
Linear Algebra and its Applications 365 (2003) 279–289
www.elsevier.com/locate/laa

Additive functions on quivers
Helmut Lenzing∗, Liane Hasenberg

Fachbereich Mathematik-Informatik, Universität Paderborn, D-33095 Paderborn, Germany

Received 23 March 2001; accepted 16 April 2002

Submitted by C.M. Ringel

Dedicated to Daniel Simson on the occasion of his 60th birthday

Abstract

An integral function on the set of vertices of a graph is additive if twice its value at any
vertex v equals the sum of its values at all adjacent vertices, counting multiple edges. It is
well known that among finite connected graphs exactly the extended Dynkin graphs admit
a positive additive function, whereas the Dynkin diagrams themselves only allow almost-
additive functions, violating additivity in a single vertex.

In the present paper we study—usually non-positive—additive or non-additive functions on
finite quivers, and relate the concept of additivity to the radical of the homological Euler form.
Our main results concern the existence and construction of such functions for wild quivers. Our
results are most specific in case the underlying graph is a tree, possibly with multiple edges.
© 2002 Elsevier Science Inc. All rights reserved.
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0. Introduction

Let � be a finite graph without loops, possibly with multiple edges, whose set of
vertices is denoted�0. For vertices p, q of� let a(p, q) denote the number of edges
between p and q. An integral function f on �0 is called additive if twice its value at
any vertex v equals the sum of values at all vertices adjacent to v counting multiple
edges, that is,

2f (v) =
∑
z∈�0

a(v, z)f (z). (1)
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Expressed in terms of the adjacency matrix A = (a(p, q)) of �, additive functions
are just integral solutions of the matrix equation (2Id − A)x = 0. This paper deals
with the problem to determine the set of solutions and its structure.

Among connected graphs, only the extended Dynkin graphs Ãn, D̃n, Ẽ6, Ẽ7 and
Ẽ8 admit a (strictly) positive additive function f . If then f additionally is normalized,
that is, the subgroup generated by the values of f equals Z, then f is unique, and
each additive function is an integral multiple of f . For instance

3
||

2 —– 4 —– 6 —– 5 —– 4 —– 3 —– 2 —– 1

displays this normalized function for the extended Dynkin quiver Ẽ8. For a survey on
these and related facts we refer to [8], see also [6]. By the above, a Dynkin diagram
� will not admit an additive function. However, � has a vertex e such that (�, e)
has an almost-additive function, that is, a function f satisfying additivity (1) for all
vertices v with the exception of the vertex e. In the present note we investigate the
existence of additive, respectively almost-additive, functions on more general graphs,
not restricting to positive functions.

As in [6] we relate additive functions to the Euler form attached to a quiver ��
with underlying graph � and to the radical of the quadratic form q� of the graph.
Our main results concern trees, possibly with multiple edges. We show that integral-
valued almost-additive functions defined on trees and not having zeros are unique
up to rational multiples. Further the homological Euler form for a directed tree ��
with underlying graph � is trivial on the radical of the quadratic form q�. We show
that for bipartite quivers the corank of q� can be derived from the Coxeter poly-
nomial. Finally, we show how to extend arbitrary functions to additive functions on
larger graphs. As a result, very different from the case of positive additive func-
tions, a full classification of additive functions for graphs, and more particularly for
trees, is impossible. The contents of this paper are basically contained in [4]. The
paper was written during a stay of the first-named author at the Mathematical Insti-
tute of UNAM, Mexico-City. He (HL) wants to express his thanks to the institution
and, more particularly, to J.A. de la Peña and M. Barot for hospitality and helpful
comments.

1. Almost-additive and additive functions

Let � be a finite graph and let e be a vertex of �. We say that a function f :
�0 → Z is additive for� (almost-additive for (�, e)) if condition (1) is satisfied for
all vertices v of � (respectively for all vertices v different from e).

This concept is related to other concepts extensively studied in the representation
theory of finite dimensional algebras. Let �� be a quiver, that is, an oriented graph
without oriented cycles, and with underlying graph�. Let �a(p, q) denote the number
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of arrows from p to q such that the number of edges a(p, q) between p and q

equals �a(p, q)+ �a(q, p). The �0 ×�0-matrices �A = (�a(p, q)) and its symmetri-
zation A = (a(p, q)) are the adjacency matrices of �� and �, respectively. Further,
C = Id − �A is called the Cartan matrix of ��. The (p, q)-entry of its inverse C−1 is
the number of paths from p to q in the quiver ��.

