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Abstract 

Orthogonal matrix polynomials, on the real line or on the unit circle, have properties which are natural generalizations 
of properties of scalar orthogonal polynomials, appropriately modified for the matrix calculus. We show that orthogonal 
matrix polynomials, both on the real line and on the unit circle, appear at various places and we describe some of them. 
The spectral theory of doubly infinite Jacobi matrices can be described using orthogonal 2 x 2 matrix polynomials on the 
real line. Scalar orthogonal polynomials with a Sobolev inner product containing a finite number of derivatives can be 
studied using matrix orthogonal polynomials on the real line. Orthogonal matrix polynomials on the unit circle are 
related to unitary block Hessenberg matrices and are very useful in multivariate time series analysis and multichannel 
signal processing. Finally we show how orthogonal matrix polynomials can be used for Gaussian quadrature of 
matrix-valued functions. Parallel algorithms for this purpose have been implemented (using PVM) and some examples 
are worked out. 

Keywords: Orthogonal matrix polynomials; Block tridiagonal matrices; Block Hessenberg matrices; Multichannel time 
series; Quadrature 

AMS classification: 42C05; 47A56; 62M10; 65D32 

I. Matrix polynomials 

Let  Ao ,A1,  . . . , A ,  ~ C p×p be n + 1 square  mat r ices  with complex  entries, and  suppose  tha t  
A, ~ 0. T h e n  P :  C ~ C  p×p such tha t  

P(z)  ~- Anz  n q- A n _ l  gn -q- ... -b A I Z  d- Ao 

is a ma t r ix  p o l y n o m i a l  of  degree  n. I f  the leading coefficient is the identi ty,  i.e., A, = I, then  P is 
a mon ic  ma t r ix  po lynomia l .  Obvious ly ,  when  the leading coefficient An is nons ingular ,  then  A~- 1p 
is a m on ic  ma t r ix  po lynomia l .  A ma t r ix  po ly n o m ia l  P is thus  a p o ly n o m ia l  in a complex  var iable  
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with matrix coefficients and P(z) is a p x p matrix for which each entry is a polynomial in z of degree 
at most n. 

One can usually work with matrix polynomials just as with scalar polynomials. One needs to be 
careful though because of noncommutat iv i ty  of the matrix product. In particular, in general one 
has P(z)Q(z) 4: Q(z)P(z). 

For  scalar polynomials (the case p = 1) it is well known that a polynomial of degree n has 
n complex zeros (counting multiplicities). Furthermore,  a polynomial is completely determined by 
its leading coefficient and its zeros. Something similar is true for matrix polynomials, but first one 
needs to give a meaning to the notion of a zero of a matrix polynomial P. A zero of a matrix 
polynomial  (with p > 1) is not a complex number  Zo such that P(zo) = 0, since this would require 
a simultaneous solution of p2 polynomial equations. A complex number  z0 e C is a zero of P if 
P(zo) is a singular matrix. This means that the zeros of a matrix polynomial P are equal to the zeros 
of the scalar polynomial  detP(z). If the leading coefficient A, is nonsingular, then det P(z) is 
a (scalar) polynomial  of degree np, and thus a matrix polynomial P of degree n and det A, ~ 0 has 
np zeros. Ifzo is a zero of P, then P(zo) has an eigenvalue 0 and eigenvector Vo e C p. In fact, for the 
first-degree polynomial P1 (z) - Iz - A, the zeros are precisely the eigenvalues of A and det P1 (z) is 
the characteristic polynomial of A. For  a full description of A one needs the Jordan form, which is 
related to the eigenvalues, their multiplicity as a zero of the characteristic polynomial, and the 
geometric multiplicity (dimension of the eigenspace spanned by the eigenvectors). Zeros of a matrix 
polynomial are thus generalizations of eigenvalues of a matrix (which occur for polynomials of 
degree 1), and thus it should not be surprising that for a description of a matrix polynomial P one 
also needs the Jordan normal  form. 

A (right) Jordan chain of length k + 1 for a zero Zo of a matrix polynomial P is a sequence of 
p-vectors Vo, Vl , . . . ,  Vk ~ C p with Vo ~ 0 and 

~ l p ( i ) ( z o ) V j _ i = O  , j = 0 , 1  . . . .  ,k. 

The first vector Vo is called a root vector. We will not use the terminology 'eigenvector' to 
distinguish zeros of matrix polynomials with eigenvalues of matrices. If for each i = 1,2, . . . ,  s the 
sequence (vi, o, . . . ,  vi. K,- 1) is a Jordan chain of length K~ for the zero z0 of the matrix polynomial P, 
then the set {(v~,0 . . . . .  v~,K,-l): i =  1, ... ,s} is a canonical set of Jordan chains if the root vectors 
vl,o . . . .  , vs,0 are linearly independent and if Z~= 1 x~ is the multiplicity of z0 as a zero of the scalar 
polynomial det P. Canonical sets of Jordan chains are not unique, but the number  s of Jordan 
chains in a canonical set and the lengths xl ,  -.-, Ks of these Jordan chains only depend on the matrix 
polynomial P and the zero Zo and not on the choice of canonical set. Therefore, a matrix 
polynomial P can be described by its zeros and a canonical set of Jordan chains. In particular, the 
root vectors of a canonical set of Jordan chains are a basis for KerP(zo).  

For  a monic matrix polynomial P we can then define a Jordan pair (X, J). If z l , . . . ,  Zk are the 
zeros of P, then for each zero zi we choose a canonical set of Jordan chains " ") v~i)~,,_ ~Vj,  o , . . . ,  1 :  

j = 1, 2 , . . . ,  s~} and put these vectors in a matrix 

X i  / (i) ")K] ° -  • (i) . (i) • (i) . (i) 
I V 1 , 0  " ' "  V(1 i 1 u 2 , 0  1 t/s~,O ,, ~ . . . .  U 2 , K ~ ) _  • . . . . .  Us. r , , ) _ l ) .  

If z~ is a zero of multiplicity k~, then Zj=aS' e'2" (o = kl and thus X~ is a matrix of size p x k~. 
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Furthermore, let J~ be the block diagonal matrix ( 11 ...... 0) 
J i  = Ji, 2 "'" " 

. . . . . .  Ji,  s, 

. (i) The pair where Ji, j is the Jordan block of size ~j- (o x K.j- (o for the zero z~ and the root vector ~j,o. 
(Xg, J~) is then the Jordan pair of P for the zero zi. The Jordan pair for the polynomial P finally is 
the pair (X, J), where 

x = (x1 x 2  ... x k ) ,  J =  i . . . . . .  0 
J 2  " ' "  " 

• . 

. . . . . .  Jk  

Hence X is a p x np matrix and J is an np x np matrix• 
More information on matrix polynomials can be found in [11-1. 

2. Orthogonal matrix polynomials 

We are particularly interested in orthogonal matrix polynomials and we will restrict our 
attention to orthogonal matrix polynomials on the real line [9] and on the unit circle 
[5, 8, 10, 28, 35-1. 

