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1. Introduction

One of the most studied maps in Differential Geometry is the Hopf map H : S
3 → CP1 from the unit three-sphere

S
3 ⊂ C

2 onto the complex projective line CP1 = C ∪ {∞}, defined for z = (z1, z2) ∈ S
3 by

H(z) =
{

z1/z2 if z2 �= 0,

∞ if z2 = 0.

Composed with the inverse stereographic projection p−1 : C → S
2 \ {(0,0,1)} ⊂ R

3 given by

p−1(ζ ) =
(

2 Re ζ

|ζ |2 + 1
,

2 Im ζ

|ζ |2 + 1
,
|ζ |2 − 1

|ζ |2 + 1

)
, ζ ∈ C,

it can be regarded as a map H : S
3 → S

2 sending

z = (z1, z2) 	→ (
2 Re z1 z̄2,2 Im z1 z̄2, |z1|2 − |z2|2

)
, (1.1)
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which, if we choose the two-sphere S
2 to be of radius 1/2, becomes a Riemannian submersion, relative to the canonical

metric on each sphere.
As is well known, the Hopf map is closely linked to the unit tangent bundle T 1

S
2 → S

2 of the two-sphere. Indeed, the
total space T 1

S
2 is diffeomorphic to the real projective three-space RP3, and the Hopf map H : S

3 → S
2 is nothing else

than the canonical projection from the universal covering space of T 1
S

2 onto S
2. This shows that a Riemannian metric of

constant positive curvature exists on T 1
S

2, inherited from the canonical metric on S
3.

Then it is a pertinent question whether this constant curvature metric on T 1
S

2 is induced from some “natural” Rieman-
nian metric defined on the “ambient” total space T S

2 of the tangent bundle T S
2 → S

2 of S
2, when one regards the total

space of the unit tangent bundle T 1
S

2 as a hypersurface of T S
2. This question also arises when the three-sphere S

3 is
equipped with one of the Berger metrics, that is, when a homothety is applied on the fibres.

The aim of this paper is to give affirmative answers, using generalized Cheeger–Gromoll metrics hm,r defined in [1] (see
Section 3.3 for the precise definition of hm,r ), that there is a two-parameter family of Riemannian metrics on the tangent
bundle of S

2, which induces desired metrics for both questions. Namely, we prove the following

Theorem 1.1. Let S
n(c) be the n-sphere of constant curvature c > 0, and denote by T S

n(c) (resp. T 1
S

n(c)) its tangent (resp. unit
tangent) bundle. Let F : S

3(c/4) → T 1
S

2(c) be the covering map defined by (2.8).

(1) Then F induces an isometry from the projective three-space (RP3(c/4), gcan) of constant curvature c/4 to T 1
S

2(c), equipped
with the metric induced from the generalized Cheeger–Gromoll metric hm,r on T S

2(c), where m = log2 c and r � 0.
(2) Similarly, when S

3 is equipped with a Berger metric gε defined by (3.10), F induces an isometry from (RP3, gε) to (T 1
S

2(4),hm,r),
for m = log2 ε2 + 2 and r � 0.

In particular, we see from Theorem 1.1(1) that any three-sphere of constant positive curvature is isometrically immersed
into the total space of the tangent bundle of a two-sphere, equipped with a generalized Cheeger–Gromoll metric. A hyper-
bolic counterpart of this is also true. Namely, any anti-de Sitter three-space of constant negative curvature is isometrically
immersed into the total space of the tangent bundle of a hyperbolic plane, equipped with an indefinite generalized Cheeger–
Gromoll metric. More precisely, we prove

Theorem 1.2. Let H3
1(c) be the anti-de Sitter three-space of constant curvature −c < 0. Let T H

2(c) (resp. T 1
H

2(c)) be the tangent
(resp. unit tangent) bundle of the hyperbolic plane H

2(c) of constant curvature −c < 0, and endow T H
2(c) with the indefinite gener-

alized Cheeger–Gromoll metric hm,r defined by (4.14). Then the covering map F : H3
1(c/4) → T 1

H
2(c) defined by (4.8) is an isometric

immersion from H3
1(c/4) to T 1

H
2(c), equipped with the metric induced from hm,r , where m = log2 c and r � 0.

The paper is organized as follows. In Section 2 we describe the Hopf map S
3(c/4) → S

2(c) in terms of the natural iden-
tification of the three-sphere S

3(c/4) and the unit tangent bundle T 1
S

2(c) with Lie groups SU(2) and SO(3), respectively.
Then, using these descriptions, we prove Theorem 1.1 in Section 3. For this end, we compute the differential of the covering
map F : S

3(c/4) → T 1
S

2(c) and find explicitly a suitable induced metric on T 1
S

2(c) making F to be isometric. An alter-
native proof of Theorem 1.1, based on our previous knowledge of the curvature of generalized Cheeger–Gromoll metrics, is
presented in Remark 3.3.

In Section 4 we prove a hyperbolic counterpart of Theorem 1.1(1). Namely, we define the hyperbolic Hopf map
H3

1(c/4) → H
2(c) for the hyperbolic plane, and extend the notion of generalized Cheeger–Gromoll metrics to admit in-

definite ones. Then we prove Theorem 1.2 by the same method as in Section 3, namely, by identifying the anti-de Sitter
three-space H3

1(c/4) and the unit tangent bundle T 1
H

2(c) with Lie groups SU(1,1) and SO+(1,2), respectively.