Of particular importance is the (non-symmetric) bilinear form

〈–, –〉 : Z�0 × Z�0 → Z, (x, y) → xtCy,

called the Euler form. The associated quadratic form

q�(x) = 〈x, x〉
is an invariant of the graph �, depending only on the symmetric bilinear form
(x | y) = 〈x, y〉 + 〈y, x〉 = xt (2Id − A)y. The radical of q� is the direct summand
of Z�0 consisting of all x with (x | −) = 0; its rank is called the corank of q�. The
next assertion relates radical and additive functions.

Lemma 1.1. View u ∈ Z�0 as an integral function on the vertices of �. Then u is
an additive function if and only if u belongs to the radical of q�.

Proof. By the preceding remarks u belongs to the radical of q� if and only if
(C + Ct)u = 0, that is, if and only if (2Id − A)u = 0, where A is the adjacency
matrix of �. This in turn means that 2u(p) = ∑

q a(p, q)u(q) holds for each vertex
p, hence that u is an additive function. �

Therefore the radical q� and the group of additive functions on � agree. As
already recalled, each extended Dynkin graph has a radical of rank one. As the
following example shows, the rank of the radical can get arbitrarily large even for
trees.

Example 1.2. (i) Consider the family of snowflake trees Sn(�) having n leaves
(n � 2), all agreeing with some extended Dynkin diagram �. We display below the
snowflake S6(D̃4):
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Note that Sn = Sn(D̃4) has 5n+ 1 points. It is easily checked that the radical R
of the quadratic form for Sn has rank n− 1, where a basis of R is formed by the
additive functions fk , k = 2, . . . , n taking value zero on the central point, agreeing
with the normalized additive function for D̃4

on the first leaf, taking the same values also on the kth leaf, but with negative sign,
and being zero on all the remaining vertices.

(ii) The additive function

1 == 1 –— 0 –— −1 == −1

on S2(Ã1) is a generator for the radical.
(iii) Let p, q be integers, then

displays an additive function f , where the radical has rank two. If p and q are co-
prime, f is normalized.

For the rest of the section we assume that � is a tree, possibly with multiple
edges. We thus deal with a graph � without loops, allowing multiple edges but no
cycles involving three or more vertices. As Example 1.2(iii) shows, the following
proposition does not extend to graphs in general.

Proposition 1.3. Assume that � is connected and e is a vertex of �. Let f be an
almost-additive function for (�, e) not having any zero. Then each almost-additive
function g for (�, e) is a rational multiple of f.

Proof. We argue by induction on the number n of vertices of �. For n = 1 the
assertion is evident. For n > 1 the complement of e in� decomposes into connected
components �(1), �(2), . . . , �(t). Since � has no cycles involving at least three ver-
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tices, each �(i) has a unique neighbor ei of e. Let g be an almost-additive function
for (�, e), then its restriction to�(i)

0 yields an almost-additive function for (�(i), ei).
By induction there are rational numbers q1, q2, . . . , qt such that

g(x) = qif (x) for each vertex x from �(i). (2)

Evaluating additivity (1) of g at vertex ei yields

a(ei, e)g(e) = 2g(ei)−
∑
z∈�(i)

0

a(ei, z)g(z).

Invoking almost-additivity of f now yields in view of (2)

a(ei, e)g(e) = qi


2f (ei)−

∑
z∈�(i)

0

a(ei, z)f (z)


 = qia(ei, e)f (e).

Since f (e) and the a(ei, e) are non-zero, it follows that all the qi have the same value
q, and g = qf follows. �

The proposition has the following immediate consequence.

Corollary 1.4. Assume that � admits an additive function without zeros hence,
in different terminology, a sincere radical vector. Then the quadratic form q� has
corank one.

Call a vertex z from � a zero-vertex if � admits a non-zero additive function, and
if all such functions vanish on z. By Z(�) we denote the set of all zero-vertices of
�. We will repeatedly use the following simple observation.

