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Abstract

Given k¿3 heaps of tokens. The moves of the 2-player game introduced here are to either
take a positive number of tokens from at most k − 1 heaps, or to remove the same positive
number of tokens from all the k heaps. We analyse this extension of Wytho�’s game and provide
a polynomial-time strategy for it. c© 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

We propose the following two-player game on k heaps with �nitely many tokens,
where k¿3. There are two types of moves: (i) remove a positive number of tokens
from up to k − 1 heaps, possibly k − 1 entire heaps, or (ii) remove the same positive
number of tokens from all the k heaps. The player making the last move wins.
Any position in this game can be described in the following standard form: (m0; : : : ;

mk−1) with 06m06 · · ·6mk−1, where mi is the number of tokens in the ith heap.
Given any game �, we say informally that a P-position is any position u of � from
which the Previous player can force a win, that is, the opponent of the player moving
from u. An N -position is any position v of � from which the Next player can force a
win, that is, the player who moves from v. The set of all P-positions of � is denoted
by P, and the set of all N -positions by N. Denote by F(u) all the followers of u,
i.e., the set of all positions that can be reached in one move from the position u. It is
then easy to see that:

For every position u of � we have u ∈ P if and only if F(u)⊆N;

and u ∈ N if and only if F(u) ∩P 6= ∅: (1)

∗ Corresponding author. Tel.: +972-8-9343539; fax: +972-8-9342945.
E-mail addresses: fraenkel@wisdom.weizmann.ac.il (A.S. Fraenkel), dimaz@wisdom.weizmann.ac.il

(D. Zusman).
1 http://www.wisdom.weizmann.ac.il/∼fraenkel

0304-3975/01/$ - see front matter c© 2001 Elsevier Science B.V. All rights reserved.
PII: S0304 -3975(00)00073 -6

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82700541?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


6 A.S. Fraenkel, D. Zusman / Theoretical Computer Science 252 (2001) 5–12

For n∈Z0, denote the nth triangular number by Tn= 1
2n(n+ 1). We prove

Theorem 1. Every P-position of the game can be written in the form (Tn; m1; : : : ;
mk−1); where the (k−1)-tuples (m1; : : : ; mk−1) range over all the (unordered) partitions
of (k − 1)Tn + n with parts of size ¿Tn. In other words; P=

⋃∞
n=0 Pn; where

Pn =
{
(Tn; m1; : : : ; mk−1):

k−1∑
i=1
mi = (k − 1)Tn + n;

Tn6m16 · · ·6mk−1; n ∈ Z0
}
: (2)

Example. For k =4,

Pn = {(Tn; m1; m2; m3): m1 + m2 + m3 = 3Tn + n; n ∈ Z0}:
The �rst few P-positions are

P0 = {(0; 0; 0; 0)};
P1 = {(1; 1; 1; 2)};
P2 = {(3; 3; 3; 5); (3; 3; 4; 4)};
P3 = {(6; 6; 6; 9); (6; 6; 7; 8); (6; 7; 7; 7)};
P4 = {(10; 10; 10; 14); (10; 10; 11; 13); (10; 10; 12; 12); (10; 11; 11; 12)};
P5 = {(15; 15; 15; 20); (15; 15; 16; 19); (15; 15; 17; 18);

(15; 16; 16; 18); (15; 16; 17; 17)}:

2. The proof

Throughout, as in (2), every k-tuple (Tn; m1; : : : ; mk−1), (m0; : : : ; mk−1) or (k − 1)-
tuple (m1; : : : ; mk−1) is arranged in nondecreasing order. Any of the �rst two tuples is
also called a position (of the game) or partition (of kTn + n); and the third is also a
partition (of (k−1)Tn+n). The terms mi are called components (of the tuple) or parts
(of the partition).

Lemma 1. Given any partition (m1; : : : ; mk−1) of (k − 1)Tn + n; where each part has
size ¿Tn. Then each part has size ¡Tn+1.

Proof. We have

(k − 1)Tn + n− mk−1 =
k−2∑
i=1
mi¿(k − 2)Tn:

Hence for all i∈{1; : : : ; k − 1}, mi6mk−16Tn + n=Tn+1 − 1.
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Lemma 2. Let k¿3 and n∈Z0. Every integer in the semi-closed interval t ∈ [Tn; Tn+1)
appears as a component in some position of Pn. It appears in Pm for no m 6= n.