2. Hopf map

To fix our notation and conventions, we first review how one can identify the Hopf map H : S
3 → S

2 with the canonical
projection from the universal covering space of the unit tangent bundle T 1

S
2 onto the 2-sphere S

2.
To begin with, recall that the unit 3-sphere

S
3 = {(

x1, x2, x3, x4) ∈ R
4
∣∣ (

x1)2 + (
x2)2 + (

x3)2 + (
x4)2 = 1

}
is diffeomorphic to the special unitary group

SU(2) = {
A ∈ GL(2,C)

∣∣ t Ā A = Id, det A = 1
}

=
{(

a −b̄
b ā

) ∣∣∣ a,b ∈ C, |a|2 + |b|2 = 1

}

under the map
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ψ : S
3 → SU(2),

x = (
x1, x2, x3, x4) 	→ Ax =

(
z1 −z̄2
z2 z̄1

)
, (2.1)

where z1 = x1 + √−1x2 and z2 = x3 + √−1x4.
Moreover, SU(2) is the universal covering space of the special orthogonal group SO(3) with the covering map

ρ : SU(2) → SO(3), Ax 	→ ρ(Ax)

described as follows. First, we regard SO(3) as SO(su(2)), where the Lie algebra of SU(2),

su(2) = {
X ∈ gl(2,C)

∣∣ t X + X̄ = 0, Tr X = 0
}

=
{( √−1x3 −x2 + √−1x1

x2 + √−1x1 −√−1x3

) ∣∣∣ x1, x2, x3 ∈ R

}
,

is identified with R
3, equipped with the scalar product 〈X, Y 〉 = −(1/2)Tr(XY ), so that

e1 =
(

0
√−1√−1 0

)
, e2 =

(
0 −1
1 0

)
, e3 =

(√−1 0
0 −√−1

)
(2.2)

form an orthonormal basis of (su(2), 〈,〉). Then ρ(Ax) is defined by the adjoint representation of SU(2) as

ρ(Ax) : su(2) → su(2), Y 	→ Ad(Ax)Y = AxY A−1
x , (2.3)

and so ρ(Ax) ∈ SO(3) ∼= SO(su(2), 〈,〉).
The matrix representation of ρ(Ax), with respect to the orthonormal basis (2.2) of su(2), is given by

ρ(Ax) =
⎛
⎝ Re(z2

1 − z̄2
2) Im(z̄2

1 + z2
2) 2 Re(z1 z̄2)

Im(z2
1 − z̄2

2) Re(z̄2
1 + z2

2) 2 Im(z1 z̄2)

−2 Re(z1z2) 2 Im(z1z2) |z1|2 − |z2|2

⎞
⎠

= (
Axe1 A−1

x Axe2 A−1
x Axe3 A−1

x

)
. (2.4)

Note that ρ : SU(2) → SO(3) is a homomorphism with kernel {±Id}, and hence SO(3) is diffeomorphic to the real projective
three-space RP3.

Given c > 0, let S
n(c) ⊂ R

n+1 denote the n-sphere of radius 1/
√

c with center at the origin of R
n+1. We also denote the

unit n-sphere S
n(1) simply by S

n . Recall that the unit vectors tangent to S
2(c) form the unit tangent bundle

T 1
S

2(c) = {
(x, v) ∈ R

3 × R
3
∣∣ x ∈ S

2(c), v ∈ TxS
2(c), |v| = 1

}
= {

(x, v) ∈ R
3 × R

3
∣∣ |x| = 1/

√
c, |v| = 1, 〈x, v〉 = 0

}
(2.5)

of S
2(c) with the canonical projection π : T 1

S
2(c) → S

2(c) given by π(x, v) = x. Since T 1
S

2(c) is composed of orthogonal
vectors of R

3, one can define the diffeomorphism

φ : SO(3) → T 1
S

2(c), (c1 c2 c3) 	→ (c3/
√

c, c1). (2.6)

Finally, let ι be the homothety defined by

ι : S
3(c/4) → S

3(1), 2x/
√

c 	→ x. (2.7)

Then we have the following

Proposition 2.1. The composition of the covering map

F = φ ◦ ρ ◦ ψ ◦ ι : S
3(c/4) → T 1

S
2(c) (2.8)

with the canonical projection π : T 1
S

2(c) → S
2(c) is identical with the Hopf map H : S

3(c/4) → S
2(c).

Indeed, from (2.1) through (2.7), we see that the composition π ◦ F is a map sending

(2/
√

c )(z1, z2) 	→ (1/
√

c )
(
2z1 z̄2, |z1|2 − |z2|2

)
,

which is nothing but the Hopf map H of (1.1) normalized in our context.
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3. Differential of the covering map

The most direct path to an answer to our problem is to compute the differential of the covering map F : S
3(c/4) →

T 1
S

2(c), determine the image of an orthonormal frame of T S
3(c/4), and then find explicitly a suitable induced metric on

T 1
S

2(c) making F to be isometric. This can be carried out as follows.

3.1. Differentials of maps

(1) The map ψ : S
3 → SU(2) in (2.1) gives rise to a linear map from R

4 into the space of complex 2 × 2 matrices of the

form
(

a −b̄
b ā

)
, so that dψx = ψ for all x ∈ R

4.

