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a b s t r a c t

Davey and Rosindale [K. Davey, I. Rosindale, An iterative solution scheme for systems of
boundary element equations, Internat. J. Numer. Methods Engrg. 37 (1994) 1399–1411]
derived the GSOR method, which uses an upper triangular matrix Ω in order to solve
dense linear systems. By applying functional analysis, the authors presented an expression
for the optimum Ω . Moreover, Davey and Bounds [K. Davey, S. Bounds, A generalized
SOR method for dense linear systems of boundary element equations, SIAM J. Comput.
19 (1998) 953–967] also introduced further interesting results. In this note, we employ a
matrix analysis approach to investigate these schemes, and derive theorems that compare
these schemes with existing preconditioners for dense linear systems. We show that the
convergence rate of the Gauss–Seidel method with preconditioner PG is superior to that
of the GSOR method. Moreover, we define some splittings associated with the iterative
schemes. Some numerical examples are reported to confirm the theoretical analysis. We
show that the EGS method with preconditioner PG(γopt) produces an extremely small
spectral radius in comparison with the other schemes considered.

Crown Copyright© 2009 Published by Elsevier B.V. All rights reserved.

1. Introduction

In this study, we consider the solution of the dense linear system
Ax = b,

where A = (aij) ∈ Rn×n is anM-matrix, and x, b ∈ Rn are vectors.Without loss of generality, we assume that A has a splitting
of the form A = I − L − U , where I denotes the n × n identity, and −L and −U are the strictly lower, and strictly upper
triangular parts of A, respectively. The SOR method is defined by

x(k+1) = (I − ωL)−1((1− ω)I + ωU)x(k) + ω(I − ωL)−1b, (1.1)
and is derived from the following equations:

x̃(k+1) = b+ Lx(k+1) + Ux(k), (1.2)

x(k+1) = x(k) + ω(x̃(k+1) − x(k)), (1.3)
where ω is an over-relaxation parameter (an acceleration parameter) (1 ≤ ω < 2) and x̃(k+1) is the auxiliary vector. It is
well known that the SOR method with the optimum parameter ω is an effective iterative method. However, the optimum
parameter cannot be obtained a priori except for special cases. In 1973, James [6] proposed the generalized SOR (GSOR)
method with the accelerated matrixΩ = (ωij) constructed by ωii > 0 and ωij = 0 for j 6= i as

x(k+1) = (I −ΩL)−1(I −Ω +ΩU)x(k) + (I −ΩL)−1b, (1.4)
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and also gave a convergence condition for this method. However, the author was only able to show by numerical
computation that optimal parameters ωii exist, and did not describe a means of estimating these optimal parameters. In
practice, the problem of estimating the optimal ωii is difficult. In 1994, Davey and Rosindale [2] proposed a straightforward
means of estimating the optimumΩ using an upper triangular form ofmatrixΩ . The elements ofΩ = (ωij) are constructed
by ωii = 1, ωii+1 > 0 (i = 1, . . . , n− 1) and ωij = 0 otherwise. The optimum parameters ωii+1 are given by

ωii+1 =

−(aii+1 +
n∑

j=i+2
ai+1jaij)

1+
n∑

j=i+2
a2i+1j

, i = 1, 2, . . . , n− 1. (1.5)

(Further details may be found in [2]). We consider Davey et al.’s estimate of the optimal ωii+1 to be reasonable, and call this
scheme the extended GSOR (ESOR) method, becauseΩ is an upper triangular matrix. In order to analyze other schemes in
the next section, it is convenient to express the preconditioner corresponding to Eq. (1.5) as PS′ = I + S ′, where

S ′ = (s′ij) =

{
ωii+1, i = 1, 2, . . . , n− 2, j = i+ 1,
−aii+1, i = n− 1, j = n,
0, otherwise.

In an alternative approach, in order to improve the rate of convergence of the Gauss–Seidel method, Gunawardena et al. [5]
proposed the algorithm given by applying the Gauss–Seidel method to the preconditioned linear system PSAx = PSb, where
PS = I + S, and S is defined by

S = (sij) =
{
−aii+1, i = 1, 2, . . . , n− 1, j = i+ 1,
0, otherwise.