2.1. Orthogonal matr ix  polynomials on the real line 

First we need to introduce a matrix inner product. Let p : ( - ~ ,  oo)~  •P×P be a bounded 
symmetric matrix function such that p(x)  ~ p(y)  when x < y. Inequality for square matrices A ~< B 
means that B -  A is nonnegative definite. Then p is a matrix-valued distribution function 
(measure) on the real line. Such a matrix-valued measure gives rise to two different inner products: 
a left inner product and a right inner product. The left inner product is given by 

<P, Q>L = f_ ~ P ( x ) d p ( x ) Q ( x ) I '  

w h e r e  A t denotes the transpose of the matrix A. The right inner product is 

<e, o >. = P(x)' 
J -  o O  
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Note that left (right) indicates that in the inner product the left (right) member is taken as it is 
(without transposition). The left inner product has the following properties, which can be verified 
easily: 

(1) <P, Q>L = <Q, P>L; 
(2) if C1, C2 e ~'×P, then <C1P1 -4- C2P2, Q>L = C1 <P1, Q>L -4- C2<P2, Q>L; 
(3) <xP, Q>L = <P, XQ>L; 
(4) (P, P>L is nonnegative definite, and when det P ~ 0 it is positive definite; 
(5) (P, P>L = 0 if and only if P = 0. 

Similar properties are valid for the right inner product, but property (2) becomes 
(2') if C1, C2 ~ •v×v, then (P, Q1Ca + Q2Cz>R = (P, QI>aC1 + (P, Q 2 > R C 2  • 

We can now define orthogonal matrix polynomials. Left orthonormal matrix polynomials pL 
(n----0, 1, 2,.. .  ) are obtained by orthonormalizing I, zI, 22I, 23I, ... using the left inner product. 
This gives 

j ' ~  pL(x) dp(x)pL(x) t = 6 , , , . I ,  n, m >>- O. 

Similarly right orthonormal matrix polynomials p R (n = 0, 1, 2,.. .  ) are obtained using the right 
inner product, leading to 

f ~ P . R ( x ) t  d p ( x ) P ~ ( x )  = 6. ,mI,  n, m >~ O. 

The leading coefficient for both left and right orthonormal polynomials is always nonsingular. Left 
orthonormal matrix polynomials are unique up to a multiplication on the left by an orthogonal 
matrix. Indeed, if A. (n/> 0) are orthogonal matrices, i.e., A.A', I t = = A,A, ,  then 

<A, pL, AmpL>L A,<pL, L t ~0 t if n # m, 
= P ,~>LAz=IA ,  A , = I  if n = m .  

Similarly right orthonormal matrix polynomials are unique up to a multiplication on the right by 
an orthogonal matrix. Left and right orthogonal matrix polynomials on the real line are closely 
related since P,(x) R = [P,(x)L] t, which follows from (P, Q)L = <pt, Ot>R" Hence for orthogonal 
matrix polynomials on the real line it is sufficient to treat only the left orthogonal matrix 
polynomials. 

2.2. Orthogonal matrix polynomials on the unit circle 

We now introduce a matrix inner product on the unit circle. Let p:[0,  2n) --* C p ×P be a bounded 
Hermitian matrix function such that p(0x) ~< p(02) when 01 < 02. Then p is a matrix-valued 
distribution function (measure) on [0, 2rt), which gives a matrix-valued measure on the unit circle. 
The left inner product now becomes 

(P, Q>L = ~ P(z) dp(O)Q(z)*, z = e i°, 
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where A* denotes the Hermit ian conjugate of the matrix A. The right inner product is given by 

(P,  Q>R = ~ P(z)* dp(O)Q(z), z = e i°. 

Again left and right denotes on which side the matrix function is taken without Hermitian 
conjugation. Elementary properties of the left inner product are 

(1) (P,  Q>L = <O,P>t ;  
(2) if C1, C2 e C p×p, then (CxP~ + C2P2, Q>L = C , ( P , ,  Q>L + C2<P2, Q>L; 
(3) <zP, Q>L = <n, ZQ>L; 
(4) (P ,  P>L is nonnegative definite, and when det P ~ 0 it is positive definite; 
(5) (P ,  P>L = 0 if and only if P = 0. 

Similar properties are valid for the right inner product,  with an obvious modification for property 
(2). 

Left or thonormal  matrix polynomials ~0 L (n = 0, 1, 2,. . .  ) are obtained by orthonormalizing the 
monomials  using the left inner product,  giving 

~pL.(z) dp(O)~pLm(Z) * = 6,,mI, Z = e i°, n, m/> 0. 

Right or thonormal  matrix polynomials q~R (n = 0, 1, 2,. . .  ) are obtained by using the right inner 
product,  giving 

~pR,(Z)* dp(O)q~(z) = 6,,mI, z = e i°, n, m ~> 0. 

Again the leading coefficient for both the left and the right orthogonal  matrix polynomials is 
nonsingular. Now left or thonormal  matrix polynomials are unique up to a multiplication on the 
left by a unitary matrix. Indeed, if A, (n >I 0) are unitary matrices, i.e., A , A *  = I = A*A, ,  then 

(A.¢pL, Am~pL>L An<qgL, L , {0 if n # m, 
= qgm>rAm = A ,A*  = I if n = m. 

Similarly, right or thonormal  matrix polynomials are unique up to multiplication on the right by 
a unitary matrix. 

On the unit circle there is no simple relation between left and right or thonormal  polynomials (as 
was the case for the real line). This is due to property (3) of the left (and right) inner product. 
Therefore, we need to analyze both left and right or thonormal  matrix polynomials when working 
with a measure p on the unit circle. 

3. Recurrence relations 

Scalar or thogonal  polynomials on the real line and on the unit circle satisfy some simple 
recurrence relations (see, e.g., [4, Ch. IV] and 1-32, Sections 3.2 and 11.4-1). Similar recurrence 
relations, but now with matrix coefficients, are valid for orthogonal  matrix polynomials on the real 
line and on the unit circle. 
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3.1. On the real line 

Theorem 3.1. Suppose pL (n = 0, 1, 2 . . . .  ) are left orthonormal matrix polynomials with respect to the 
left inner product obtained by usin9 a matrix measure p on the real line. Then there exist matrices 
Dn ~ •P × p (n = 1, 2,...  ), with det D. # O, and En ~ ~P × p with En = E t (n = O, 1, 2,. . .  ), such that 

xP  L (x) = D. + 1"DE+ 1 (X) + E. pL (x) + D tn pL-I (X). (3.1) 

Proof. Expand  xpL(x) into a Fourier  series 

n + l  

xe (x)= Z Ak,.Pk(x), 
k = 0  

then the Fourier  coefficients are 

Ak,n = <xP L, pL>L. 

Orthonormal i ty  then shows that  Ak,  . = 0 whenever k < n -  1, and thus only An+x,n, An,n and 
An-I.n remain. Fur the rmore  properties (1) and (3) of the matr ix inner product  show that  

t An+l,. = An.n+1. Hence take An+l,. = D.+ I and An,. = En. [] 

A converse result also holds, namely when P. (n = 0, 1, 2, . . .  ) are matrix polynomials  satisfying 
a three-term recurrence relation as in (3.1), then these polynomials  are left o r thonormal  matrix 
polynomials  on the real line for a matr ix measure  p. 