Noting that the fibres of the Hopf map (1.1) are described as the orbits of the S
1-action S

1 × S
3 → S

3 on S
3 defined by(

e
√−1t, (z1, z2)

) 	→ e
√−1t(z1, z2) = (

e
√−1t z1, e

√−1t z2
)
,

we see that if x = (x1, x2, x3, x4) ∈ S
3, then

X3(x) = (
√−1z1,

√−1z2) = (−x2, x1,−x4, x3)
is a vector tangent to a fibre of the Hopf map, and

X3(x), X2(x) = (−x3, x4, x1,−x2), X1(x) = (−x4,−x3, x2, x1)
form a global orthonormal frame of T S

3. Since ψ(x) = Ax =
(

z1 −z̄2
z2 z̄1

)
, it follows that

dψx = ψ : TxS
3 → Tψ(x)

(
SU(2)

) = Ax · su(2)

and

dψx
(

X3(x)
) =

(−x2 + √−1x1 x4 + √−1x3

−x4 + √−1x3 −x2 − √−1x1

)
= Axe3. (3.1)

Similarly, we have dψx(X2(x)) = Axe2 and dψx(X1(x)) = Axe1.
(2) The differential of the covering map

ρ : SU(2) → SO(3), Ax 	→ ρ(Ax),

given by (2.3), is a linear map

dρAx : T Ax

(
SU(2)

) = Ax · su(2) → Tρ(Ax)SO(3) = ρ(Ax) · so(3)

defined by

AxY 	→ dρAx(AxY ) = ρ(Ax) ◦ ad(Y ), (3.2)

where

ad(Y ) : su(2) → su(2), Z 	→ ad(Y )(Z) = [Y , Z ].
Consequently, for the orthonormal basis (2.2) of su(2), we obtain, for instance,

dρAx : Ax · su(2) → ρ(Ax) · so(3), Axe3 	→ ρ(Ax) ◦ ad(e3),

and ad(e3)(e3) = 0, ad(e3)(e2) = −2e1, ad(e3)(e1) = 2e2. Therefore, as a matrix,

ad(e3) =
(0 −2 0

2 0 0
0 0 0

)
,

and

ρ(Ax) ◦ ad(e3) = (
2Axe2 A−1

x −2Axe1 A−1
x 0

)
.

Similarly, since ad(e2)(e1) = −2e3, we obtain

ρ(Ax) ◦ ad(e2) = (−2Axe3 A−1
x 0 2Axe1 A−1

x

)
,

ρ(Ax) ◦ ad(e1) = (
0 2Axe3 A−1

x −2Axe2 A−1
x

)
.
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(3) Finally, we note that the diffeomorphism φ defined by (2.6) is linear, so dφg = φ and, for ρ(Ax) ∈ SO(3)

dφρ(Ax) = φ : Tρ(Ax)SO(3) = ρ(Ax) · so(3) → Tφ(ρ(Ax))

(
T 1

S
2(c)

)
is given by

(α1 α2 α3) 	→ (α3/
√

c,α1).

Therefore we obtain

dφρ(Ax)

(
ρ(Ax) ◦ ad(e3)

) = (
0,2Axe2 A−1

x

) = ẽ3,

dφρ(Ax)

(
ρ(Ax) ◦ ad(e2)

) = (
2Axe1 A−1

x /
√

c,−2Axe3 A−1
x

) = ẽ2,

dφρ(Ax)

(
ρ(Ax) ◦ ad(e1)

) = (−2Axe2 A−1
x /

√
c,0

) = ẽ1. (3.3)

In conclusion, combining (2.8) together with (3.1) through (3.3) yields

dFx
(
2X3(x)/

√
c
) = ẽ3, dFx

(
2X2(x)/

√
c
) = ẽ2, dFx

(
2X1(x)/

√
c
) = ẽ1. (3.4)

3.2. Lifts to the unit tangent bundle

In general, each tangent space of the tangent bundle T M of a Riemannian manifold (M, g) admits a canonical decom-
position into its vertical and horizontal subspaces. Indeed, given a point (x, e) ∈ T M , the kernel of the differential of the
canonical projection π : T M → M defines the vertical space V(x,e) = ker dπ(x,e) , while the horizontal space H(x,e) is given by
the kernel of the connection map

K(x,e) = K : T(x,e)T M → TxM, K (Z) = d(expx ◦R−e ◦ τ )(Z).

Here τ : U ⊂ T M → Tx M is the map, defined on an open neighbourhood U of (x, e) ∈ T M , sending a vector v ∈ T y M , with
(y, v) ∈ U , to a vector in Tx M by parallel transport along the unique geodesic arc from y to x. The map R−e : Tx M → Tx M
is the translation given by R−e(X) = X − e for X ∈ TxM .

One can see that H(x,e) ∩ V(x,e) = {0} and H(x,e) ⊕ V(x,e) = T(x,e)T M , and define the horizontal lift Xh ∈ H(x,e) and the
vertical lift X v ∈ V(x,e) of X ∈ Tx M by

K(x,e)
(

X v) = X, dπ(x,e)
(

Xh) = X .

An alternative description of the horizontal lift Xh is given as follows. Let X ∈ Tx M and choose e ∈ Tx M . Take a curve
γ : I → M such that γ (0) = x and γ̇ (0) = X . (Since the result is independent of the curve chosen, we can take it to be a
geodesic.) Let Γ : I → T M be the unique curve in T M such that Γ (0) = (x, e) and Γ (t) is parallel to γ̇ (t) in the sense that
∇γ̇ (t)Γ (t) = 0 for all t ∈ I . Namely, Γ (t) = (γ (t), v(t)), where v(t) ∈ Tγ (t)M and ∇γ̇ (t)v(t) = 0 for all t ∈ I , so that v(t) is
the parallel transport of the vector e along the curve γ . Then Γ̇ (0) = Xh ∈ T(x,e)T M . We will use this approach below.