The preconditioned matrix AS = (I + S)A = MS − NS can then be written as

AS = (aSij) = I − L− SL− U + S − SU

= (I − D)− (L+ E)− (U − S + SU), (1.6)

whereD and E are the diagonal and strictly lower triangular parts of SL, respectively.Whenever aii+1ai+1i 6= 1 (1 ≤ i ≤ n−1),
M−1S = (I − D)− (L+ E)

−1 exists. The preconditioned Gauss–Seidel iterative matrix for AS therefore becomes

TS = {(I − D)− (L+ E)}−1(U − S + SU),

which is referred to as the modified Gauss–Seidel iterative matrix. From a matrix analysis perspective, they proved the
following inequality [1]:

ρ(TS) ≤ ρ(T ) < 1,

where ρ(T ) denotes the spectral radius of the Gauss–Seidel iterative matrix T for A.
We use the notation A ≥ B for two real matrices A = (aij), B = (bij) of equal order if each entry of the difference

A − B is nonnegative, that is, aij ≥ bij for all i, j. We write A > B if each entry of the difference is positive. A matrix A ≥ O
(A > O) is called nonnegative (positive). We define |A| = (|aij|). Since S ′ ≤ S, it easily follows that ρ(TS′) ≥ ρ(TS), where
TS′ is Gauss–Seidel matrix for (I+ S ′)A. By using matrix analysis, a comparison theorem for the spectral radii of the iterative
schemes is easily obtained. Note that PS has the same form as Ω2B [5]. A suitable choice of the preconditioner is therefore
important, because it has a strong influence on the convergence behavior of the iterative method. As a consequence, many
alternative preconditioners have been proposed [5,7,8,10,11,15,18]. In the present study we will consider the properties
of the principal examples of these preconditioners. The remainder of the present paper is organized as follows: Section 2
summarizes existing preconditioners. Section 3 discusses a reordering scheme, before defining some splittings associated
with the iterative schemes. Finally, we present and prove convergence and comparison theorems. In Section 4, we report
several numerical examples that demonstrate the validity of our analysis. The last section is devoted to some concluding
remarks.

2. Existing preconditioners

In 1996, Kotakemori et al. [11] proposed Pm = I + Sm, where Sm is defined by

Sm = (s
(m)
ij ) =

{
−aiki , 1 ≤ i < n, i+ 1 ≤ j ≤ n,
0, otherwise,

and where ki = min Ii, Ii = { j : |aij| is maximal for i+ 1 ≤ j ≤ n}, for 1 ≤ i < n. Then Am = (I + Sm)A can be expressed in
the form

Am = I − L− U + Sm − SmL− SmU = Mm − Nm, (2.7)
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whereMm = (I − Dm)− (L+ Em), Nm = U − Sm + Fm + SmU and Dm, Em and Fm are the diagonal, strictly lower and strictly
upper triangular parts of SmL, respectively. IfMm is nonsingular, then the Gauss–Seidel iterative matrix is defined by

Tm = M−1m Nm = {(I − Dm)− (L+ Em)}
−1 (U − Sm + Fm + SmU).

Under the following condition

aii+1ai+1j ≤ aikiakij, 1 ≤ i ≤ n− 2, j ≤ i, (2.8)

M−1m ≥ M
−1
S holds.Moreover, assume that (Am−AS)x ≥ 0, ASx ≥ 0,where x is the eigenvector of TS . Then, fromTheorem3.7

([13], Theorem 3.15) it follows that ρ(Tm) ≤ ρ(TS). Note that the proof in [8] is insufficient since it has not supposed that
(Am − AS)x ≥ 0.

Note 2.1. Pm = I + Sm has the same form asΩ
(2)
L proposed by Davey and Rosindale [2].

To remove the need for these hypotheses, Morimoto et al. [15] has proposed the following preconditioner,

Ps+m = (a
(s+m)
ij ) = I + S + Sm.

In this preconditioner, Sm is defined by

Sm = (s
(m)
ij ) =

{
−aili , 1 ≤ i < n− 1, i+ 1 < j ≤ n,
0, otherwise,

where li = min Ii, Ii = {j : |aij| is maximal for i + 1 < j ≤ n}, for 1 ≤ i < n − 1. The preconditioned matrix
As+m = (I + S + Sm)A can then be written as

As+m = I − L− U + S − SL− SU + Sm − SmL− SmU
= {(I − Ds+m)− (L+ Es+m)} − (U − S − Sm + SU + SmU + Fs+m),

where Ds+m, Es+m and Fs+m are the diagonal, strictly lower and strictly upper triangular parts of (S + Sm)L, respectively.
Assume that the following inequalities (A) are satisfied:

(A)
{
0 < −aii+1ai+1i + ailiali i < 1, 1 ≤ i < n− 1,
0 < aii+1ai+1i < 1, i = n− 1.

Then {(I−Ds+m)−(L+Es+m)} is nonsingular. The preconditioned Gauss–Seidel iterativematrix Ts+m for As+m is then defined
by

Ts+m = {(I − Ds+m)− (L+ Es+m)}−1(U − S − Sm + SU + SmU + Fs+m).