Lemma 1.5. Let f and g be additive functions on � with zero sets Zf and Zg
respectively. Then a suitable linear combination h of f and g has zero set Zh =
Zf ∩ Zg.

Proof. Let h = af + bg. The assumption axf (x)+ bxg(x) = 0 for some x not in
Zf ∩ Zg determines the slope bx/ax . Avoiding the finitely many slopes thus arising,
proves the claim. �

In the following situation the set of zero vertices is particularly easy to determine.

Proposition 1.6. Let f be a non-zero additive function on � whose set of zeros Zf
does not contain a pair of adjacent vertices. Then Z(�) = Zf .
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Proof. We assume that g is additive on � such that g(z) /= 0 for some z ∈ Zf .
Consider the full subgraph  of � obtained by removing Zf ∩ Zg . Let  ′ be the
connected component of  containing z. Note that the restrictions f ′ and g′ of f and
g to  ′ stay additive; moreover, f ′ /= 0 by the assumption on f . By Lemma 1.5 there
is linear combination h′ = af ′ + bg′ without zeros on  ′. In view of Proposition 1.3,
f ′ is a non-zero rational multiple of h′. Hence f (z) is non-zero, contradiction. �

We illustrate this phenomenon by an example, where the values attached to the
vertices display an additive function f . Here, the support set of f is a disjoint union
of extended Dynkin diagrams.

−1 1 −1
|| | |||| | ||

−1 —– 0 —– 1 —– 2 —– 1 —– 0 —– −1
||
1

Also in the general situation, the set of zero vertices agrees with the zero set of
some additive function.

Proposition 1.7. Assume that � is connected and admits a non-zero additive func-
tion. Then there exists an additive function f with Z(�) = Zf . In particular, if
Z(�) is empty the corank of q� equals one.

Proof. We choose an additive function f on� such that its zero set Zf has minimal
cardinality. By Lemma 1.5 each additive function vanishes on Zf showing that Zf
equals the set of zero-vertices. This proves the first claim; the second then follows
from Corollary 1.4. �

As Example 1.2(ii) shows, zero-vertices may also occur for corank one. The next
statement reduces the study of graphs with a non-zero additive function basically to
the graphs of corank one.

Corollary 1.8. Assume that � admits an additive function. The full subgraph of
�, obtained by removing the set Z(�) of zero vertices, decomposes into connected
graphs �(i), i = 1, . . . , t, each having an additive function without zeros. In partic-
ular each q�i

has corank one.

Proof. Let f be an additive function with Zf = Z(�). Clearly, restriction of f to
�(i) yields an additive function fi without zeros on �(i), and the claim follows. �

Proposition 1.9. Let �� be a quiver which is a tree, multiple arrows allowed. Then
the restriction of the Euler form to the radical of q� is zero.



H. Lenzing, L. Hasenberg / Linear Algebra and its Applications 365 (2003) 279–289 285

Proof. We identify members of the radical with additive functions, and assume the
radical to be non-zero. As before, let Z(�) be the set of zero vertices of �, and∐t
i=1

��(i) be the decomposition of the full subquiver of ��, obtained by removing
Z(�), into connected components. Observe that for any additive function f on �,
its restriction to �(i) is again additive. For any two additive functions f , g on � we
hence get

〈f, g〉 �� =
t∑
i=1

〈fi, gi〉 ��(i) , (3)

where 〈–, –〉 �� and 〈–, –〉 ��(i) denote the Euler forms for �� and ��(i), respectively.
We have proved before (Corollary 1.8) that each �(i) has corank one. Hence all

the terms on the right hand side of (3) vanish, thus proving the claim. �

2. Additive functions and Coxeter polynomials

Let �� be a finite quiver without oriented cycles, and let C be its Cartan matrix.
Then the Coxeter transformation, or Coxeter matrix, � = −C−1Ct satisfies

〈y, x〉 = −〈x,�y〉 for all x, y ∈ Z�0 .

The characteristic polynomial χ �� = |T Id − �| of � is called the Coxeter polyno-
mial of ��. Unlike the quadratic form, Coxeter matrix and polynomial depend on the
orientation of ��, not just on the underlying graph. More information on these topics
can be found for instance in [5,7,9].