3.2. On the unit circle 

First we int roduce the reversed polynomial 

P(z) = z"P(1/~,)*. 

It takes the polynomial  P and reverses the order  of the coefficients and also takes the Hermit ian  
conjugates of these coefficients. In the scalar case p = 1 the reversed polynomial  for pn(Z) is usually 
denoted  by p*(z) = Znp.(1/Z), but  for matrix polynomials  we use a tilde (~), since an asterisk (*)  is 
already used for Hermit ian  conjugation.  

Theorem 3.2. Suppose the left and right orthonormal matrix polynomials on the unit circle are 9iven 
by 

Z n - 1  qgRn(z) Kn, n zn + Kn,n-1 + "" + Kn, xz + Kn, o, 

q)L(z) = Ln,n zn + L n , n - 1  z n - 1  + . . .  + Ln,  l Z  + Ln,  o. 

Then 

R , R , ~L * - 1  * tp. (z)(Ln,n) Kn, oKn,n, (3.2) = Z t P n - l ( Z ) K n - l , n -  1 "4- (z) K.,.  
• L * * Ln, ntp n (Z) * L = ZLn_ 1.n-- 1 q~,-- I(Z) + Ln.nLn. o(Kn. n)- I~R,(Z). (3.3) 
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Proof. Expand  

 0g(z) - L  , - 1  - ¢p.(z)(L.,.) K.,o 
P._, (z)  = 

z 

into a Fourier  series with right o r thonormal  matr ix polynomials  

n--1 
P . -  a (z) = ~ ¢pR(z)Bk,., 

k=0 

with Fourier  coefficients 

B k  n <(pR, p n _ l >  R <~R,~0nR>R <~0R, -~L * - 1  , =  = --  Zqgn(L. , . )  K.,O>R. 

The  first term is, using proper ty  (3) of the matrix inner product ,  

(q~ ,  e~p.R>R = <Zq~, ~O.R>R = 0, k ~< n -- 2, 

and R < q ' n - , ,  ~O.R>R * , - 1  = K . - 1 , . - I ( K . , . )  . For  the second term we have for every k < n 

<~9 R, z~L(z)> R = <(~0 R, zn-l(q~L)*>R = <zn-l(fpR) *, (pL>L = 0. 

This proves the result. []  

The coupled recurrences (3.2) and  (3.3) can be simplified. Observe that  <q,R, ~L >R = <O R, (Pn >L,L 
which implies 

-1 * * -1 K . , .  L . , o  = K . , o L . , . .  (3.4) 

We can then int roduce ref lect ion coeff icients as 

H .  = (L*, .)-1K.,o = L . , o ( K * , . ) -  '. (3.5) 

Then some matrix calculus shows that  

( I  - H * H . )  1/2 - 1 = K . , . K . - 1 , . - ,  = K * - I , . - I ( K * , . )  -1  

(I  H . H * )  1/2 , - 1 * - -  L . _  - x - = ( L . , . )  L . - I , . - I  1,.- - 1 L . , . ,  

and since the leading coefficients L . , .  and K . , .  (n >/0) are positive definite, it follows that  
II H.  II 2 < 1. The recurrence relations can now be written only in terms of the matrices H.  as 

~0.L(z) (I H *]l/2~',nL H.OR(z ) ,  = - _ _ . H . ,  - . e . - l (z )  + 

¢pR(Z) = ZCp R- I(Z)(I  --  H * H . )  1/2 + @L.(z)H.. 

Eliminat ion of q~R(z) f rom both  equat ions then gives 

~R (I --  H . H *  )l/2~pL.(z) = zqgL._ , (Z) + H . c p . _  l(z), (3.6) 

( I  , 1 / 2  ~ R * L - H . H . )  qg.(z) = oR.-I(Z) + z H .  cp._ l(z) .  (3.7) 
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These recurrences are matrix generalizations of the Szeg6 recurrence relations for scalar ortho- 
gonal polynomials  on the unit  circle. They show that  the o r thonormal  matrix polynomials  (both 
left and right) are completely determined by the reflection coefficients H,  (n = 0, 1, 2, . . .  ). 

Also now a converse result holds. If polynomials  ~pe and q~R are given by coupled recurrences of 
the form (3.6) and (3.7), with II H,  112 < 1, then these polynomials  are left and right o r thonormal  
matr ix polynomials  on the unit  circle with some matr ix measure p. See, e.g., [5]. 

4. Zeros of orthogonal matrix polynomials 

4.1. On the real line 

F r o m  the three-term recurrence relation (3.1) we can use the recurrence coefficients and form the 
block tr idiagonal matrix (Jacobi matrix) 

Jn 

Eo D1 

D] Ea 

0 

02 

E2 D3 

D~ E3 
".. 

"°° 

• • , O n -  1 

Dr-1 E,-1 

It turns out  that  the zeros x,, 1 <~ Xn,2 ~ "'" ~ Xn,np of the left o r thogonal  matrix polynomial  p L are 
equal to the eigenvalues of the block Jacobi matr ix J ,  [-6, 29]. This immediately has some useful 
consequences.  Since J .  is real and symmetric,  it follows that  all the zeros are real. Fur thermore ,  
since the blocks are p x p matrices, the multiplicity of a zero is at most  p. Finally there is an 
interlacing property,  which follows from the inclusion principle for symmetric  matrices [15, p. 189]. 
If we delete the last p rows and the last p columns of J , ,  then we have the matrix J ,_  1 for which the 
eigenvalues are the zeros of the left o r thogonal  matrix p L_ 1, and thus 

Xn,  k ~ X n - l , k  ~ Xn ,  k + p .  

4.2. On the unit circle 

Expand  the left o r thogonal  matrix polynomial  ~p~ into a Fourier  series using the left or thogonal  
matrix polynomials  

k+l 
zqgL(z) = ~ Mk,jq)L(z), Mk,j  ~ C p×p, (4.1) 

j=o 
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then Mk,i  = (Z~Pk L, tpL)L. If ZO is a zero of ~pL with root  vector Vo, then 

k+l  

zoq~[(Zo)Vo = 2 Mk,iq~L(Zo)Vo, 
j=O 

k = 0 , 1 , . . . , n -  2, 

n -1  
L L 

ZoePn_l(ZO)V 0 = ~ Mn- l , j q~ j (Zo )Vo ,  
j=o 

hence Zo is an eigenvalue of the block Hessenberg matrix 

M n  

Mo,o Mo,1 

MI,O M I , 1  M1,2  

Mn-2,o Mn-2,1 "'" 

M . -  Lo M . - 1 , 1  "'" 

• • . 

° ° °  ° . .  