By applying Theorem 3.7 ([13], Theorem 3.15), Morimoto et al. [15] proved that ρ(Ts+m) ≤ ρ(TS) and ρ(Ts+m) ≤ ρ(Tm).
In order to solve the linear systems arising from applications of the boundary element method, Kotakemori et al. [12]

proposed two-step preconditioningmatrices I+αS and I+BU , whereα is a positive number and B is a nonnegative diagonal
matrix.
Since these preconditioners are constructed from part of the upper triangular part of A, the preconditioning does not act

on the last row of matrix A. We shall call these preconditioners ‘upper’ preconditioners.
To extend the preconditioning effect to the last row, Morimoto et al. [14] proposed the preconditioner

PR = I + R,

where R is defined by

R = (rnj) =
{
−anj, 1 ≤ j ≤ n− 1,
0, otherwise.

The elements aRnj of AR are given by

AR = (I + R)A = (aRij), aRij =


aij, 1 ≤ i < n, 1 ≤ j ≤ n,

anj −
n−1∑
k=1

ankakj, 1 ≤ j ≤ n. (2.9)

And they proved that ρ(TR) ≤ ρ(T ) holds, where TR is the iterative matrix for AR. Morimoto et al. [14] also presented
combined preconditioners, which are given by combinations of Rwith any upper preconditioner, and they showed that the
convergence rate of the combined methods are better than those of the Gauss–Seidel method applied with other upper
preconditioners. In [16], Niki et al. considered the preconditioner PSR = (I + S + R). Denote ASR = MSR − NSR. In [17], Niki
et al. proved that if the following inequality is satisfied,

anj ≤ aRnj = anj −
n−1∑

k=1,k=6=j

ankakj, j = 1, 2, . . . , n− 1, (2.10)
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ρ(TSR) ≤ ρ(TS) holds, where TSR is the iterative matrix for ASR. For matrices that do not satisfy Eq. (2.10), by putting
R = (rnj) = −

∑n−1
k=1, 6=j ankakj−anj, 1 ≤ j < n, Eq. (2.10) is satisfied. Therefore, Niki et al. [17] proposed a newpreconditioner

PG = I + γG(γ ≥ 1)where

G = (gnj) =

−
n−1∑

k=1,k6=j

ankakj − anj, 1 ≤ j ≤ n− 1,

0, otherwise.

Put AG = PGA = (aGij) = MG − NG, and TG = M
−1
G NG.

Upon resetting PG to PG = I + S + Sm + γG, and setting γ = 1, the Gauss–Seidel splitting of AG can be written as

AG = {(I − Ds+m)− (L+ Es+m)− (G(L+ U)− G)} − (U − S − Sm + SU + SmU + Fs+m), (2.11)

where G(L + U) − G is constructed by the elements aGnj = gnjajn. Thus if the preconditioner PG is used, then all of the rows
of A are subject to preconditioning. Niki et al. [17] proved that under the condition γu > γ , ρ(TR) ≥ ρ(TG),where γu is the
upper bound of those values of γ for which ρ(TG) < 1. By setting aGnj = 0, we have

γ = anj

/ n−1∑
k=1,k6=j

gnkakj. (2.12)

Niki et al. [17] proved that the preconditioner PG satisfies Eq. (2.10) unconditionally. Moreover, they reported that the
convergence rate of the Gauss–Seidel method using preconditioner PG is better than that of the SOR method using the
optimum ω found by numerical computation, and reported that there is an optimum γ (γopt) in the range γu > γopt > γm,
that produced an extremely small ρ(Tγopt), where γm is the upper bound of the values of γ for which a

G
nj ≥ 0, for all j. If there

are non-diagonally dominant columns, it may be the case that diagonal elements satisfying aGnn < 0 may appear before γm
is obtained. In this case, γopt exists in the range γm > γopt > γ = 1. In the next section, we clarify that the structure of the
Gauss–Seidel method with the existing preconditioner described above corresponds to that of the accelerated Gauss–Seidel
(AGS) method. It will also be shown that the AGS method can obtain a better rate of convergence than that of the GSOR
scheme using the optimumΩ proposed by Davey and Rosindale [2] theoretically.

3. The accelerated GS method

3.1. The reordering

If Ω is restricted to an upper triangular matrix, then the ESOR method is expressed as (I + (ΩA)sl)x(k+1) = (I −
(ΩA)u)x(k) + Ωb, where (ΩA)u and (ΩA)sl are matrices consisting of upper triangular and strictly lower triangular parts
ofΩA, respectively. Davey et al. proposed the use of a reordering scheme before performing the iterative method [2,3]. We
summarize the reordering scheme in this section. For the sake of brevity, in the explanation of scheme, we shall assume
that A is an M-matrix, namely, that the maximum term is located on the diagonal. First, the vector 1-norm is calculated
for each row, and these values are compared. The row with the minimum vector 1-norm is re-assigned to be the first row.
The procedure continues by calculating a new value of the norm for each row, excluding the first row and column. For the
reducedmatrixwith n−1 rows and columns, the vector 1-norm values are again compared, with the rowwith theminimum
of these values assigned to be the second row. This procedure is continued in a similar manner for the remaining rows. It
should be recognized that the procedure may not give rise to smallest value of ‖U‖∞ that is achievable. By using matrix
notation, this scheme can be written as

