p+ 1, we have 1 = 1, so 21+p ≤ q− 4,
and we are happy.

Now 1 is the largest multiple of p− 3 less than p+ l + 2 − s. Thus for
a fixed l, 1 and hence 21+ p, is biggest, and q− 4 smallest, when s = 1. It
therefore suffices to show that 21+ p ≤ q − 4 for q = lp+ 1. We already
have this for l = 2. If the inequality is valid for a given l, and we increase l
by 1, then p+ l+ 2− s, and hence 1, increases by at most 1, and so 21+p
by at most 2. But q− 4 increases by p ≥ 7, and we are home.

In K3 the vertex requirements are greatest and the availability is the
least, on the side of Qp−2 adjacent to Fp−2. By considering the possi-
ble values of 1 for q in the range p + 6 ≤ q ≤ 4p − 1, one can show,
using the discussion of when bad cycles arise, that the q−3

2 consecutive
free vertices that are available suffice. For q ≥ 4p + 1, argue as for K1
and K2.

Finally, place a handle on K3 using two vertices of the precious q-cycle.
(2) Case p ≥ 7 and q = p + 2 or p + 4. Diagrams K1 and K2 are the

same as in the previous case. That there is sufficient room on K1 and K2
is a slightly more delicate matter, but the argument is essentially the same.
These diagrams can be of no help to �11; 13; 17�, however, which can be
found in [7, Sect. 6].

Unfortunately, there are not enough free vertices on the K3 from case
1 once q is this close to p. Instead, consider Fig. 7. When q = p + 2 the
large xy-face has q0 = p+ 10 y-arcs in its boundary, while the minimum r
of interest is r0 = p+ 6. For r ≥ r0 prime, let m and k be positive integers
such that m is largest with r0 + m�p + 1� ≤ r, and k is determined by
p− 2k+ 1 = r − q0 −m�p+ 1�. Add a type �ky �1; p− 1�m� array to the
top q-gon. The resulting �p; q; r�-diagram will be our K3 for q = p+ 2.

Since k ≤ p+5
2 , there is sufficient room on the top q-gon for the array

with at least three vertices to spare. Put a handle on the bottom q-gon,
which also has at least three vertices to spare. The middle q-gon supplies
us with a q-cycle. Bad cycles can only arise on the q-gon to which the array
is attached. In such a situation, change the two �1; p − 1� cycles in Fig. 7
to type �2; p− 2�’s. This removes the bad cycle.

With q = p+ 4, a K3 diagram for �7; 11; 13� is in [7, Sect. 6]. Otherwise
the argument is identical with q0 = p + 16, and r0 = p + 6 when p ≥ 13,
or r0 = 17 when p = 7.

(3) The Case p = 5 and q ≥ 17. Except for the arrays, diagrams K1;K2,
and K3 are the same as in case 1. For r ≥ q + 2 prime, let m be largest
with �q+ 2� +m�5+ l+ 2− s� ≤ r; δ1 largest with �q+ 2� +m�5+ l+ 2−
s� + 4δ1 ≤ r; δ2 largest with �q + 2� +m�5 + l + 2 − s� + 4δ1 + 2δ2 ≤ r;
and k determined by p + 2k − 1 = r − q −m�5 + l + 2 − s� − 4δ1 − 2δ2.
Add arrays in the same places as in case 1, except replace each 2δ in an
array by 1δ1; 2δ2 . The remainder of the argument is the same.
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FIGURE 7

(4) The Case p = 5 and q = 11; 13. Diagrams K1 and K2 are as in case
3. For K3, let r0 = 13 and q0 = 15 when q = 11, or r0 = 17 and q0 = 21
when q = 13. Given r ≥ r0 prime, take m largest with r0+m�9− s� ≤ r, and
k determined by p− 2k+ 1 = r − q0 −m�9− s�. Add a type �5; ky �1; p−
1�m� array to the top q-gon of Fig. 7, and type �5y –�’s to the other two.
The resulting �5; q; r�-diagram is our K3. Proceed as in case 2.

(5) The Case p = 5 and q = 7. We do �5; 7; 11� and �5; 7; 13� in [7,
Sect. 6]. Diagrams K1 and K2 are the same as in case 1, except for the
arrays. For r ≥ 17 prime, take m largest with 9 + 6m ≤ r, δ largest with
9+ 6m+ 2δ ≤ r, and k given by 5+ 2k− 1 = r − 7− 6m− 2δ. Somewhat
unusually, add type �ky �1; 4�m−1; �1; δ̄; 4 − δ��’s and a single type �k −
1y �1; 4�m−1; �1; δ̄; 4 − δ�� in all the usual places. When m ≥ 2 and δ = 2,
a bad cycle arises in the chain of boosters. Remove it by modifying, X ′m
being �2; 2̄; 1�, and by replacing the type 2 pendant on each of the last two
boosters by types 1 and 3. For K3, follow the construction of case 2.