• .. M n _ 2 , n _  2 

• .. M n _ l , n _  2 

0 

Mn- 2,n - 1 

M n -  l ,n -1  

F r o m  proper ty  (3) of the left inner product  and the or thogonal i ty  we have on the one hand  

so that  

min(k, l) + 1 

E M k , i M ~ i  = <Zq~,Z~OL)L='~k,t I" 
j=O 

Hence 

I - M ~ _ I , ~ M ~ _ I , ~  ' 

so that  Mn is almost  unitary. In fact I - M n M *  = Mn_ 1,,M*-1,n is nonnegat ive definite, which 
implies that  there are no eigenvalues outside the closed unit disk. 

The blocks M,, i can be expressed explicitly in terms of the reflection coefficients H~. Indeed, from 
(3.2) we find 

K,,,,, O~(z) -R , - ,  1 , . - 1  + = Kn,~K~,oL~,~ 

from which one easily obtains 

n 

K . . n O ~ ( z ) =  E K K *  L -~ c , ,  J,J j,o i, J CPJ~z)" 
j=O 
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Inserting this into (3.3) 

= L* - 1  * L zcPL(Z) ( n , n )  L n + l , n + l q g n + l ( Z )  

n + l  

• -1 * L,+ o(K*+ -x -1 
- (L.,.) L.+ 1 , n + 1  1, 1 , n +  1)  Kn+ 1 , n + l  ~ Kj, jK~,oLj,) QJL(z), 

j=0 

which is the desired Fourier expansion• From this we can find the Fourier coefficients 

(Lk,k) 1L*+I,k+ILk+ m k ,  j * - * - 1  - 1 * - 1 X,o(Kk+l,k+l) Kk+l,k+l = -- Kj, jKj, oL~,j 

Now using (3.4) and (3•5) 

Mk, j = --Hk+l [l  ( I - -  H ' H , )  H*,  j <~ k, (4.2) 
i=j+ 1 

where the product runs from right (i = j  + 1) to left (i = k). A formula for Mk,,+ 1 can be obtained in 
the same way, but is more easily found by comparing the leading coefficient in (4.1), giving 

- -1  * ) 1 / 2 .  
-- 1 n k + l  Mk,R+I = LR,kLR+I,k+I -- (I -- Hk+ (4.3) 

5. Some applications of orthogonal matrix polynomials on the real line 

In this section we give two applications of orthogonal matrix polynomials on the real line. There 
are, of course, other applications such as the Lanczos method for block matrices [12]. There is also 
a connection with orthogonal polynomials on an algebraic harmonic curve [23] which is similar to 
the connection between orthogonal polynomials on a lemniscate and orthogonal matrix poly- 
nomials on the unit circle [22]. We will, however, restrict ourselves to an application in the spectral 
theory of doubly infinite Jacobi matrices and a connection with scalar orthogonal polynomials 
with respect to an inner product containing derivatives. 

5.1. Spectral theory 

The doubly infinite Jacobi matrix 

J = 

o o.  " o.  

b-2 a - 1  

a - 1  b - 1  ao 

ao bo al 

al  bl a2 

a2 b2 a3 

• .  " .  • 

0 
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with a k > 0, bk ~ • describes a Sturm-Liouville problem on Z which can be viewed as a discrete 
version of Sturm-Liouville differential operators on R [3, 25]. The semi-infinite Jacobi matrix for 
which ak = bk- 1 = 0 for k ~< 0 is closely related to scalar orthogonal polynomials on the real line 
satisfying the three-term recurrence relation 

xpn(x)  = an+ lPn+ 1(X) + bnPn(X) -t- anpn- l(x), 

with boundary conditions Po = 1 and p_ 1 = 0. The orthogonality measure/z for these orthonormal 
polynomials turns out to be the spectral measure for the semi-infinite Jacobi matrix and the 
spectrum of this operator is the support of the measure/~. The doubly infinite Jacobi operator 
J:  f2 - {2 can be described by the semi-infinite Jacobi block matrix 

= 

Bo A1 
At1 B 1 

Ai 
A 2  

B2 A3 

A~ B3 A4 
" . " . .  

which contains the 2 x 2 matrices 

ao) o) 
ao bo ' b, "'" 

This block Jacobi matrix 3 is closely related to matrix orthogonal polynomials on the real line• The 
spectral properties of this operator are now described by a matrix measure p, and the support of 
this measure, i.e., the support of the trace measure Pl. 1 + P2, 2 gives the spectrum of the operator. 
This was worked out in [3, 25] and applied in [33]. 

5.2. Sobolev-type orthogonal polynomials 

Sobolev-type orthogonal polynomials P, (n = 0, 1,2 .... ) are orthogonal polynomials with an 
inner product that contains a finite number of derivatives• The orthogonality is thus given by 

f M Mi ~ -(J)t C "~-(J)l C x 
(Pn ,  Pm)  = p n ( X ) P m ( X ) d / t ( x ) +  ~ ~ i, jpn t i)l~rn t i] = (~m,n" 

i = l j = 0  

It can be shown that such polynomials satisfy a (2N + 1)-term recurrence relation 

N 

h(x)p , (x)= ~ ¢n,kPn+k(X), 
k= - N  

where 
M M 

h(x) = H (x - el) M,+ 1, N = M + Z Mi. 
i = 1  i = 1  
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If we expand the polynomials p. into a series using the basis functions {xkhZ(x): k = 0, 1 . . . .  , N - 1, 
l ~ N }, then 

N - 1  

PkN+,(X) = • x"R.(pku+t)(h(x)), 
n = O  

where R.(p,.) is a polynomial  of degree at most [m/n]. Then it is shown in [-7] that the matrix 
polynomials 

p . ( x )  = 

Ro(p.N)(x) "'" R~_ 1 (p.u)(x) I 

J 
Ro(p.N+I)(x) "'" R N - I ( P n N - 1 ) ( X )  

Ro(P.N+N-,)(X) "'" RN-I(P.N+N-1)(X) 

are left orthogonal  polynomials with measure p = M(h-1) + L5o, where 

dp(x) 

x d/a (x) 

dM(x) = x 2 d#(x) 

x N- 1 d/.t(x) 

x d/~(x) 

x 2 d/a (x) 

x 3 d~(x) 

xN dla(X) 

° ° .  

° , .  

X N- 1 d#(x) 

x ;v d#(x) 

X N + 1 d/~(x) , 

x2N - 2 d ~ / ( X )  

6o is the matrix measure with unit mass at the origin, and 

M M~ 

L = Z Z 2i,jL(i,j), 
i = 1  j = 0  

where each L(i,j) is a nonnegative definite rank-one matrix. This relation allows us to study the 
Sobolev-type orthogonal  polynomials in terms of matrix orthogonal  polynomials with a matrix 
inner product  that does not contain derivatives but which consists of a rather simple measure to 
which a mass point at the origin is added. 

6. Time series and signal processing 

A multivariate time series (multichannel stationary process) is a sequence of random vectors 
X o , X l , . . . , X N - 1 ,  

Xk. 1 

Xk  2 
Xk 

Xk p 
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We suppose EXk = 0 and 

EXkX*+,  = (E(Xk, iXk+,.j))i,i= 1 ..... p = R,  

only depends on the lag n. The R, (n = 0,1,2, . . .  ) are p x p matrices which contain information on 
how the random vector Xk interacts with the vectors Xk +, which is n units of time away. Such 
interaction matrices are known as the autocovariance matrices for the time series. One can easily 
show that they form a positive definite sequence of matrices, and thus they can be expressed as 

1 12n 
R, = ~-~ jo ei"° dp(O), 

where p is some matrix measure on the unit circle (Herglotz). 