Qk . . .Q1ΩAQ1 . . .Qk,

where Ql (1 ≤ l ≤ k) is a permutation matrix. The basic idea of this scheme is to use row and column ordering to place the
smaller terms of A in U so as to minimize either the Frobenius norm ‖U‖F or the∞ norm ‖U‖∞. Hence performing this
scheme can improve the rate of convergence. By applying PS to the following example A, we have:

A =

 1 −0.5 −0.2 −0.1
−0.3 1 −0.2 −0.3
−0.2 −0.2 1 −0.1
−0.4 −0.3 −0.3 1

 , PSA =

 0.85 0 −0.3 −0.25
−0.34 0.96 0 −0.32
−0.24 −0.23 0.97 0
−0.4 −0.3 −0.3 1

 .
Then ρ(TS) = 0.4245, and ρ(T ) = 0.6125. By performing the reordering scheme of [3], the following matrix is produced:

Ar =

 1 −0.2 −0.2 −0.1
−0.2 1 −0.3 −0.3
−0.2 −0.5 1 −0.1
−0.3 −0.3 −0.4 1

 ,
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and we have ρ(T rS ) = 0.4284. On the other hand, ρ(T r) = 0.5827. Next, we try to perform the reordering so that
|aii+1| = maxj>i |aij|. Then the following matrix is produced:

Arm =

 1 −0.5 −0.1 −0.2
−0.3 1 −0.3 −0.2
−0.4 −0.3 1 −0.3
−0.2 −0.2 −0.1 1

 ,
and ρ(T rmS ) = 0.386 and ρ(T

rm) = 0.6210. As can be seen in the above results, ρ(T rmS ) < ρ(TS) < ρ(T rS ). If possible,
the matrix should be reordered so that |aii+1| = max |aij|, j > i. Accordingly, there exists an appropriate reordering
corresponding to the preconditioner Ω . Moreover, we know that when the Gauss–Seidel method is directly applied to a
matrix obtained by the reordering scheme [3], this reordering scheme is effective. Note that for the Jacobi iterative method,
the reordering effect is not obtained.

3.2. The comparison theorems

We now review some known results used in this section.

Definition 3.1. The real n× nmatrix, called the comparison matrix, defined by

〈A〉 = (mij) =
{
|aii|, i = j,
−|aij|, i 6= j.

Definition 3.2 (Axelsson [1], Definition 6.3). A square matrix A is said to be generalized diagonally dominant if

|aii|xi ≥
n∑
j6=i

|aij|xj, i = 1, 2, . . . , n, (3.13)

for some positive vector x = (x1, x2, . . . , xn)T and generalized strictly diagonally dominant if (3.13) is valid with strict
inequality.

Definition 3.3 (Frommer and Szyld [4], Definition 3.3). Let A be a real matrix. The representation A = M − N is called
(1) regular ifM−1 ≥ O and N ≥ O,
(2) weak regular ifM−1 ≥ O andM−1N ≥ O,
(3) anM-splitting ifMis anM-matrix and N ≥ O,
(4) an H- splitting if 〈M〉 − |N| is anM-matrix,
(5) an H-compatible splitting if 〈A〉 = 〈M〉 − |N|.

Lemma 3.4. Let A be an M-matrix with unit diagonal. Let A = M − N be the Gauss–Seidel convergent regular splitting with
T = M−1N. Then there exists a nonzero eigenvector x > 0 such that Tx = ρ(T )x. We then have Ax ≥ 0.
Proof. Since A is an M-matrix and a nonnegative matrix T (denoted T ≥ O), there exists a Perron vector x such that
Tx = ρ(T )x, and so we have

Mx =
1

ρ(T )
Nx ≥ 0.

We also therefore have the following inequality,

Ax = (M − N)x =
1− ρ(T )
ρ(T )

Nx ≥ 0. �

Theorem 3.5 (Frommer and Szyld [4], Theorem 3.4).
(1) If the splitting is regular or weak regular, then ρ(M−1N) < 1 if and only if A−1 ≥ O.
(2) If the splitting is an M-splitting, then ρ(M−1N) < 1 if and only if A is anM-matrix.
(3) If the splitting is an H-splitting, then A and M are H-matrices and ρ(M−1N) ≤ ρ(〈M〉−1|N|) < 1.
(4) If the splitting is an M-splitting, then it is a regular splitting.
(5) If the splitting is an M-splitting and A is anM-matrix, then it is an H-splitting and also an H-compatible splitting.
(6) If the splitting is an H-compatible splitting and A is an H-matrix, then it is an H-splitting and thus convergent.