Since �x = x if and only if (C + Ct)x = 0, the radical of q� equals the fixed
point set of �. Hence � admits a non-zero additive function if and only if 1 is a root
of the Coxeter polynomial χ ��. Moreover, it is possible to determine the corank of q�
from the Coxeter polynomial, in case ��—as in the last section—is a tree, possibly
with multiple arrows.

Proposition 2.1. Assume the quiver �� has a bipartite orientation or is a tree, pos-
sibly with multiple arrows. Then the multiplicity of 1 as a root of the Coxeter poly-
nomial χ �� equals twice the corank of q�.

Proof. For a tree �� it follows from tilting theory or by a more direct argument, see
[2], that reversing the direction of arrows in a sink (respectively, source) does not
change the Coxeter polynomial. Accordingly, we may assume that �� has a bipartite
orientation. From now on let therefore �� be any bipartite quiver. Then the Coxeter
polynomial χ �� and the characteristic polynomial ϕ� of the adjacency matrix A of �
are related by the formula
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χ ��(T
2) = T |�0|ϕ�

(
T + 1

T

)
,

see [1]. It follows that the multiplicity of 1 as a root of χ �� equals twice the mul-
tiplicity of 2 as a root of ϕ�. Since A = 2Id − (C + Ct) is symmetric, the latter
multiplicity equals the rank of the group of solutions of (C + Ct)x = 0, hence the
corank of q�. �

For instance the Coxeter polynomial of the snowflake graph Sn(D̃n) from Exam-
ple 1.2 is given as

(T − 1)2(n−1)(T 2 − 2(n− 2)T + 1)(T + 1)3n+1,

which may either be derived by direct calculation or using a recursive algorithm
calculating Coxeter polynomials for trees due to Boldt [3].

3. Construction of additive functions

In this section we deal with arbitrary graphs (quivers) without loops (without
oriented cycles, respectively). For a function f : �0 → Z and a vertex v of � we
form

δf (v) = 2f (v)−
∑
z∈�0

a(v, z)f (z),

the deviation from additivity in v.
We start to derive restrictions for additive and almost-additive functions.

Proposition 3.1. Let f be an integral additive function for a graph �. Assume that
x and y are neighbors in � such that f (x), f (y) and a(x, y) are odd. Then � has a
cycle containing x and y as neighbors and at least one further vertex.

Proof. Consider the full subgraph  of �, formed by all vertices x such that there
exists another vertex y with f (x), f (y) and a(x, y) all being odd. Let x be from  ,
then in view of additivity 2f (x) = ∑

y∈�0
a(x, y)f (y), the cardinality of all y in  

being neighbors of x is even. Passing to an Euler cycle for  proves the claim. �

Corollary 3.2. Let � be a graph and v be any vertex from �. There does not exist
an almost-additive function f for (�, v) such that f (v) is odd and δv(f ) = f (v).

Proof. We take two copies �′ and�′′ of�, and denote for each vertex x from� by
x′ and x′′ the corresponding vertices from �′ and �′′, respectively. Using a similar
notation, f yields functions f ′ and f ′′ for �′ and �′′.
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Assuming f (v) odd and δv(f ) = f (v) for some vertex v of�, we form a graph  
consisting of �′, �′′ and a new vertex e joined each with v′ and v′′ by a single edge.
The setting yields an additive function ϕ on  extending f ′ and f ′′ and satisfying
ϕ(e) = f (v). By construction, e is not lying on any cycle of  , contradicting the
proposition. �

Proposition 3.3. Let � be a graph and f : �0 → Z be an arbitrary function. Then
it is possible to realize � as a full subgraph of a graph �̄, adding only vertices and
single edges, and to extend f to an additive function f̄ : �̄ → Z in such a way that
f̄ (x) = ±1 for each vertex x ∈ �̄0\�0.

Proof. To each vertex v of�we join |a| new vertices x1, . . . , x|a|, where a = δf (v),
and extend f to a function f̄ by putting f̄ (xi) = sgn(a) for i = 1, . . . , |a|. This
function f̄ then is additive for v. Invoking this process, we assume from now on that
f deviates from additivity only in vertices attaining value ±1.