6.1. Prediction 

A first application of orthogonal  matrix polynomials on the unit circle is when we want to 
predict XN from the past Xo, .. . ,  XN- , .  A linear predictor for XN is of the form 

N 

2 N = ~ AN, k X N - k ,  AN, k E C p×p, 
k = l  

and the linear least-squares predictor is obtained by choosing the matrix coefficients AN,k 
(k = 1, 2 , . . . ,  N) in such a way that the expression 

E(X~ - 2N)(XN -- XN)* 

is minimized. Let (12, o~, p)  be the probability space on which the random vectors Xk (k 6 7/) are 
living, i.e., ~ is a a-algebra of subsets of f2 (the events) and P is a probability measure defined on ~ .  
Then L2(f2, ~ ,  P) is a left Hilbert module with matrix inner product 

<X, Y> = EXY* = foXY*dP( ). 
On the other hand we can consider the left Hilbert module L2(~-, p) of matrix functions defined on 
the unit circle, with matrix inner product 

( f ,  g} = ~ f ( z )  dp(O)g(z)*, z = e i0. 

Both inner product  spaces are closely related to each other in the sense that the mapping 

Xk ~ zkI 

is an isometry. The minimization problem for the linear least-squares predictor in L2 (Q, o ~, P)  thus 
becomes a minimization problem for polynomials in Lz(q]- , fl), i.e., we have to minimize 

PN(z) dp(O)PN(z)*, z = e i° 
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over all monic  matrix polynomials  PN(Z) of degree N. This L2-minimizat ion problem for poly- 
nomials  is known  and the m i n i m u m  is equal to (L*,NLN, N)-  1 and is at tained for the left or thogonal  
monic  matrix polynomial  - 1 L LN, N~ON. Thus  the isometry Xk ~ zkI  maps  the r a n d o m  vector XN -- XN 
to the matr ix polynomial  -1 L LN, N~ON. Hence the predict ion coefficients AN, k (k = 1, 2, . . . ,  N )  are given 
by the coefficients of the left o r thogonal  matrix polynomial  of degree N: 

AN,k = --LN,~LN, N-k,  k = 1 ,2 , . . . ,N .  

One way in which these predict ion coefficients AN, k (k = 1 , 2 , . . . , N )  and the predict ion error 
(L*,NLN, N)-1 are compu ted  is to use the recurrence relations (3.6)-(3.7). This gives the following 
algorithm: 

(1) 

(2) 

Initialization: 
(a) Lo,o = R o  1/2 
(b) K~,o = R o  1/2 

Repeat  for m = 1 , 2 , . . . , N  
(a) H,n = - - ( L m - I , o R 1  + L m - I , I R 2  -q- "" --1- L , n - l , m - l R m ) K m - l , , n - 1  
(b) (I - nmn*) l /2Lm.rn  = Lm-  ~,m- 1 
(C) (I r ~ * u  ~1/2w. n * L m - l , m - 1  - -  l l m l l m j  lXra ,  O = 

(d) Repeat  for i = 1, 2 , . . . ,  m - 1 
(i) (I nmn*)~ /2Lm. ,  L m - l , i - 1  "-k * -- = H m g r n - l , m - i - 1  

(ii) (I t4*t4 ~1/2k'* . * H * L , n -  - -  - - r n - - r a j  - ~ m , m - ~  ~ g r a -  l , m - i - 1  "1- 1 , i - 1  

(e) (I - n m n * ) l / 2 L m ,  o = n m K * _  1,m- ~ 
(f) (I H * H  ~1/2K* * 

- -  m m J  m,ra = K i n -  1 , m -  1 • 

In step (2), the operat ions (b)-(f) are obtained by equat ing the coefficients of the powers of z in 
(3.6) and  (3.7). The formula for H,, used in (a) of step (2) follows from (4.2) w i th j  = 0. For  the scalar 
case (p = 1) this a lgor i thm was first given by Levinson in 1947. In this case one only needs to 
process the recurrence relation (3.6) because everything now commutes .  For  the multivariate case 
the a lgor i thm was given by Whittle in 1965 (unaware of the identity (3.5), however) and in the same 
year also by Wiggens and Robinson.  See [20, 21] for more  details. 

6.2. Frequency estimation 

Another  applicat ion in t ime series analysis consists of frequency estimation. The time series is 
said to be a stat ionary harmonic process if it is of the form 

Xn = ~ [AkCOSn,~k -F BkSinn,~k] -F Zn, 
k = l  

where Ak, B k ~ C p and Z ,  is white noise. The frequencies ,~-k (k = 1, 2 , . . . ,  m) are u n k n o w n  and need 
to be est imated from the data. This is usually done  by using Fourier  techniques (fast Fourier  
transform, periodogram).  For  the scalar case (p = 1) it was recently suggested to use the zeros of 
or thogonal  polynomials  on the unit  circle to estimate these frequencies [16-19, 26, 27]. This idea 
can easily be extended to matrix polynomials  on the unit  circle. 
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The underlying principle is that a purely harmonic process (without white noise) has a spectral 
measure p which is purely discrete on the unit circle, with mass points at the points {e-+ix': 
k = 1, 2 . . . .  , m}. In this case the orthogonal  polynomials can only be computed up to degree 2m and 
the polynomial of degree 2m has its zeros precisely at these mass points. Thus, if the white noise is 
small, then the orthogonal polynomials will have zeros close to these frequencies on the unit circle. 
Therefore, we compute zeros of the left orthogonal matrix polynomials associated with the spectral 
measure p and we will estimate the frequencies by taking the argument of those zeros which are 
closest to the unit circle. The orthogonal polynomials can be computed by using the Levin- 
son-Whit t le -Wiggens-Robinson algorithm given above. 

We have applied this procedure to a time series containing the light variations of the white dwarf 
star PG 1159-035. The light intensity of this star was measured every 5 s by different telescopes. 
This star shows very rapid oscillations and it is of interest to locate as many frequencies as possible. 
We will use only a small fraction of the data, which was kindly given to us by the authors of [34-1, 
and we are grateful to them for giving us the opportunity to use their data. We have used four time 
periods in which measurements by four different telescopes have been done. Each of the time 
periods contains 1280 measurements. The first series starts at Julian Date (JD) 3 309 096.918 and 
ends at JD 3 315 491.918; the second series at JD 2 853 099.795 and ends at JD 2 859 494.795; the 
third series starts at JD 3 198 688.123 and ends at JD 3 205 083.123; and finally the last series of 
measurements starts at JD 3 361 849.016 and ends at JD 3 368 244.016. These four time series give 
us a multivariate time series with p = 4. In Fig. 1 we have plotted the zeros of the left orthogonal 
matrix polynomial of degree 50, which has 4 × 50 = 200 zeros. The zeros closest to the unit circle 
(excluding the real zero close to 1) are indicated by arrows and correspond, in decreasing order of 
the size of the modulus, to the frequencies 2, = 0.062486, 22 = 0.056422, and 23 = 0.070539. 
Since we have measurements every 5 s, this corresponds to an oscillation of, respectively, 1989 ~tHz 

0.8 . . t" :"  • ., 
0.6 ;.. 