Definition 3.6 (Niki et al. [16], Definition 1.7). A = M − N is called the Gauss–Seidel splitting of A ifM = D− E and N = F ,
where D is the diagonal parts and−E and−F are strictly lower and upper triangular parts of A, respectively. In addition, the
splitting is called
(1) Gauss–Seidel convergent if ρ(M−1N) < 1,
(2) Gauss–Seidel regular ifM−1 ≥ O and N ≥ O,
(3) Gauss–Seidel weak regular ifM−1 ≥ O andM−1N ≥ O.
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Let B be a real Banach space, B′ its dual and L(B) the space of all bounded linear operators mapping B into itself. We assume
that B is generated by a normal cone K [13]. As is defined in [13], the operator A ∈ L(B) has the property ‘‘d’’ if its dual, A′,
possesses a Frobenius eigenvector in the dual cone K ′ which is defined by

K ′ = {x′ ∈ B′ : 〈x, x′〉 = x′ ≥ 0 for all x ∈ K}.
As is remarked in [13,15], when B = Rn and a generating cone K = Rn

+
(the set of nonnegative vectors), all n× nmatrices

have the property ‘‘d’’. Therefore, the case that we discuss fulfills the property ‘‘d’’. For the space of all n × n matrices, the
theorem of Marek and Szyld can be stated as follows:

Theorem 3.7 (Marek and Szyld [13], Theorem 3.15). Let A1 = M1 − N1 and A2 = M2 − N2 be weak regular splittings with
T1 = M−11 N1, T2 = M

−1
2 N2 having the property ‘‘d’’. Let x ≥ 0, y ≥ 0 be such that T1x = ρ(T1)x and T2y = ρ(T2)y. If

M−11 ≥ M
−1
2 ,

and either (A1 − A2)x ≥ 0, A1x ≥ 0, or (A1 − A2)y ≥ 0, A1y ≥ 0 with y > 0, then

ρ(T1) ≤ ρ(T2).

Moreover, if M−11 > M−12 and N1 6= N2, then

ρ(T1) < ρ(T2).

Theorem 3.8 (Varga [21], Theorem 3.36). Let A = M1 − N1 = M2 − N2 be two regular splittings of A, where A−1 ≥ O. If
M−12 ≥ M

−1
1 ≥ O, then

1 > ρ(M−12 N2) ≥ ρ(M
−1
1 N1) ≥ 0.

If, moreover, A−1 > O and if M−12 > M−11 ≥ O, equality excluded, then

1 > ρ(M−12 N2) > ρ(M−11 N1) > 0.

Saad [19] shows that an over-relaxation can be based on the splitting:
ωA = ωI − ωL− ωU + (I − I) = (I − ωL)− ((1− ω)I + ωU),

and the corresponding SOR method is given in Eq. (1.1).
We now define some splittings based on this splitting scheme of Saad [19].

Definition 3.9. Let ωA = ωA+ (I − I). Then ωA = (I + (ωA)sl)− (I − (ωA)u) is called the SOR splitting, where (ωA)sl and
(ωA)u are the strictly lower and upper parts of ωA, respectively. LetΩA = ΩA + (I − I), whereΩ = (ωij) is the diagonal
matrix constructed by ωii > 0. Then we shall call ΩA = (I + (ΩA)sl) − (I − (ΩA)u) the GSOR splitting. If Ω is an upper
triangular matrix, we shall callΩA the ESOR splitting.
From the above definition, ifΩ = I + S, then the ESOR splitting AESOR has the form

AESOR = ΩA = (I + (ΩA)sl)− (I − (ΩA)u)
= (I − (E + L))− (D+ U − S + SU), (3.14)

where D and E are the diagonal and strictly lower parts of SL, respectively. By contrast, Davey and Bounds [3] is not using
Eq. (1.3), and from the ESOR splitting the following scheme is derived:

x(k+1) = (I − (E ′ + L))−1(D′ + U − S ′ + S ′U)x(k) + (I − (E ′ + L))−1(I + S ′)b, (3.15)
where D′ and E ′ are the diagonal and strictly lower parts of S ′L, respectively. We shall call this scheme the extended GSOR
(ESOR) method, becauseΩ is an upper triangular matrix. By substitutingΩ = I + S to ω in Eq. (1.3), we have