Now, recall that the unit tangent bundle T 1
S

2(c) is a 3-dimensional hypersurface of T S
2(c). Then we note that at

(x, e) ∈ T 1
S

2(c) the tangent space of the tangent bundle T S
2(c) is written as

T(x,e)
(
T S

2(c)
) = {

Xh + Y v
∣∣ X, Y ∈ TxS

2(c)
}
,

where Xh (resp. Y v ) is the horizontal (resp. vertical) lift of X (resp. Y ). Also, that of the unit tangent bundle T 1
S

2(c) is
given by

T(x,e)
(
T 1

S
2(c)

) = {
Xh + Y v

∣∣ X, Y ∈ TxS
2(c), 〈Y , e〉 = 0

}
, (3.5)

since the tangent vector at (x, e) of any vertical curve on T 1
S

2(c) must be orthogonal to e.
We know the differential of the covering map F : S

3(c/4) → T 1
S

2(c) from (3.4) and recall that

F (2x/
√

c ) = (x̃, e) ∈ T 1
S

2(c)

for each 2x/
√

c ∈ S
3(c/4), where x̃ = (1/

√
c )Axe3 A−1

x and e = Axe1 A−1
x . We set

f = −Axe2 A−1
x .

Then (x̃, f ) ∈ T 1
S

2(c) and 〈 f , e〉 = 0, so that, by virtue of (3.5),

T(x̃,e)
(
T 1

S
2(c)

) = Span
{

eh, f h, f v}
.

Now, we are going to show
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Proposition 3.1. Let x̃, e and f be as above. Then

(
√

c/2)ẽ2 = eh, (
√

c/2)ẽ1 = f h, ẽ3 = −2 f v . (3.6)

Proof. To construct the horizontal lift eh ∈ T(x̃,e)(T 1
S

2(c)), we take the great circle γ in S
2(c) such that γ (0) = x̃ and

γ̇ (0) = e, that is,

γ (t) = cos(
√

ct)x̃ + sin(
√

ct)(e/
√

c ).

Then the curve Γ : I → T 1
S

2(c) given by Γ (t) = (γ (t), γ̇ (t)) is parallel to γ̇ (t), so that eh = Γ̇ (0) = (γ̇ (0), γ̈ (0)). Namely,

eh = (
Axe1 A−1

x ,−√
c Axe3 A−1

x

) = (
√

c/2)ẽ2.

Similarly, to construct f h ∈ T(x̃,e)(T 1
S

2(c)) for f = −Axe2 A−1
x , we take the great circle γ (t) = cos(

√
ct)x̃ + sin(

√
ct)×

( f /
√

c ), so that γ (0) = x̃ and γ̇ (0) = f . Then the curve Γ : I → T 1
S

2(c) given by Γ (t) = (γ (t), v(t) = e) satisfies
∇γ̇ (t)v(t) = 0 for all t ∈ I . Hence

f h = Γ̇ (0) = ( f ,0) = (−Axe2 A−1
x ,0

) = (
√

c/2)ẽ1.

Finally, since dπ(ẽ3) = 0, to show that ẽ3 = −2 f v we compute K (ẽ3). Since ẽ3 = dFx(2X3/
√

c ) and X3 = γ̇ (0) for
γ (t) = e

√−1t x, which is indeed a geodesic of S
3 along a fibre of the Hopf map, we can write ẽ3 as a vector tangent to a

curve γ̃ (t) = F ◦ (2/
√

c )γ (t) in T 1
S

2(c) and then

K (ẽ3) = d

dt

∣∣∣∣
t=0

(expx̃ ◦R−e ◦ τ )
(
γ̃ (t)

)
. (3.7)

Also, it is immediate from (2.4) and (2.6) that

γ̃ (t) = (
(1/

√
c )Axe3 A−1

x , Aγ (t)e1 A−1
γ (t)

) ∈ T 1
S

2(c)

and π(γ̃ (t)) = x̃, so that γ̃ (t) is a curve along the fibre over x̃. Consequently, the parallel transport τ in (3.7) is the identity
map, and

K (ẽ3) = d

dt

∣∣∣∣
t=0

expx̃

(
1√

c
Axe3 A−1

x , Aγ (t)e1 A−1
γ (t) − Axe1 A−1

x

)
,

since e = Axe1 A−1
x .

Put W (t) = Aγ (t)e1 A−1
γ (t) − Axe1 A−1

x . Then the geodesic of S
2(c) starting at x̃ with initial vector W (t) is given by

δt(s) = 1√
c

Axe1 A−1
x cos

(√
c
∣∣W (t)

∣∣s) + 1√
c

W (t)

|W (t)| sin
(√

c
∣∣W (t)

∣∣s),
and K (ẽ3) = (d/dt)|t=0δt(1). On the other hand, since

γ (t) = (
x1 cos t − x2 sin t, x2 cos t + x1 sin t, x3 cos t − x4 sin t, x4 cos t + x3 sin t

)
,

we have

W (t) = Aγ (t)e1 A−1
γ (t) − Axe1 A−1

x

=
⎛
⎝ −4(−x1x3 + x2x4) sin2 t + 2(x1x4 + x2x3) sin 2t

−4(x1x2 + x3x4) sin2 t + ((x1)2 − (x2)2 + (x3)2 − (x4)2) sin 2t

−2((x1)2 − (x2)2 − (x3)2 + (x4)2) sin2 t − 2(x1x2 − x3x4) sin 2t

⎞
⎠

and |W (t)| = 2 sin t .
Therefore we obtain

K (ẽ3) = d

dt

∣∣∣∣
t=0

(
1√

c
Axe3 A−1

x cos(2
√

c sin t) + W (t)

2
√

c sin t
sin(2

√
c sin t)

)
,

=
(

W (t)

2
√

c sin t

)
(0)

d

dt

∣∣∣∣
t=0

sin(2
√

c sin t)

=
( 4(x1x4 + x2x3)

2((x1)2 − (x2)2 + (x3)2 − (x4)2)

−4(x1x2 − x3x4)

)
= 2Axe2 A−1

x

= −2 f ,

which shows that ẽ3 = −2 f v . �
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3.3. Generalized Cheeger–Gromoll metrics

For the tangent bundle T M of a Riemannian manifold (M, g), a natural Riemannian metric on T M , in the sense that the
vertical and horizontal subspaces of each tangent space of T M are orthogonal and the canonical projection π : T M → M
becomes a Riemannian submersion, was first defined by Sasaki [7]. This metric, now called the Sasaki metric, appears as
having the simplest possible form, but its geometry is known to be rather rigid (cf. [1,5]). Later on, a more general metric,
called the Cheeger–Gromoll metric, was given on T M by Musso and Tricerri [5], which has been further generalized in [1]
toward the discovery of new harmonic sections of Riemannian vector bundles.