0 . 4  ~" * *" 

0.2 ~. e 

0 * * 

-0.2 t ~  L. . ,,~ 
-0.4 . . "  ; . "  

. . . .  , 

I , ~ :  , " " .... 
"11 -0.5 0 0.5 

Fig. 1. Zeros of the left or thogonal  matrix polynomial  of degree 50 (p = 4). The zeros closest to the unit circle are 
indicated by arrows. 
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for the first frequency, 1796 gHz for the second frequency, and 2245 gHz for the third frequency• 
These frequencies are indeed close to three most dominant frequencies (1937 gHz, 1854 gHz, and 
2214 gHz) with amplitudes 68.9, 61.0 and 40.1, respectively, found in [34, Table 3, p. 336]. Observe 
that we used only about 7 h of observations, whereas the results in [34] are based on 264 h of 
observations. 

This method is not quite ready yet for implementation and some extra research is desired: 
(1) We need criteria for the optimal degree n. This degree should not be too small, because then 

only small autocovariances are taken into consideration so that small frequencies may not be 
detected• The degree should not be too high either since then the computational work will become 
harder. 

(2) We need criteria for closeness to the unit circle• We expect some of the zeros to move 
to the desired frequencies on the unit circle, but most of the other zeros will in general 
also have the tendency to move to the unit circle. Under rather mild conditions one can 
show, at least in the scalar case, that the zeros of orthogonal polynomials will asymptotically 
be uniformly distributed on a circle with center at the origin and radius r ~< 1 [24], and 
when r - - 1 ,  which happens for instance when the orthogonality measure has a density 
with a singularity on the unit circle, then most of the zeros will move to the unit circle. 
The zeros which tend to the frequencies, however, will usually tend faster to the circle. Of 
interest is thus to find a radius r, such that the zeros of modulus greater than r, will be selected 
as zeros which tend to frequencies. The existence of such a radius has been shown for the scalar 
case in [26, 27]. 

(3) In order to do statistical inference from the data, one would also like to know the statistical 
distribution of these estimates• 

7. Quadrature 

7•1• Gauss ian  quadra ture  on the real  line 

Let p be a matrix measure on the interval [a, b]. Then we are going to approximate the integral 
of matrix functions F and G by means of a sum of the form 

F ( x )  d p ( x ) G ( x )  t ~- ~, F ( x i ) A i a ( x i )  t, 
i=1  

where Ai E NP × p and xi (i = 1, ..., k) are points on the interval [a, b]. It will be convenient to choose 

[ 

Vi, 1 

At  = (vi, 1 "'" l)i,ml)Ai 

V~ m. 

where v~, 1 . . . .  , Vi,m, are linearly independent, nonzero vectors and X~= 1 ml = np. 

In 1-31] we have shown the following theorem: 
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Theorem 7.1. Let (X, J) be a Jordan pair of the orthonormal matrix polynomial pL(x) on the interval 
[a, b] with respect to the matrix measure p. Then we have 

F(x)dp(x)G(x) '~_ ~ F(xi)AiG(xl) t, (7.1) 
i = 1  

where k is the number of different zeros x~ of the matrix polynomial pL, m~ is the multiplicity of xl, vl,j 
(j = 1, 2, . . . ,  rag) are the vectors associated with xl given in the matrix X~, 

where 

and 

Ai = (Vi, i . . .  Vi, mi)L[-  1 

t 

Vi, 1 

t 
Vi,m~ 

L i 
v ,l t " K . - i ( x i ,  xi)(vi, 1 "'" Vi, m~), 

n - 1  
K. -x (x , y )  ~ L t L = Pj (y) Pj (x) 

j = O  

is the left reproducing kernel. This quadrature formula is exact for matrix polynomials F and G which 
satisfy 

degF + degG ~< 2n - 1. 

This quadrature procedure generalizes the well-known Gaussian quadrature for scalar poly- 
nomials to matrix polynomials. In order to compute the quadrature coefficients we need to know 
the zeros and the root vectors of the orthonormal matrix polynomial pL on the interval [a, b] with 
respect to the matrix measure p. Usually these polynomials are known by means of their recurrence 
coefficients. The next theorem shows how to compute the quadrature coefficients by means of the 
eigensystem of a symmetric block tridiagonal matrix (see [29]). 

Theorem 7.2. Let U (i'j) ( j  = 1, 2, . . . ,  mi) be the eigenvectors of the matrix 

J n  

Eo D1 

Ors E1 0 2  

E2 D3 
• . . " . . 

D'.-2 E n  - 2 

t 
D n - 1  

Dn-  1 

En- 1 
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associated with the eigenvalue xi, then corresponding quadrature coefficient is given by 

U~,I) t 

A i = ( V ~ " )  V~ '2) -.. u~'m")Gi -'  v~'2)' 

v m, t 

where 

(Gi)sa = U"'s)tu"") 

and U~ 'j) is the vector consisting of the first p components of U "'j). 

If V "'j) (j  = 1,2,. . . ,  m~) are the normalized eigenvectors, then the quadrature coefficient is given 
by "t ) 

Ai = (V~ ' ') V~ '2) --" V~ 'm')) v~'2>t , 

V(~,ml) t 

where V~ 'j) is the vector consisting of the first p components of V (i'j). 
Since the recurrence coefficients are determined only up to a multiplication by a unitary factor, 

this symmetric block tridiagonal matrix can be reduced to a band matrix of order np with band 
width 2p + 1. But still the computation of the eigensystem of this sparse matrix is the most time- 
consuming part of the algorithm. So we have to pay attention to this part when constructing 
a parallel algorithm. 

To compute the eigensystem we have implemented the divide-and-conquer algorithm described 
by Arbenz in [2] on an SP1 (scalable power machine) using the message passing library PVM 
(parallel virtual machine). As in every divide-and-conquer algorithm the given problem is divided 
into smaller problems and then the solutions of the smaller problems are combined to obtain the 
solution of the original problem. We divide until all processors have their own small subsystem. In 
every node we solve the smaller problem by means of the LAPACK-routine for band-symmetric 
matrices. In order to compute the eigenvectors, a basis of the null space of a Weinstein matrix 
(usually of order p × p) is determined. These vectors are orthonormalized with respect to a new 
inner product and then they are transformed. During the last step, when computing the eigenvec- 
tors of the original matrix, we only retain the first p components. 