x(k+1) = (I − D− (E + L))−1(U − S + SU)x(k) + (I − D− (E + L))−1(I + S)b. (3.16)
Eq. (3.16) is simply themodified Gauss–Seidel iterative scheme,which is applied to the Gauss–Seidelmethod by the splitting
Eq. (1.6). Eq. (3.16) is of course derived from the Gauss–Seidel splitting not the ESOR splitting. Hereafter, we call this splitting
the accelerated Gauss–Seidel (AGS) splitting, andwe shall call the Gauss–Seidelmethod produced from the AGS splitting the
AGSmethodwith preconditioner, because this scheme is derived from the accelerated formula Eq. (1.3). ApplyingΩ = I+S ′
to Eq. (1.3), we have

x(k+1) = (I − D′ − (E ′ + L))−1(U − S ′ + S ′U)x(k) + (I − D′ − (E ′ + L))−1(I + S ′)b. (3.17)
This scheme is the AGS method with the preconditioner (I + S ′). From the results above, we can now define the splitting
corresponding to the Gauss–Seidel iterative method.

Definition 3.10. LetΩ be an upper triangular matrix, for example, PS, Pm, Ps+m. We shall call the Gauss–Seidel splitting of
ΩA the AGS splitting. Let Ω be a nonsingular matrix, for example Psmr or PG. As shown by Eq. (2.11), since all the rows of
matrix A are subject to a preconditioning effect, the Gauss–Seidel splitting ofΩA is called the EGS splitting.
Next, let us discuss the comparison theorems for the schemes obtained above.
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Theorem 3.11. Let A be anM-matrix. ForΩ ′ = I+S ′, put A′ESOR = M
′

ESOR−N
′

ESOR and T
′

ESOR = (I−(E
′
+L))−1(D′+U−S ′+S ′U).

Let Tx = ρ(T )x, x ≥ 0. Then the following inequality holds:

ρ(T ) ≥ ρ(T ′ESOR).

Proof. From the assumption, the following inequality holds,

M−1 = (I − L)−1 = I + L+ L2 + · · · + Ln−1 ≥ O.

Since E ′ + L ≥ O, we easily obtain

(M ′)−1ESOR = I + (E
′
+ L)+ (E ′ + L)2 + · · · + (E ′ + L)n−1 ≥ O. (3.18)

Clearly (M ′)−1ESOR ≥ M
−1
≥ O. Since N ′ESOR ≥ O, A

′

ESOR = M
′

ESOR − N
′

ESOR is a regular splitting and, from Theorem 3.5, a
convergent splitting. Since the inequality A′ESORx − Ax = (I + S ′)Ax − Ax = S ′Ax ≥ 0 holds, then from Lemma 3.4, x is a
Perron vector of T . Finally, from Theorem 3.7 ρ(T ) ≥ ρ(T ′ESOR) holds. �

Theorem 3.12. Let A be anM-matrix. For Ω = I + S, put AESOR = MESOR − NESOR. Then the following inequality holds:

ρ(T ′ESOR) ≥ ρ(TESOR).

Proof. Since E + L ≥ O, we easily obtain

(M)−1ESOR = I + (E + L)+ (E + L)
2
+ · · · + (E + L)n−1 ≥ O. (3.19)

Since S ≥ S ′, E ≥ E ′ and M−1ESOR ≥ (M ′ESOR)
−1
≥ O hold. Furthermore, we have AESORx − A′ESORx = (S − S ′)Ax ≥ 0. From

Lemma 3.4, x is an eigenvector of T , and x is also a Perron vector of T . Therefore, from Theorem 3.7 ρ(T ′ESOR) ≥ ρ(TESOR)
holds. �

Theorem 3.13. Let A be anM-matrix. Put TS = (I − D− (E + L))−1(U − S + SU). Then the following inequality holds:

ρ(TESOR) ≥ ρ(TS). (3.20)

Proof. Since (I − D)−1 ≥ I and E + L ≥ O, then

M−1S = [I + (I − D)
−1(E + L)+ {(I − D)−1(E + L)}2 + · · · + {(I − D)−1(E + L)}n−1](I − D)−1 ≥ O. (3.21)

Clearly M−1S ≥ M
−1
ESOR ≥ O. In this case, ASx = (I + S)Ax = AESORx holds. From Theorem 3.8 it follows that ρ(TESOR) ≥

ρ(TS). �

Denote Asmr = (I + S + Sm + R)A and let Tsmr be the iterative matrix associated with Asmr . Then it easily follows that
ρ(Ts+m) ≥ ρ(Tsmr). In summary, we have proven the following inequalities:

ρ(T ) ≥ ρ(T ′ESOR) ≥ ρ(TESOR) ≥ ρ(TS) ≥ ρ(Ts+m) ≥ ρ(Tsmr) ≥ ρ(TG).