Proof. The smallest component in Pn is Tn, and by Lemma 1, the largest part cannot
exceed Tn + n=Tn+1 − 1. Hence t ∈ [Tn; Tn+1) appears as a component in Pm for no
m 6= n. Let t ∈ [Tn; Tn+1), say t=Tn + j, 06j6n. Then for k¿3, Tn + j appears in the
partition {m1; : : : ; mk−1}= {Tk−3n ; Tn+n−j; Tn+j} of (k−1)Tn+n, where Tk−3n denotes
k − 3 copies of Tn, and so Tn + j appears in some position Pn.

Proof of Theorem 1. It follows from (1) that it su�ces to show two things: (I) A
player moving from any position in Pn lands in a position which is in Pm for no m.
(II) From any position which is in Pm for no m, there is a move to some Pn, n∈Z0.
The fact that (I) and (II) su�ce in general for characterizing P and N, is shown
in [9] for the case of games without cycles, based on a formal de�nition of the P-
and N -positions, and a proof of (1). (It is not true for cyclic games: given a digraph
consisting of two vertices u and v, and an edge from u to v, and an edge from v to u.
Place a token on u. The two players alternate in pushing the token to a follower. The
outcome is clearly a draw, since there is no last move. However, putting P= {u},
N= {v}, satis�es (1).)
(I) Let Pn be any k-tuple of the form (2). Removing tokens from up to k−1 heaps,

including the �rst heap, results in a position Q such that the �rst element is in Pj for
some j¡n, yet there is a heap whose size is a component in Pn. Thus Q∈Pm for no
m by Lemma 2. Removing tokens from up to k − 1 heaps, excluding the �rst heap,
results in a position Q whose last k− 1 components sum to a number ¡(k− 1)Tn+ n.
Since, however, the �rst component is in Tn, Q is not of the form (2). Hence Q∈Pm
for no m.
So consider the move from Pn which results in Q=(Tn − t; m1 − t; : : : ; mk−1 − t)

for some t ∈Z+. If Q∈Pm for some m¡n, then Tn − t=Tm. Then (Tn − t) + (m1 −
t) + · · ·+ (mk−1 − t)= kTn + n− k t= kTm + m. Thus, 0= k(Tn − Tm − t)=m− n¡0,
a contradiction. Hence Q∈Pm for no m.

(II) Let (m0; : : : ; mk−1) be any position which is in Pm for no m. Since
⋃∞
n=0[Tn; Tn+1)

is a partition of Z0, we have m0 ∈ [Tn; Tn+1) for precisely one n∈Z0. Put L=
∑k−1

i=1 mi.
Case (i). m0 =Tn. If L¿(k − 1)Tn + n, then removing L − (k − 1)Tn − n from

a suitable subset of {m1; : : : ; mk−1}, results in a position in Pn. So suppose that L¡
(k − 1)Tn + n. Then L=(k − 1)Tn + j for some j∈{0; : : : ; n − 1}. Subtracting
Tn − Tj from all components then leads to a position in Pj. Indeed, m0 − (Tn − Tj)=
Tj, and

∑k−1
i=1 (mi − (Tn − Tj))= (k − 1)Tj + j.

Case (ii). Tn¡m0¡Tn+1, say m0 =Tn + j, j∈{1; : : : ; n}. Suppose �rst that L¿
(k − 1)Tn + n + j. If m1¡Tn+1, subtract j from m0 to get to Tn. By the �rst part of
Lemma 2, m1 is a part in some partition of (k − 1)Tn + n. Then reduce, if necessary,
a subset of the mi for i¿1, so that m1 +

∑k−1
i=2 m

′
i =(k− 1)Tn+ n. Here and below, m′

i

denotes mi after a suitable positive integer may have been subtracted from it. If m1¿
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Tn+1, then decrease m1 to Tn. Then Tn +
∑

i 6=1mi¿Tn + j + Tn + (k − 2)Tn+1¿kTn +
(k − 2)(n + 1) + 1¿kTn + n + 2¿kTn + n, since k¿3. Again by Lemma 2, m0 is a
part in some partition of (k − 1)Tn + n. So reducing, if necessary, a subset of the mi
for i¿2, we get m0 +

∑k−1
i=2 m

′
i =(k − 1)Tn + n.

