Data in Brief 7 (2016) 1021-1023



Contents lists available at ScienceDirect

Data in Brief



journal homepage: www.elsevier.com/locate/dib

Data Article

# Functional analysis of stress protein data in a flor yeast subjected to a biofilm forming condition



Jaime Moreno-García<sup>a</sup>, Juan Carlos Mauricio<sup>a,\*</sup>, Juan Moreno<sup>b</sup>, Teresa García-Martínez<sup>a</sup>

<sup>a</sup> Department of Microbiology, Severo Ochoa (C6) Building, Agrifood Campus of International Excellence ceiA3, University of Cordoba, Ctra. N-IV-A, Km 396, 14014 Cordoba, Spain

<sup>b</sup> Department of Agricultural Chemistry, Marie Curie (C3) Building, Agrifood Campus of International Excellence ceiA3, University of Cordoba, Ctra. N-IV-A, Km 396, 14014 Cordoba, Spain

#### ARTICLE INFO

Article history: Received 23 February 2016 Received in revised form 16 March 2016 Accepted 21 March 2016 Available online 28 March 2016

## ABSTRACT

In this data article, an OFFGEL fractionator coupled to LTQ Orbitrap XL MS equipment and a SGD filtering were used to detect in a biofilm-forming flor yeast strain, the maximum possible number of stress proteins under the first stage of a biofilm formation conditions (BFC) and under an initial stage of fermentation used as reference, so-called non-biofilm formation condition (NBFC). Protein functional analysis – based on cellular components and biological process GO terms – was performed for these proteins through the SGD Gene Ontology Slim Mapper tool. A detailed analysis and interpretation of the data can be found in "Stress responsive proteins of a flor yeast strain during the early stages of biofilm formation" [1].

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

# 1. Specifications Table

Subject area

Biology, Microbiology and Biochemistry Proteomics, Bioinformatics

DOI of original article: http://dx.doi.org/10.1016/j.procbio.2016.02.011

http://dx.doi.org/10.1016/j.dib.2016.03.072

2352-3409/© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

<sup>\*</sup> Corresponding author.

E-mail address: mi1gamaj@uco.es (J.C. Mauricio).

| More specific subject area |                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Type of data               | Tables                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| How data was<br>acquired   | Protein identification: 3100 OFFGEL Fractionator (Agilent Technologies, Palo Alto,<br>CA) and LTQ Orbitrap XL mass spectrometer (Thermo Fisher Scientific, San Jose,<br>CA, USA) equipped with a nano LC Ultimate 3000 system (Dionex, Germany);<br>Protein quantification: emPAI; Bioinformatic analyses: SGD                                                                                                                         |
| Data format                | Filtered and analyzed                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Experimental<br>factors    | Saccharomyces cerevisiae G1 flor yeast strain; biofilm formation condition and<br>non-biofilm formation condition as control; bioinformatic analyses of the stress<br>response-related identified proteins                                                                                                                                                                                                                             |
| Experimental<br>features   | Saccharomyces cerevisiae G1 flor yeast was exposed to a biofilm formation con-<br>dition with ethanol and glycerol as main carbon sources and non-biofilm for-<br>mation condition with glucose. After protein fragmentation using OFFGEL and the<br>identification of the stress response-related proteins, bioinformatic analyses were<br>performed to investigate the protein sub-cellular localization and biological<br>functions |
| Data source<br>location    | Agrifood Campus of International Excellence ceiA3, University of Cordoba, Spain                                                                                                                                                                                                                                                                                                                                                        |
| Data accessibility         | Data are within this article                                                                                                                                                                                                                                                                                                                                                                                                           |

## 2. Value of the data

- Through the SGD Gene Ontology Slim Mapper tool, flor yeast stress proteins were sorted in cellular components and biological GO Terms. Comparison among stress and non-stress conditions of protein frequency sorted in each term, allows to highlight relevant GO Terms.
- The bioinformatics tools applied in this study allows to interpret biological information to be used for comparative proteomics studies.
- The association of proteomic data with protein activity assays and genetics may lead to the genetic improvement of flor yeast strains.

## 3. Data

Here, we show sub-cellular localizations (Table 1 in supplementary data) and biological processes (Table 2 in supplementary data) GO Terms in which the flor yeast stress related-proteins detected in stressed biofilm formation condition (BFC) and non-biofilm formation condition (NBFC) were sorted. Each type of biofilm formation stresses (lack of fermentable carbon source, ethanol, acetaldehyde and oxidative) were considered separately. Comparison with the *Saccharomyces cerevisiae* proteome frequency, *p*-value and the "GO Term frequency BFC/GO Term frequency NBFC" ratio highlighted most relevant cellular components and biological processes in each condition.

#### 4. Experimental design, materials and methods

The effects of two different biofilm formation conditions (BFC and NBFC) on *S. cerevisiae* G1 flor yeast stress response related-protein expression patterns have been analyzed by using an offgelbased approach. Culture conditions were performed as described in the Process Biochemistry journal paper [1]. Briefly, after growing until the yeast viability reached 90% at the exponential phase, under the two different conditions: BFC with ethanol and glycerol and NBFC with glucose as the main carbon sources; yeasts were collected and proteins extracted. In both conditions, for triplicates, three aliquots for proteomic analysis were carried out. OFFGEL fractionation, LTQ Orbitrap XL mass spec-

trometer identification, emPAI quantification [2] and SGD filtration were used to obtaining the stress response proteins in each condition. Bioinformatic tool Gene Ontology Slim Mapper from SGD (http:// www.yeastgenome.org/), were applied in order to clarify the sub-cellular localization and biological processes of the identified proteins.

#### Acknowledgments

The authors wish to acknowledge co-funding of this work by Spain's Ministry of Economy and Competitiveness (MINECO-INIA-CCAA) and the European Fund of Regional Development (FEDER, Grant RTA2011-00020-C02-02). The staff at the Central Service for Research Support (SCAI) of the University of Cordoba is also gratefully acknowledged for help with the analysis of the proteins.

## Appendix A. Supplementary material

Supplementary data associated with this article can be found in the online version at http://dx.doi. org/10.1016/j.dib.2016.03.072.

#### References

- J. Moreno-García, J.C. Mauricio, J. Moreno, T. García-Martínez, Stress responsive proteins of a flor yeast strain during the early stages of biofilm formation, Process Biochem. (2016) (in press), 10.1016/j.procbio.2016.02.011.
- [2] Y. Ishihama, Y. Oda, T. Tabata, T. Sato, T. Nagasu, J. Rappsilber, M. Mann, Exponentially modified protein abundance index (emPAI) for estimation of absolute protein amount in proteomics by the number of sequenced peptides per protein, Mol. Cell. Proteom. 4 (2005) 1265–1272.