To be precise, given the two-sphere S
2(c), for m ∈ R and r � 0, the generalized Cheeger–Gromoll metric hm,r on the tangent

bundle T S
2(c) is defined, on each tangent space T(x,e)(T S

2(c)) at (x, e) ∈ T S
2(c), by

hm,r
(

Xh, Y h) = 〈X, Y 〉, hm,r
(

Xh, Y v) = 0,

hm,r
(

X v , Y v) = ωm(〈X, Y 〉 + r〈X, e〉〈Y , e〉), (3.8)

where X, Y ∈ TxS
2(c) and ω = 1/(1 + |e|2). In particular, when (x, e) ∈ T 1

S
2(c), this metric restricts on T(x,e)(T 1

S
2(c)) to

hm,r
(

Xh, Y h) = 〈X, Y 〉, hm,r
(

Xh, Y v) = 0,

hm,r
(

X v , Y v) = 1

2m
〈X, Y 〉, (3.9)

since 〈Y , e〉 = 0 by virtue of (3.5). Namely, the parameter r disappears if hm,r is restricted to the unit tangent bundle T 1
S

2(c).
It should be noted that the original Cheeger–Gromoll metric corresponds to m = r = 1 and the Sasaki metric to m = r = 0.

Now, our Theorem 1.1 can be proved as follows. If we choose m = log2 c, then, noting (3.4) and (3.6), we obtain from
(3.9) that

hm,r
(
(
√

c/2)ẽ1, (
√

c/2)ẽ1
) = hm,r

(
f h, f h) = 〈 f , f 〉 = 1,

hm,r
(
(
√

c/2)ẽ2, (
√

c/2)ẽ2
) = hm,r

(
eh, eh) = 〈e, e〉 = 1,

hm,r
(
(
√

c/2)ẽ1, (
√

c/2)ẽ2
) = hm,r

(
f h, eh) = 〈 f , e〉 = 0,

hm,r
(
(
√

c/2)ẽ2, (
√

c/2)ẽ3
) = −hm,r

(
eh,

√
c f v) = 0,

hm,r
(
(
√

c/2)ẽ1, (
√

c/2)ẽ3
) = −hm,r

(
f h,

√
c f v) = 0,

and

hm,r
(
(
√

c/2)ẽ3, (
√

c/2)ẽ3
) = hm,r

(−√
c f v ,−√

c f v) = c

2m
〈 f , f 〉 = 1.

This shows that F : S
3(c/4) → T 1

S
2(c) defined by (2.8) induces an isometry from (RP3(c/4), gcan) to (T 1

S
2(c),hm,r) for

m = log2 c and any r � 0.
Moreover, if we equip the unit three-sphere S

3 with a Berger metric gε in [3] such that

{X1, X2, ε X3} is an orthonormal frame of T S
3, (3.10)

then we see from (3.4) that dFx(ε X3) = εẽ3 and

hm,r(εẽ3, εẽ3) = hm,r
(−2ε f v ,−2ε f v) = 1

2m
〈2ε f ,2ε f 〉 = 4ε2

2m
.

Therefore, for m = log2 ε2 + 2, the map F : S
3 → T 1

S
2(4) yields an isometry from (RP3, gε) to (T 1

S
2(4),hm,r) for any r � 0.

Remark 3.2. In Theorem 1.1(1), if we choose c = 1, then m = 0. Thus, for r = 0 the generalized Cheeger–Gromoll metric h0,0
defined by (3.8) is nothing but the Sasaki metric defined on T S

2(1). In this case, Theorem 1.1(1) is proved in [4].

Remark 3.3 (Curvature approach). An alternative method would be to compute that (T 1
S

2(c), hm,r) with m = log2 c has con-
stant sectional curvature c/4, looking at T 1

S
2(c) as a hypersurface of T S

2(c) and use previous knowledge of the curvature
of (T S

2(c),hm,r) (cf. [2]). Fairly simple computations show that the second fundamental form B of T 1
S

2(c) in T S
2(c) is

given by

B
(

Xh, Y h) = B
(

Xh, Y v) = 0,

B
(

X v , Y v) = √
2m/(1 + r)

m/2 + r 〈X, Y 〉n,

1 + r
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and from the Gauss formula, we see that the sectional curvature K̂ of (T 1
S

2(c),hm,r) at the point (x, e) ∈ T 1
S

2(c) is given
by

K̂
(
eh ∧ f h) = c − 3c2

2m+2
,

K̂
(
eh ∧ f v) = K̂

(
f h ∧ f v) = c2

2m+2
, (3.11)

where f ∈ T 1
x S

2(c) with 〈e, f 〉 = 0 and T(x,e)(T 1
S

2(c)) = Span{eh, f h, f v}. Clearly, the sectional curvatures are equal to c/4
if m = log2 c (for any r � 0), whilst for the Berger metric gε , we need to choose

m = log2 ε2 + 2.

4. Hyperbolic counterpart

In what follows, we denote by R
n
ν the pseudo-Euclidean n-space of index ν , that is, R

n equipped with the indefinite
metric

〈x, y〉 =
n−ν∑
i=1

xi yi −
n∑

j=n−ν+1

x j y j .