4. Numerical results

In this section, we test simple examples to compare and contrast the characteristics of the different preconditioners.
Consider first the matrix

A =

 1 −0.2 −0.3 −0.2
−0.2 1 −0.3 −0.1
−0.1 −0.2 1 −0.3
−0.2 −0.3 −0.2 1

 ,
which satisfies Eq. (2.10). Applying the Gauss–Seidel method, we have ρ(T ) = 0.4431. By using preconditioner PS = I + S,
we find that AS and TS have the following forms:

AS =

 0.96 0 −0.36 −0.22
−0.23 0.94 0 −0.19
−0.16 −0.29 0.94 0
−0.2 −0.3 −0.2 1

 , TS =

0 0 0.3750 0.2292
0 0 0.0918 0.2582
0 0 0.0921 0.1187
0 0 0.1210 0.1470

 ,
and ρ(TS) = 0.2425. By using the ESOR method withΩ = I + S, the iterative matrix TESOR is found to be

TESOR =

0.0400 0 0.3600 0.2200
0.0092 0.0600 0.0828 0.2406
0.0091 0.0174 0.1416 0.1050
0.0126 0.0215 0.1252 0.1372

 ,
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and ρ(TESOR) = 0.3051. Next, for the AGS method with PS′ , we have

AS′ =

 0.9836 −0.1182 −0.3245 −0.2082
−0.2248 0.9505 −0.0523 −0.1743
−0.16 −0.29 0.94 0
−0.2 −0.3 −0.2 1

 , TS′ =

0 0.1202 0.3299 0.2116
0 0.0284 0.1330 0.2334
0 0.0292 0.0972 0.1080
0 0.0384 0.1253 0.1340

 ,
and ρ(TS′) = 0.2836. Using the preconditioner Ps+m, we obtain

As+m =

 0.93 −0.06 −0.06 −0.31
−0.25 0.91 −0.02 −0.09
−0.16 −0.29 0.94 0
−0.2 −0.3 −0.2 1

 , Ts+m =

0 0.0645 0.0645 0.3333
0 0.0177 0.0397 0.1905
0 0.0164 0.0232 0.1155
0 0.0215 0.0295 0.1470

 ,
and ρ(Ts+m) = 0.1966. For Psmr = I + S + Sm + R, we have

Asmr =

 0.93 −0.06 −0.06 −0.31
−0.25 0.91 −0.02 −0.09
−0.16 −0.29 0.94 0
−0.08 −0.08 −0.15 0.87

 , Tsmr =

0 0.0645 0.0645 0.3333
0 0.0177 0.3970 0.1905
0 0.0165 0.0232 0.1155
0 0.0104 0.0136 0.0681

 ,
and ρ(Tsmr) = 0.1176. From the results above, we have (G)nj = (0.28, 0.38, 0.35, 0). Then AG(γ = 1) and TG have the
forms:

AG =

 0.93 0.06 −0.06 −0.31
−0.25 0.91 −002 −0.09
−0.16 −0.29 0.94 0
−0.031 −0.046 −0.048 0.801

 , TG =

0 0.0645 0.0645 0.3333
0 0.0177 0.0397 0.1905
0 0.0164 0.0232 0.1155
0 0.0045 0.0062 0.0308

 ,
and ρ(TG) = 0.0787. Since the preconditioned matrices differ only in the values of their last rows, the related matrices also
differ only in these values, as shown in the results above. Therefore, we hereafter show only the last row.
By putting γ1 = 1.1811, the value of a42 is zero. Then (AGγ1 )nj and (TGγ1 )nj have the following forms:

(AGγ1 )nj = (−0.00039, 0,−0.02047, 0.76500), (TGγ1 )nj = (0, 0.00047, 0.00065, 0.00326),

and ρ(TGγ1 ) = 0.0497. For γ2 = 1.18343, we have:

(AGγ2 )nj = (0, 0.0006,−0.0201, 0.7645), (TGγ2 )nj = (0, 0.00042, 0.00058, 0.00289),

and ρ(TGγ2 ) = 0.0493.

Remark 4.1. Clearly (AGγ1 ) is not a Z-matrix. But since the value of a
G
42 is very small,M

−1
Gγ2
is nonnegative. Thus TGγ2 ≥ O.