Let v be such a vertex. We consider first the case that a = δf (v) is even. We then
adjoin |a|/2 triangles to v as follows:

where the new vertices xi get value f̄ (xi) = sgn(a). Then f̄ is additive at v, and
δf̄ (xi) = sgn(a)− f (v). Recall that f (v) = ±1. If f (v) = sgn(a), then f̄ is addi-
tive on each xi , and we are done. Otherwise δf̄ (xi) = 2sgn(a) holds for each i. Then
to each xi we attach a further triangle (vertices xi , yi and zi) and extend f̄ to the
new vertices by f̄ (yi) = sgn(a) = f̄ (zi) such that f̄ now is additive on xi and on
the new vertices yi and zi .

We therefore assume from now on that f deviates from additivity only in verti-
ces v with f (v) = ±1, where a = δf (v) is odd. In this case we adjoin (|a| − 1)/2
triangles to v as follows:

and a further edge with terminal vertex x∗ = x|a|, and extend f putting f̄ (xi) =
sgn(a) for i = 1, . . . , |a|. Clearly f̄ is additive on v, and δf̄ (xi) is even for i =
1, . . . , |a| − 1. Continuing with these vertices as in the first part, it remains to deal
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with additivity in x∗ = x|a|. Since f (v) = ±1, we know that δf̄ (x
∗) = 2 sgn(a)−

f (v) is either equal to 3 sgn(a) or to sgn(a) = f (x∗). In the case δf̄ (x
∗) = 3 sgn(a)

we adjoin vertices as follows:

Putting f̄ (y) = f̄ (z) = f̄ (u) = sgn(a) we obtain additivity for x∗ and the new ver-
tices.

Finally, we may therefore assume that f deviates from additivity only in ‘ex-
ceptional’ vertices v of order one where f (v) = δf (v) = −1. If we join two such
vertices v1, v2 by a new edge, then f becomes additive also in v1 and v2. Continu-
ing, we either obtain an additive function f̄ or else one of the ‘exceptional’ vertices
v remains. In this case the function f̄ is almost-additive for (�̄, v) contradicting
Corollary 3.2, since v does not belong to any cycle. This finishes the proof. �

Proposition 3.4. Let � be a tree, possibly with multiple arrows. A function f :
�0 → Z can be extended to an additive function f̄ : �̄ → Z on a tree �̄ having �
as a full subtree if and only if f (v)δf (v) is even for each vertex v of �. Moreover,
�̄ can be chosen to arise from � by adjunction of simple edges.

In particular, any function f : �0 → Z with even values can be extended to an
additive function on a (possibly) larger tree.

Proof. Since f (v)δf (v) = 2f (v)2 − ∑
z a(v, z)f (z)f (v), the necessity of the con-

dition follows from Proposition 3.1. We are going to show that the condition is also
sufficient.

Let v be a vertex of �, we put a = f (v) and b = δf (v). Assume first that b
is odd. With d = (|b| − 1)/2 we join new vertices x1, . . . , xd to v, all getting value
2 sgn(b), and a further vertex x∗ getting value sgn(b). Since by assumption a is even,
the extended function then is additive for v and has even deviation from additivity
for all new vertices.

We thus can assume that b is even. This time we join d = |b|/2 new vertices
x1, . . . , xd to v, each getting value 2 sgn(b). The arising function is additive for v,
and deviates from additivity by c = 4 sgn(b)− a for each xi . There are two cases to
consider.

sgn(c) = sgn(b): We join to each xi (1 � i � d) a copy of the branch
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where e = |c|, identifying x with xi . Attaching value sgn(c) to the copies of the yj
(1 � j � e) then yields a function that is additive for each xi and for all the new
vertices.

sgn(c) = −sgn(b): If c is even, we join to each xi , 1 � i � d , e = |c|/2 copies
of the branch.

identifying x with xi . Attaching values 2 sgn(c) to each copy of y and sgn(c) to each
copy of uk , 1 � k � 6, we achieve additivity for all the new vertices.

If c is odd, we put e = (|c| + 1)/2 and proceed as before, joining e copies of the
branch (∗) to each vertex xi , 1 � i � d . Additionally, we join a further new vertex
y∗
i to xi . Attaching values 2 sgn(c) to each copy of y, sgn(c) to each copy of uk , and

sgn(b) to each y∗
i finally yields additivity for all the new vertices. �

It follows from the proposition that the function, depicted below,

1
|

1 —– 1 —– 1

cannot be extended to an additive function on any larger tree.
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