4.1. Hyperbolic Hopf map

Let H3
1(c) be the anti-de Sitter 3-space of constant negative curvature −c < 0 (cf. [6]), which is, by definition, a hypersur-

face in R
4
2 defined by 〈x, x〉 = −1/c, that is,

H3
1(c) = {(

x1, x2, x3, x4) ∈ R
4
2

∣∣ (
x1)2 + (

x2)2 − (
x3)2 − (

x4)2 = −1/c
}
.

Note that H3
1(c) is diffeomorphic to S

1 × R
2. If we introduce complex coordinates z1 = x1 + √−1x2 and z2 = x3 + √−1x4,

then H3
1(c) is represented as

H3
1(c) = {

(z1, z2) ∈ C
2
∣∣ |z1|2 − |z2|2 = −1/c

}
.

To define the hyperbolic Hopf map, let � : C
2 \ {0} → CP1 be the canonical projection defining the complex projective

line CP1. Restricting � to H3
1(c) ⊂ C

2 \ {0}, we have a mapping

� : H3
1(c) → C, z = (z1, z2) 	→ �(z) = z1/z2,

which maps H3
1(c) diffeomorphically onto the unit ball B2 = {ζ ∈ C | |ζ | < 1} in C. Let

H
2(c) = {(

x1, x2, x3) ∈ R
3
1

∣∣ (
x1)1 + (

x2)2 − (
x3)2 = −1/c, x3 > 0

}
be the hyperbolic plane of constant curvature −c < 0 embedded in R

3
1. Denote by

p−1(ζ ) =
(

2 Re ζ

1 − |ζ |2 ,
2 Im ζ

1 − |ζ |2 ,
1 + |ζ |2
1 − |ζ |2

)
, ζ ∈ B2 ⊂ C,

the inverse stereographic projection p−1 : B → H
2(1) from the south pole (0,0,−1) ∈ H

2(1), and let η be the homothety
defined by

η : H
2(1) → H

2(c), x 	→ x/
√

c.

Then, composing � with η ◦ p−1, we obtain the hyperbolic Hopf map

H = η ◦ p−1 ◦ � : H3
1(c/4) → H

2(c), (4.1)

given by

H(z) = (1/
√

c )
(
2z1 z̄2, |z1|2 + |z2|2

) ∈ C × R. (4.2)

Note that the hyperbolic Hopf map H is a submersion from a pseudo-Riemannian manifold H3
1(c/4) with geodesic fibres,

which can be described as the orbits of the S
1-action S

1 × H3
1(c/4) → H3

1(c/4) on H3
1(c/4) defined by(

e
√−1t, (z1, z2)

) 	→ e
√−1t(z1, z2) = (

e
√−1t z1, e

√−1t z2
)
.
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In particular, if x = (x1, x2, x3, x4) ∈ H3
1(1), then

X3(x) = (
√−1z1,

√−1z2) = (−x2, x1,−x4, x3)
is a vector tangent to a fibre of the hyperbolic Hopf map with 〈X3, X3〉 = −1, and

X3(x), X2(x) = (
x3,−x4, x1,−x2), X1(x) = (

x4, x3, x2, x1)
form a global pseudo-orthonormal frame of T H3

1 such that 〈X2, X2〉 = 〈X1, X1〉 = 1 and 〈X1, X2〉 = 〈X1, X3〉 = 〈X2, X3〉 = 0.
Now, recall that the Lie group

SU(1,1) = {
A ∈ GL(2,C)

∣∣ t A I1 Ā = I1, det A = 1
}

=
{(

a b̄
b ā

) ∣∣∣ a,b ∈ C, |a|2 − |b|2 = 1

}
,

where I1 =
(

1 0
0 −1

)
, has the Lie algebra

su(1,1) = {
X ∈ gl(2,C)

∣∣ t X I1 + I1 X̄ = 0, Tr X = 0
}

=
{( √−1x3 x2 − √−1x1

x2 + √−1x1 −√−1x3

) ∣∣∣ x1, x2, x3 ∈ R

}
,

which is identified with R
3
1, equipped with the scalar product 〈X, Y 〉 = (1/2)Tr(XY ), so that

e1 =
(

0 −√−1√−1 0

)
, e2 =

(
0 1
1 0

)
, e3 =

(√−1 0
0 −√−1

)
(4.3)

form a pseudo-orthonormal basis of (su(1,1), 〈,〉).
Note that the anti-de Sitter 3-space H3

1(1) is identified with SU(1,1) under the map

ψ : H3
1(1) → SU(1,1),

x = (
x1, x2, x3, x4) 	→ Ax = √−1

(
z̄2 −z1
z̄1 −z2

)
. (4.4)

Moreover, the adjoint representation of SU(1,1) induces a covering homomorphism

ρ : SU(1,1) → SO+(1,2), (4.5)

where SO+(1,2) is the restricted Lorentz group with signature (1,2), that is, the identity component of the group of linear
isometries O(1,2) of R

3
1. Indeed, ρ(Ax) is defined as

ρ(Ax) : su(1,1) → su(1,1), Y 	→ Ad(Ax)Y = AxY A−1
x ,

and, with respect to the pseudo-orthonormal basis (4.3) of su(1,1), the matrix representation of ρ(Ax) is given by

ρ(Ax) =
⎛
⎝ −Re(z2

1 + z̄2
2) − Im(z2

1 − z̄2
2) 2 Re(z1 z̄2)

− Im(z2
1 + z̄2

2) Re(z2
1 − z̄2

2) 2 Im(z1 z̄2)