(6) The Case p = 3 and q ≥ 17: Most of the p = 3 case was handled
in [8]. The methods we use to cope with what remains will just as easily
do the whole lot—for completness we do this. Use Fig. 6, and allow Qi to
contribute a single y-arc to region Fi−1. For r > q prime, take m ≥ 0 largest
with q+m�5+ l− s� ≤ r and δ ≥ 0 largest with q+m�5+ l− s� + 2δ ≤ r.
Add type �1δy �2; 1�m� arrays to each Qi, using the free vertices adjacent to
region Fi. The resulting �3; q; r�-diagram is our K1.

Spoil the array on Q1, that is, replace by one of type �1δ; 2y �2; 1�m�. This
gives another �3; q; r�-diagram, K2. Notice that �K1� − �K2� = 1, so �K1� and
�K2� are relatively prime. Place a handle on Q2 and Q3 in each diagram.
We can remove bad cycles from the chains of boosters by the methods of
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case 1. It is easy to show that none arise elsewhere in K1. A bad cycle will
arise on Q1 in K2 precisely when m ≥ 1 and δ = 1, but the replacement

�1δ; 2y �2; 1�m� → �1δ; 3y �1; 1; 1̄�; �2; 1�m−1�

removes it. The argument of case 1 shows that there are sufficient free
vertices for all the arrays and subsequent modifications.

Take Fig. 6 with the connecting type �1; 1; 1� x-cycles allowing Qi to
contribute q−1

2 to Fi−1. Attach type �1δy �2; 1�m� arrays to Q1 adjacent to
F1 and F3, and also to Q2 adjacent to F2. The result is K3. By the usual
argument, there is sufficient room for the arrays as well as to spoil any
array incident with a bad cycle. A q-cycle occupies the untouched vertices
of Q3 adjacent to F3 and Q2 adjacent to F1, and a handle for K3 can be
safely placed here.

(7) The Case p = 3 and q = 13. You can find �3; 13; 17� and �3; 13; 19�
in [7, Sect. 6]. For r ≥ 23 prime, use the K1 and K2 of case 6. For K3 attach
�33y –� arrays to the bottom two q-gons of Fig. 7, and place a handle on
the bottom one as well. Place a type �3y –� on the top q-gon. In addition,
we need a type �1δy �2; 1�m� on the top q-gon, with δ and m chosen as in
case 6, and this can be spoiled if necessary to remove bad cycles.

(8) The Case p = 3 and q = 11. We do �3; 11; 13� in [7, Sect. 6]. For
r ≥ 17 prime, diagrams K1 and K2 are as in case 6. For K3 attach type
�32y –� arrays to the top two q-gons in Fig. 7, and a �33y –� array to the
bottom. Place a handle on the middle q-gon (which contains our q-cycle)
and a type �1δy �2; 1�m� array on the top one. Choose m and δ according
to the usual scheme. Spoil the array to remove any bad cycles.

(9) The Case p = 3 and q = 7. Look in [7, Sect. 6] for �3; 7; 11�. For
r ≥ 13 prime, variations on Fig. 7 yield all three diagrams. For consider just
the top two q-gons and the type �1; 2� x-cycle connecting them. Place a type
�1δy �2; 1�m� array on the top one as usual and a handle on each of the top
two. The resulting �3; 7; r�-diagram is K1. In addition, attach a type �2y –�
array to the bottom q-gon. The result is K2. For K3, start from scratch with
Fig. 7, and attach to the bottom two q-gons arrays of type �3y –�, while to
the top, attach a type �1δ; 3y �1; 2�m�. Place a handle on the bottom q-gon.

(10) The Case p = 3 and q = 5. You can find �3; 5; 7� and �3; 5; 11� in
[7, Sect. 6]. Otherwise, for K1 take Fig. 7 with type �–y �2; 1�m� and �1δy –�
arrays attached to the second and third q-gons, respectively, and with two
handles on the top. For K2, place type �2y –� and �1δy �1; 2�m� arrays on
the second and third q-gons instead. To get K3, attach a �1δy �2; 1�m� to the
top q-gon and a handle on the bottom one.

This completes the proof of the theorem.
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