Example 7.3. Let p = 2 and let p be differentiable on [ -  1, 1] with a matrix density function given 
by 

w , x ,  1 1 
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Table  1 

Relative errors  for Example  7.3 

n Serial N p r o c  = 2 N proc  = 4 Nproc  = 8 

50 0.3970" 10 -13 0.3159" 10 -13 0.5051-10 -13 0.3578' 10 -o5 

100 0.1174" 10 -13 0.1212" 10 -12 0.2359" 10 -13 0.8023- 10 -13 

150 0.8065" 10 -13 0.1247" l0  -13 0.8169' 10 -13 0.1130" 10 -12 

200 0.4687' 10 -13 0 .5 924"  10 - 1 4  0.5280' 10-13 0.4685" 10 -07 

250 0.6007" 10-13 0.3024" 10-13 0.1089" 10-  12 0.1571" l0  -°8  

300 0.8211 " l0  -14 0.5967" 10 -12  0.9385' l0  -13 0.3918" 10 -13 

350 0.1070 '  10 -13 "0.1295" 10 -12  0.3935" 10 -12 0.3048" 10 -12  

400 0.6849-10 -13 0.1416" 10 -12 0.1440" 10 -12 0.2775" 10 -o9 

450 0.9229" 10 -13 0.5767" 10 -12 0.4589" 10 -12 0.7490" 10 -o9 

500 0.8117" 10 -13 0.7398" 10 -12 0.4195" 10 -12 0.5287" 10 TM 

45 

Let F be the matrix polynomial of degree 30 

k=O 5k 8 5k xk' 

and G the matrix polynomial of degree 20 

2 0 (  2 --5+2k)xk. 
G(x)= Y" 5+2k 2k 

k=0  

To get an idea of the errors, we have computed the integral 

f[ F(x) (x) G(x)' W dx 

by means of Mathematica with a precision of 30 digits and compared these results with the 
results of the implementation of the Gaussian quadrature rules. The relative errors are given in 
Table 1. 

When using 8 processors, the large errors are due to errors in the computation of determinants to 
compute the eigenvalues of a matrix out of the solution of two smaller problems (see [-29]). It would 
be better to compute these determinants in higher precision. 

The execution times (in seconds) are given in Table 2. The speedup is given between square 
brackets. 

It is true that there is more communication when the number of processors increases, but the 
reason for the small speedup on 8, and even on 4 processors, is the decreasing number of Mflop/s as 
the number of processors increases. For the serial algorithm this number is about 64, while for the 
parallel algorithm on resp. 2, 4, and 8 processors this number becomes resp. 31, 9, 5. The reason for 
this decrease is the fact that we have a lot of tests in the step where we compute the eigenvalues out 
of the eigensystem of two smaller problems. These tests are very time-consuming: a comparison of 
two floating-point numbers is about 7 times slower than a multiply-add instruction. 
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Table 2 
Execution times (in seconds) for Example 7.3. Speedup is given between square 
brackets 

n Serial Nproc = 2 Nproc = 4 Nproc = 8 

50 0.317 0.492 [0.64] 0.714 [0.44] 0.880 [0.36] 
100 2.133 1.564 [1.36] 1.635 [1.30] 2.523 [0.85] 
150 6.571 3.060 [2.15] 3.120 [2.11] 3.914 [1.68] 
200 14.819 5.730 [2.59] 5.481 [2.70] 5.525 [2.68] 
250 28.318 9.502 [2.98] 8.469 [3.34] 8.934 [3.17] 
300 47.544 14.334 [3.32] 13.832 [3.44] 14.653 [3.24] 
350 73.985 20.520 [3.61] 20.312 [3.64] 21.756 [3.40] 
400 108.793 28.279 [3.85] 30.580 [3.55] 30.828 [3.53] 
450 153.062 38.062 [3.98] 39.752 [3.85] 40.045 [3.82] 
500 208.011 50.078 [4.15] 52.079 [3.99] 52.629 [3.95] 

Example 7.4. Let p = 5 and let the matrix density function on the interval [--1,  1] be given by 

W ( x )  = 

½ -~x 0 0 0 

! ¼x 0 0 Z8x 2 

1 ¼x/~ x 0 0 ¼x 
_1  o,/i-6x o o 2 

1 o o o  o ff6x : 

Let F be the matrix polynomial  of degree 30 

30 
F(x) = Y 

k=O 

5 - 5 k  7 - 5 k  9 - 5 k  l l - 5 k  1 3 - 5 k  

8 - 5 k  1 0 - 5 k  1 2 - 5 k  1 4 - 5 k  1 6 - 5 k  

l l - 5 k  1 3 - 5 k  1 5 - 5 k  1 7 - 5 k  1 9 - 5 k  

1 4 - 5 k  1 6 - 5 k  1 8 - 5 k  2 0 - 5 k  2 2 - 5 k  

1 7 - 5 k  1 9 - 5 k  2 1 - 5 k  2 3 - 5 k  2 5 - 5 k  

xk~ 

and G the matrix polynomial of degree 20 

20 
G(x) = E 

k=O 

2k - 5 + 2 k  - 1 0 + 2 k  - 1 5 + 2 k  - 2 0 + 2 k  

5 + 2 k  2k - 5 + 2 k  - 1 0 + 2 k  - 1 5 + 2 k  

10 + 2k 5 + 2k 2k - 5 + 2k - 10 + 2k 

15 + 2k 10 + 2k 5 + 2k 2k - 5 + 2k 

20 + 2k 15 + 2k 10 + 2k 5 + 2k 2k 

X k . 

The relative errors are given in Table 3. 
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Table 3 
Relative errors for Example 7.4 

n Serial Nproc = 2 Nproc = 4 Nproc = 8 

50 0.1370" 10 -13  0.4352" 10 -14 0.1192" 10 -x3 0.1469 
100 0.2443" 10-13 0.2621" 10-12 0.1284" 10-12 0.9523 
150 0.9016" 10 -14 0.2184" 10 -13 0.7654" 10 -13 0.2292 
200 0 .5892 '  10 -13  0.1949' 10 -12 0.1069" 10 -12 0.4538 
250 0.1177" 10 -12 0.3222' 10 -12 0.1399" 10 -12 0.1767 
300 0.1197" 10 -12 0.3764" 10 -13 0.5447" 10 -aa 0.8572 

10-13 
10-14 
10-ol 
10-o3 
10-o2 
10-ol 

47 

Table 4 
Execution times (in seconds) for Example 7.4. Speedup is given between square 
brackets 

n Serial Nproc = 2 Nproc = 4 Nproc = 8 

50 4.393 4.747 [0.79] 5.605 [0.78] 6.988 [0.63] 
100 31.297 21.045 [1.49] 22.244 [1.41] 22.865 [1.37] 
150 104.634 51.868 [2.02] 56.467 [1.85] 56.371 [1.86] 
200 236.321 100.217 [2.36] 109.911 [2.15] 110.634 [2.14] 
250 468.341 169.953 [2.76] 185.709 [2.52] 183.944 [2.55] 
300 781.134 260.569 [3.00] 281.707 [2.77] 285.843 [2.73] 

T h e  execu t ion  t imes (in seconds)  a n d  the s p e e d u p  (be tween  squa re  b racke t s )  are  g iven in T a b l e  4. 
S imi lar  conc lus ions  as in E x a m p l e  7.3 can  be m a d e  for  this example .  