So consider the case L6(k − 1)Tn + n+ j. We claim that subtracting m0 − Tm from
all components of (m0; : : : ; mk−1) leads to a position in Tm, where m=L− (k − 1)m0.
Firstly note that m=

∑k−1
i=1 mi− (k−1)m0¿0, and m=L− (k−1)m06(k−1)Tn+n+

j−(k−1)m0 = n−(k−2)j6n−j¡n (since k¿3), so 06m¡n, as required. Secondly,
m0− (m0−Tm)=Tm, and

∑k−1
i=1 (mi− (m0−Tm))=L− (k−1)(m0−Tm)= (k−1)Tm+m.

(Note that for L=(k−1)Tn+n+ j we provided two winning moves. The second leads
to a win faster than the �rst.)
In conclusion, we see that

⋃∞
i=0 Pi=P.

3. Aspects of the strategy

We observe that the statement of Theorem 1 tells a player whether or not it is pos-
sible to win by moving from any given position. The proof of the theorem shows how
to compute a winning move, if it exists. Together they form a strategy for the game.
The strategy can, in fact, be computed in polynomial time. Given any position

Q=(m0; : : : ; mk−1) of the game. Its input size is �(
∑k−1

i=0 (logmi)). Solving m0 = n(n+
1)=2 leads to n= b(√1 + 8m0 − 1)=2c. By Theorem 1, Q∈P if and only if m0 =Tn,
where n=(

√
1 + 8m0 − 1)=2 is an integer, and

∑k−1
i=1 mi=(k − 1)Tn + n. Otherwise

Q∈N, and the proof of Theorem 1 indicates how to compute a winning move to a
Pn-position. All of this can be done in time which is polynomial in the input size. The
point is that there are no operations that require mi steps for any i; the computation
of n involves only O(logm0) operations, since any integer N is represented succinctly
by �(logN ) digits.
It is also of interest to estimate the density of the P-positions in the set of all game

positions. Subtracting Tn − 1 from each mi in the sum of (2), we get partitions of the
form

x1 + · · ·+ xk−1 = n+ k − 1; 16x16 · · ·6xk−16n+ 1;
where xi=mi−(Tn−1). The number pk−1(n+k−1) of partitions of n+k−1 into k−1
positive integer parts is estimated in [12, Chapter 4]. It is a polynomial of degree k−1
in n+k−1, whose leading term is (n+k−1)k−2=(k−2)!. Thus, the number of positions
Pn for n6N is estimated by �(N )=

∑N
n=0(n+k−1)k−2=(k−2)!. It is easy to see that∫ N

−1
(x + k − 1)k−2=(k − 2)! dx6�(N )6

∫ N+1

0
(x + k − 1)k−2=(k − 2)! dx;

leading to

(N + k − 1)k−1 − (k − 2)k−1
(k − 1)! 6�(N )6

(N + k)k−1 − (k − 1)k−1
(k − 1)! :
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The total number of positions up to PN is the number of partitions of the form m0 +
· · ·+mk−1 = n, 06m06 · · ·6mk−1, where n ranges from 0 to kTN+N . Adding 1 to all
the parts, we get partitions of the form x0+· · ·+xk−1 = n+k, 16x06 · · ·6xk−16n+k,
whose number is pk(n+ k). As above, the total number of positions is thus estimated
by �(N )=

∑kTN+N
n=0 (n+ k)k−1=(k − 1)!. Using integration as above, we get

(kTN + N + k)k − (k − 1)k
k!

6�(N )6
(kTN + N + k + 1)k − kk

k!
:

For large N , the ratio is thus about

�(N )
�(N )

≈ k
kTN + N + k

(
N + k

kTN + N + k

)k−1
:

Dividing the numerator and denominator of the second fraction by Nk−1 results in
�(N )=�(N )=O(1=N k+1). We see that the P-positions are rather rare, so our game
sticks to the majority of games in the sense of [14, 15]. The rareness of P-positions
in general, is, in fact, consistent with the intuition suggested by (1): a position is in
P if and only if all of its followers are in N, whereas for a position to be in N it
su�ces that one of its followers is in P. The scarcity of the P-positions is the reason
why game strategies are usually speci�ed in terms of their P-positions, rather than in
terms of their N -positions.