−2 Re(z1z2) −2 Im(z1z2) |z1|2 + |z2|2

⎞
⎠

= (
Axe1 A−1

x Axe2 A−1
x Axe3 A−1

x

)
, (4.6)

from which we easily see that the kernel of ρ is {± Id}.
The unit tangent bundle π : T 1

H
2(c) → H

2(c) of the hyperbolic plane H
2(c) is defined to be

T 1
H

2(c) = {
(x, v) ∈ R

3
1 × R

3
1

∣∣ x ∈ H
2(c), v ∈ TxH

2(c), |v| = 1
}

= {
(x, v) ∈ R

3
1 × R

3
1

∣∣ 〈x, x〉 = −1/c, 〈v, v〉 = 1, 〈x, v〉 = 0
}

with the canonical projection π(x, v) = x. As in the spherical case in Section 2, we may identify T 1
H

2(c) with SO+(1,2) by
the diffeomorphism

φ : SO+(1,2) → T 1
H

2(c), (c1 c2 c3) 	→ (c3/
√

c, c1). (4.7)

Finally, let ι be the homothety defined by

ι : H3(c/4) → H3(1), 2x/
√

c 	→ x.
1 1
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Then, it is immediate from (4.1) through (4.7) that the composition of the covering map

F = φ ◦ ρ ◦ ψ ◦ ι : H3
1(c/4) → T 1

H
2(c) (4.8)

with the canonical projection π : T 1
H

2(c) → H
2(c) yields the hyperbolic Hopf map H : H3

1(c/4) → H
2(c) of (4.1). Indeed,

for each 2x/
√

c ∈ H3
1(c/4) we have

F (2x/
√

c ) = (x̃, e) ∈ T 1
H

2(c), (4.9)

where x̃ = (1/
√

c )Axe3 A−1
x and e = Axe1 A−1

x , so that

π ◦ F (2x/
√

c ) = (1/
√

c )
(
2z1 z̄2, |z1|2 + |z2|2

) = H(z).

4.2. Differentials of maps

The differentials of maps involved in (4.8) can be computed in the same way as in Section 3.1, so we only remark on the
following.

(1) Given x ∈ H3
1(1), the differential of ψ in (4.4)

dψx : Tx H3
1(1) → Tψ(x)

(
SU(1,1)

) = Ax · su(1,1)

is given by

dψx
(

X3(x)
) = Axe3, dψx

(
X2(x)

) = Axe2, dψx
(

X1(x)
) = Axe1. (4.10)

(2) The differential of ρ in (4.5)

dρAx : T Ax

(
SU(1,1)

) = Ax · su(1,1) → Tρ(Ax)SO+(1,2) = ρ(Ax) · so(1,2)

is a linear map sending

AxY 	→ dρAx(AxY ) = ρ(Ax) ◦ ad(Y ),

so that we have

dρAx(Axe3) = (
2Axe2 A−1

x −2Axe1 A−1
x 0

)
,

dρAx(Axe2) = (
2Axe3 A−1

x 0 2Axe1 A−1
x

)
,

dρAx(Axe1) = (
0 −2Axe3 A−1

x −2Axe2 A−1
x

)
, (4.11)

since ad(e1)(e1) = 0, ad(e1)(e2) = −2e3, ad(e1)(e3) = −2e2, ad(e2)(e3) = 2e1 for the pseudo-orthonormal basis (4.3) of
su(1,1).

(3) Combining (4.10) with (4.11) and taking into account the differentials of the diffeomorphism φ and the homothety ι,
we find that the differential of F in (4.8)

dFx : Tx H3
1(c/4) → T F (x)

(
T 1

H
2(c)

)
is determined by

dFx
(
2X3(x)/

√
c
) = (

0,2Axe2 A−1
x

) = ẽ3,

dFx
(
2X2(x)/

√
c
) = (

2Axe1 A−1
x /

√
c, 2Axe3 A−1

x

) = ẽ2,

dFx
(
2X1(x)/

√
c
) = (−2Axe2 A−1

x /
√

c, 0
) = ẽ1 (4.12)

for each x ∈ H3
1(c/4).

4.3. Lifts to the unit tangent bundle

Recall that the unit tangent bundle T 1
H

2(c) is a 3-dimensional hypersurface of T H
2(c). As in the spherical case in

Section 3.2, denoting by Xh (resp. Y v ) the horizontal (resp. vertical) lift of X (resp. Y ), we see that at (x, e) ∈ T 1
H

2(c) the
tangent space of the tangent bundle T H

2(c) is written as

T(x,e)
(
T H

2(c)
) = {

Xh + Y v
∣∣ X, Y ∈ TxH

2(c)
}
,

whereas that of the unit tangent bundle T 1
H

2(c) is given by
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T(x,e)
(
T 1

H
2(c)

) = {
Xh + Y v

∣∣ X, Y ∈ TxH
2(c), 〈Y , e〉 = 0

}
.

Recalling (4.9), we set

e = Axe1 A−1
x , f = −Axe2 A−1

x ,

and x̃ = (1/
√

c )Axe3 A−1
x . Then (x̃, f ) ∈ T 1

H
2(c) and 〈 f , e〉 = 0, so that

T(x̃,e)
(
T 1

H
2(c)

) = Span
{

eh, f h, f v}
.

Furthermore, we have the following

Proposition 4.1. Let x̃, e and f be as above. Then

(
√

c/2)ẽ2 = eh, (
√

c/2)ẽ1 = f h, ẽ3 = −2 f v . (4.13)

Proof. This can be seen in the same manner as in the proof of Proposition 3.1, so we only remark on the following for the
sake of completeness.