7.2. Gaussian quadrature on the unit circle 

Let  p be  a m a t r i x  m e a s u r e  def ined on  the  uni t  circle. T h e n  we are  go ing  to  a p p r o x i m a t e  the  

in tegra l  o f  m a t r i x  func t ions  F a n d  G by  m e a n s  of  a s u m  of  the  f o r m  

1 F(z)  dp(O)G(z)* ~, F(z l )AiG(z i )* ,  
2rt i=1 

where  Ai ~ C p×p, a n d  z i (i = 1, ... ,k) are  po in t s  on  the uni t  circle. Aga in  it will be  conven i en t  to  

choose  

Ui, 1 

Ai = (vi, 1 "'" v~,m,)Ai 

v.* l ,  m i 

where  the  n o n z e r o  vec to rs  v~, ~, . . . ,  v~,,,, are  l inear ly  i ndependen t ,  and  y k= 1 rni = n p .  W e  wou ld  like 

to  h a v e  a f o r m u l a  which  is exact  for  as m a n y  L a u r e n t  p o l y n o m i a l s  as possible .  W e  deno t e  b y  
A_ , , , ,  the  set o f  L a u r e n t  p o l y n o m i a l s  o f  the f o r m  Y.~,= _,, akz k. 
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We restrict attention to the left inner product ( .,.  >L, but everthing can be repeated for the right 
inner product ( ' , "  >R. Para-orthogonal matrix polynomials 

B.(z ,  w . )  = ¢~.(z) + w.(D".(z), 

where IV, is a unitary matrix, are going to play an important role in the quadrature theory. The 
zeros of the polynomials B,(z, IV,) are the eigenvalues of a unitary block lower Hessenberg matrix, 
their multiplicity is less than or equal to p and the length of the corresponding Jordan chains is 
equal to 1 (see 1-30]). 

Theorem 7.5. Let  (X, J) be a Jordan pair o f  the para-orthoyonal matrix polynomial B,(z, IV,) = 
~pL(z) + W. ~R, (z), where {q~L(z)} are the left orthonormal matrix polynomials and {~bR(z)} are the rioht 
orthonormal matrix polynomials, and let W, be a unitary matrix. Then we have 

1 ~2n k 

<F, G>L = ~ JO F(z) dp(O)G(z)* ~- ~ F(z,)AiG(zi)*, 
i=1  

Z = e i°, 

where k is the number o f  different zeros zi o f  B,(z, IV,), mi is the multiplicity oj'zi, vl, j (j  = 1, 2,..., ml) 
are the vectors associated with z~ 9iven in the matrix X~ and 

Ai = (vi, 1 • "" Vi,m,)Ki- 1 
v,1) 
V* i, mi 

where 

g i ~ 

Vi, 1 

" S ~ -  1 (Zi, Zi) (Vi, 1 

v* 

"'" Vi, mi) 

and 

n -1  
L S n _ l ( z l , z 2  ) y, L , L = 4~j(Z2) ¢~(Zl). 

j = 0  

This quadrature formula is exact for  Laurent matrix polynomials 

F e A-s , t  and G ~ A- tn_ l_t),~n- l -s), 

where 0 <<. s, t <<. n - 1. 

To compute the quadrature coefficients, we need to know the zeros and root vectors of the 
para-orthogonal polynomials. The next theorem shows how to compute the quadrature coeffi- 
cients by means of the eigensystem of a unitary block lower Hessenberg matrix. 
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Theorem 7.6. Let UCi*j) (j = 1,2, . . . , mi) be the eigenvectors of the matrix 
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M, = 

’ Mo,o Mo.1 
M 1.0 Ml.1 M 1.2 

Mn-2,o Mn-2.1 .a. .a. Mn-24-2 Ma-2,,-1 

,'CI,O ML-I,I -0. +.a W-l,,-2 N-I,,-, 

associated with the eigenvalue zi. Then the associated quadrature coejfkient is given by 

where 

(Gi)S,, = U&N*U(i,f) 

/ u(i. 1)’ 
0 

u(i. 2). 
0 

and U$*j) is the vector consisting of the jirst p components of UCi,j). 

If Vi) are the normalized eigenvectors, then the quadrature coefficient is given by 

v(i. 1)’ \ 

,:. 2,’ 
0 

Vg:*i,* 

/ 

where Vbf’,j) is the vector consisting of the first p components of Vti3j). 
The blocks of the matrix M, are nearly all the same as those given by (4.2), only those of the last 

row are different: 

Mh_l,j = -((I - H,H,*)-“2H, + (I - H,H,*)“2(W,* + H,*)-‘) 

x (I - H,*H,)“2 ‘**(I- Hj*+lHj+l)"'Hj*, 0 <j < n - 1. 

This modification of the last row makes the block lower Hessenberg matrix unitary, and thus its 
eigenvalues are on the unit circle. 

In order to compute an approximation of a given matrix integral, we have generalized (see [30]) 
the divide-and-conquer method described in [l, 13,141. Also in this complex case we solve the 
smaller problems by means of a routine from the LAPACK-library and then we combine the 
solutions of the smaller problems to that of a bigger problem. Again we only compute the first 
p components of the orthonormalized eigenvectors. 
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Table 5 
Relative errors for Example 7.7 

n Serial Nproc = 2 Nproc  = 4 

50 0.18837.10 -14 0.34917.10 -14 0.26711.10 -11 
100 0.14999.10-14 0.60959" 10-14 0.32993.10-12 
150 0.12240' 10 -14 0.45497" 10- t4  0.11105" 10 - °z  
200 0.56191' 10 -14 0.48696' 10 -14 0.53183' 10 -11 
250 0.32259' 10-14 0.21086' 10-14 0.61844.10- 09 
300 0.41379' 10 -14 0.13186' 10-13 0.39806' 10 -08 
350 0.49843.10 -14 0.50799.10-12 0.19537' 10 -05 
400 0.42870.10 -14 0.18732' 10-12 0.12672' 10 -°7 

Table 6 
Execution times (in seconds) for Example 7.7. Speedup is given 
between square brackets 

n Serial Nproc = 2 Nproc  = 4 

50 3.250 0.901 [3.61] 1.167 [2.78] 
100 19.651 4.220 [4.66] 4.444 [4.42] 
150 61.649 11.944 [5.16] 9.326 [6.61] 
200 139.604 25.073 [5.57] 16.867 [8.28] 
250 302.348 47.806 [6.32] 28.705 [10.53] 
300 451.373 79.764 [5.66] 43.958 [10.27] 
350 703.105 118.779 [5.92] 62.243 [11.30] 
400 1158.375 173.916 [6.66] 84.741 [13.67] 

Example 7.7. Let p = 2, W, = I and 

p(O) (cols 0 . 
:  o;0) 

In order to get an idea of  the errors, we take F = G = I and this led to the relative errors given in 
Table 5. 

The execution times (in seconds) and the speedup (between square brackets) are given in Table 6. 
Due  to the great similarity between the implementation of  the Gaussian quadrature rule on the 

real line and on the unit circle, the same remarks can be made in this case. But since we are dealing 
with complex operations, the mult ip ly-add instructions require more time and this leads to a better 
performance on 4 processors compared with the performance on 2 processors. 
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