4. Epilogue

In the heap games known to us, such as those discussed in [1], the moves are
restricted to a single heap (which might, in special cases, be split into several subheaps).
We know of three exceptions. One is Moore’s Nimk [13], where up to k heaps can
be reduced in a single move (so Nim1 is ordinary Nim). Another one is super�cially
similar to the present game, in that the moves are also to take from all k heaps or
from 6k − 1 heaps, with some restrictions. But there a heap may also be split into
new heaps [8]. The third is Wytho�’s game, Wyt [16, 3, 4, 17], where a move may
a�ect up to two heaps. The motivation for the present note was to extend Wytho�’s
game to more than two heaps.
Wyt is played on two heaps. The moves are to either remove any positive number

of tokens from a single heap, or to remove the same positive number of tokens from
both heaps. Denoting by (x; y) the positions of Wyt, where x and y denote the number
of tokens in the two heaps with x6y, the �rst eleven P-positions are listed in Table 1.
The reader may wish to guess the next few entries of the table before reading on.
For any �nite subset S ⊂Z0, de�ne the Minimum EXcluded value of S as follows:

mex S =minZ0\S = least nonnegative integer not in S [1]. Note that if S = ∅, then
mex S =0. The general structure of Table 1 is given by

An = mex{Ai; Bi: 06i¡n}; Bn = An + n (n ∈ Z0):
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Table 1
The �rst few P-positions of Wyt

n An Bn

0 0 0
1 1 2
2 3 5
3 4 7
4 6 10
5 8 13
6 9 15
7 11 18
8 12 20
9 14 23
10 16 26

Since the input size of Wyt is succinct, namely �(log(x + y)), one can see that
the above characterization of the P-positions implies a strategy which is exponential.
A polynomial strategy for Wyt can be based on the observation that An= bn�c,
Bn= bn�c, where �=(1+√

5)=2 is the golden section, �=(3+
√
5)=2. Another poly-

nomial strategy depends on a special numeration system whose basis elements are the
numerators of the simple continued fraction expansion of �. These three strategies can
be generalized to Wyta, proposed and analysed in [5], where a∈Z+ is a parameter of
the game. The moves are as in Wyt, except that the second type of move is to remove
say k¿0 and l¿0 from the two heaps subject to |k − l|¡a. Clearly Wyt1 is Wyt.
The generalization of Wyt to more than two heaps was a long sought-after problem.

In [6] it is shown that the natural generalization to the case of k¿2 heaps is to either
remove any positive number of tokens from a single heap, or say l1; : : : ; lk from all
of them simultaneously, where the li are nonnegative integers with

∑k
i=1 li¿0 and

l1 ⊕ · · · ⊕ lk =0, and where ⊕ denotes Nim-sum (also known as addition over GF(2),
or XOR). In particular, the case k =2 is Wyt. But the actual computation of the
P-values seems to be di�cult.
The heap-game considered here is a generalization of the moves of Wyt, but not of

its strategy. In fact, it does not specialize to the case k =2; we used the fact that k¿3
in several places of the proof. However, the P-positions of the present game have a
compact form, the exhibition of which was the purpose of this note.
The game proposed here has the rather exceptional property that although it is suc-

cinct, it has a simple polynomial strategy. Normally, an extra e�ort is required for
showing that succinct games have a polynomial strategy. Di�erent families of succinct
games seem to require di�erent methods for recovering a polynomial winning strategy,
when it exists.
For example, in octal games, invented by Guy and Smith [11], a linearly ordered

string of beads may be split and or reduced according to rules encoded in octal (see
also [1, Chapter 4; 2, Chapter 11]). The standard method for showing that an octal
game is polynomial, is to demonstrate that its Sprague–Grundy function (the 0s of
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which constitute the set of P-positions) is periodic. Periodicity has been established
for a number of octal games. Some of the periods and or preperiods may be very large
(see [10]). Another way to establish polynomiality is to show that the Sprague–Grundy
function values obey some other simple rule, such as forming an arithmetic sequence,
as for Nim.
Sometimes polynomiality is established by a nonstandard method. An arithmetic

procedure, based on the Zeckendorf numeration system [18], is used for recovering
polynomiality for Wytho�’s game. In [7, 8], games were proposed and analysed, and
suitable numeration systems were used to establish polynomiality. For Wytho�’s game,
polynomiality can be proved also using the integer value function; a special numeration
system isn’t essential. In [7, 8] it was shown that the integer value function cannot be
used to establish polynomiality for the games de�ned there. But the question remains
whether there is some polynomial algorithm not based on numeration systems for some
of these new games.
We remark �nally that the Sprague–Grundy function g of a game provides a strategy

for the sum of several games. The computation of g for Nimk , k¿2, and Wyta, a¿1
seems to be di�cult. It would be of interest to compute the g-function for the present
game. Perhaps this is also di�cult.
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