For the horizontal lift eh , we consider a geodesic γ : I → H
2(c) starting from x̃ ∈ H

2(c) with initial vector e ∈ T 1
x̃ H

2(c).
Then the curve Γ : I → T H

2(c) given by Γ (t) = (γ (t), v(t) = γ̇ (t)) satisfies that Γ (0) = (x̃, e) and ∇γ̇ (t)v(t) = 0 for all t ∈ I .
Since

γ (t) = cosh(
√

ct)x̃ + sinh(
√

ct)(e/
√

c ),

we deduce that

eh = Γ̇ (0) = (e, cx̃) = (
√

c/2)ẽ2.

Similarly, for f h , we take a geodesic γ : I → H
2(c) defined by

γ (t) = cosh(
√

ct)x̃ + sinh(
√

ct)( f /
√

c ),

starting from x̃ ∈ H
2(c) with initial vector f ∈ T 1

x̃ H
2(c). Then the curve Γ : I → T H

2(c) given by Γ (t) = (γ (t), v(t) = e)

satisfies that Γ (0) = (x̃, e) and ∇γ̇ (t)v(t) = 0 for all t ∈ I . Hence

f h = Γ̇ (0) = ( f ,0) = (
√

c/2)ẽ1.

To construct the vertical lift f v , we now consider a curve γ : I → T H
2(c) defined by γ (t) = (x̃, (cos t)e + (sin t) f ).

Then γ (t) is a curve along the fibre over x̃ and satisfies γ (0) = (x̃, e) and γ̇ (0) = (0, f ). Hence ẽ3 = (0,−2 f ) ∈ V(x̃,e) ⊂
T(x̃,e)(T 1

H
2(c)) ⊂ T(x̃,e)(T H

2(c)). Moreover, for the connection map we have

K(x̃,e)(−ẽ3/2) = d

dt

∣∣∣∣
t=0

(expx̃ ◦R−e ◦ τ )
(
γ (t)

)
= d

dt

∣∣∣∣
t=0

expx̃

(
(cos t − 1)e + (sin t) f

)
.

Noting that the geodesic of H
2(c) starting from x̃ with unit initial vector v is given by δ(x̃,v)(s) = cosh(

√
cs)x̃ +

sinh(
√

cs)(v/
√

c ), we then see

expx̃
(
(cos t − 1)e + (sin t) f

)
= cosh

(√
c θ(t)

)
x̃ + sinh(

√
c θ(t))√
c

(
(cos t − 1)e + (sin t) f

θ(t)

)
,

where

θ(t) = ∣∣(cos t − 1)e + (sin t) f
∣∣
R

3
1
= √

2(1 − cos t).

Therefore we obtain

K(x̃,e)(−ẽ3/2) = d

dt

∣∣∣∣
t=0

expx̃
(
(cos t − 1)e + (sin t) f

) = f ,

which shows that ẽ3 = −2 f v . �
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4.4. Indefinite generalized Cheeger–Gromoll metrics

We extend the notion of the generalized Cheeger–Gromoll metric hm,r defined in Section 3.3 to admit indefinite ones.
More specifically, for the hyperbolic plane H

2(c), we define on its tangent bundle T H
2(c) the indefinite generalized

Cheeger–Gromoll metric hm,r as follows. Given m ∈ R and r � 0, we set on each tangent space T(x,e)(T H
2(c))

hm,r
(

Xh, Y h) = 〈X, Y 〉, hm,r
(

Xh, Y v) = 0,

hm,r
(

X v , Y v) = −ωm(〈X, Y 〉 + r〈X, e〉〈Y , e〉), (4.14)

where X, Y ∈ TxH
2(c) and ω = 1/(1+|e|2). It should be noted that, equipped with hm,r on T H

2(c) and the canonical metric
〈,〉 on H

2(c), the canonical projection π : T H
2(c) → H

2(c) yields a submersion which is isometric on horizontal directions.
Moreover, when (x, e) ∈ T 1

H
2(c), this metric restricts on T(x,e)(T 1

H
2(c)) to

hm,r
(

Xh, Y h) = 〈X, Y 〉, hm,r
(

Xh, Y v) = 0,

hm,r
(

X v , Y v) = − 1

2m
〈X, Y 〉. (4.15)

Note that the parameter r disappears when restricted to the unit tangent bundle, and hm,r has a negative signature on
vertical directions.

With these understood, the proof of Theorem 1.2 is immediate. Indeed, if we choose m = log2 c, then, it follows from
(4.12) and (4.13) together with (4.15) that

hm,r
(
(
√

c/2)ẽ1, (
√

c/2)ẽ1
) = hm,r

(
f h, f h) = 〈 f , f 〉 = 1,

hm,r
(
(
√

c/2)ẽ2, (
√

c/2)ẽ2
) = hm,r

(
eh, eh) = 〈e, e〉 = 1,

hm,r
(
(
√

c/2)ẽ1, (
√

c/2)ẽ2
) = hm,r

(
f h, eh) = 〈 f , e〉 = 0,

hm,r
(
(
√

c/2)ẽ2, (
√

c/2)ẽ3
) = −hm,r

(
eh,

√
c f v) = 0,

hm,r
(
(
√

c/2)ẽ1, (
√

c/2)ẽ3
) = −hm,r

(
f h,

√
c f v) = 0,

and

hm,r
(
(
√

c/2)ẽ3, (
√

c/2)ẽ3
) = hm,r

(−√
c f v ,−√

c f v) = − c

2m
〈 f , f 〉 = −1.

Consequently, the covering map F : H3
1(c/4) → T 1

H
2(c) defined by (4.8) gives rise to an isometric immersion from

(H3
1(c/4), gcan) to (T 1

H
2(c),hm,r) for m = log2 c and r � 0.
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