For γ3 = 1.31579, we have the following results:

(AGγ3 )nj = (0.02237, 0.03421, 0, 0.73816), (TGγ3 )nj = (0,−0.00278,−0.00380,−0.01893),

and ρ(TGγ3 ) = 0.0241. In this case, since M
−1
Gγ3
is not anM-matrix, TGγ3 is not nonnegative. When the value of γ increases

further, there exists an optimum γ corresponding to the minimum ρ(TG). For example, for γ = 1.36807 we have:

(AGγopt )nj = (0.03120, 0.04749, 0.00795, 0.72775),

(TGγopt )nj = (0,−0.00410,−0.00561,−0.02798),

and ρ(TGγopt ) = 0.00649. For the SOR method we obtain ρ(Toptω=1.1488) = 0.24660 by numerical computation. By
performing the reordering [3] to example A, the following matrix is derived:

Ar =

 1 −0.3 −0.1 −0.2
−0.2 1 −0.3 −0.1
−0.3 −0.2 1 −0.2
−0.2 −0.3 −0.2 1

 .
We cannot obtain better results than these for example matrix A. For example

Arsmr =

 0.93 −0.06 −0.23 −0.03
−0.31 0.91 −0.02 −0.06
−0.34 −0.269 0.964 0
−0.12 −0.10 −0.11 0.89

 , T rsmr =

0 0.06667 0.25556 0.33333
0 0.01227 0.10904 0.07729
0 0.01298 0.12004 0.03274
0 0.01522 0.06154 0.01722

 ,
and ρ(T rsmr) = 0.16745. Moreover, we have ρ(T

r
G)γ=1 = 0.1572, while for γ3 = 1.26582, we get ρ(T

r
Gγ 3
) = 0.091152. For

γopt = 3.4109, ρ(T rGγ opt ) = 0.0116.
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Table 1
Spectral radii for each method for test matrices B and C .

Method B C

γ /ρ(.) non-re. re. non-re.

ESOR ρ(.) 0.5321 0.5318 0.2468

AGS, PS ρ(.) 0.4888 0.4900 0.18090
Ps+m ρ(.) 0.4028 0.41800 0.10205

EGS, Psmr ρ(.) 0.3706 0.3915 0.1056
PG, γ = 1 ρ(.) 0.3362 0.3616 0.0634
γ = γm γm 1.19848 a 0.52575

ρ(.) 0.17888 a 0.0842
γ = γopt. γopt 2.2770 2.349 1.111

ρ(.) 0.1093 0.0976 0.0461
a Under the condition γu > γ , γm does not exist. Non-reordering is denoted by ’non-re’.

The following test matrix is a randomly generatedM-matrix,

B =


1 −0.1897 −0.1179 −0.3462 −0.1256

−0.2283 1 −0.1811 −0.0787 −0.2803
−0.0755 −0.2736 1 −0.1038 −0.1623
−0.1918 −0.1633 −0.3306 1 −0.1778
−0.1562 −0.1742 −0.2865 −0.3362 1

 .
We performed the reordering scheme based on [3], and display the results in Table 1. The next test matrix is a linear system
of equations arising from the boundary element method for the Laplace problem (For further details, see [20]),

C =



1.193 0.369 0.111 −0.030 −0.058 −0.005 0.124 0.514
0.369 1.193 0.514 0.124 −0.005 −0.058 −0.030 0.111
0.124 0.514 1.193 0.369 0.111 −0.030 −0.058 −0.005
−0.030 0.111 0.369 1.193 0.514 0.124 −0.005 −0.058
−0.058 −0.005 0.124 0.514 1.193 0.369 0.111 −0.030
−0.005 −0.058 −0.030 0.111 0.369 1.193 0.514 0.124
0.111 −0.030 −0.058 −0.005 0.124 0.514 1.193 0.369
0.514 0.124 −0.005 −0.058 −0.03 0.111 0.369 1.193


.

This matrix is clearly not an H-matrix. Therefore, it is impossible to apply the Gauss- Seidel iterative method. To obtain a
diagonally dominant matrix, Sakakihara et al. proposed the application of two preconditioners [20], for which the resultant
matrix has a spectral radius of 0.078. On the other hand, the preconditionedmatrix PSA can produce anH-matrix (a detailed
explanation of this procedure is described in the next section). For this example, the reordering scheme is not used, because
all the rows have the same vector 1-norm values. Numerical results are shown in Table 1.
Finally, we test the matrix A having the special form

A =

 1 −1 0 0
0 1 −1 0
0 0 1 −1
−a 0 0 1

 ,
where 0 < |a| < 1. It is well known that AT is a p- cyclic matrix [21]. Then AS and TS have the following forms:

AS =

 1 0 −1 0
0 1 0 −1
−a 0 1 0
−a 0 0 1

 , TS =

0 0 1 0
0 0 0 1
0 0 a 0
0 0 a 0

 .
Clearly, ρ(TS) = a. In this case, the spectral radius of TS corresponds to the value of a41. On the other hand, AR and TR have
the following forms:

AR =

 1 0 −1 0
0 1 0 −1
−a 0 1 0
0 −a 0 1

 , TR =

0 0 1 0
0 0 0 1
0 0 a 0
0 0 0 a

 .
And ρ(TR) = a. Set

PG =

1 1 0 0
0 1 1 0
0 0 1 0
a a a 1

 .
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Then we have

AG =

1 0 −1 0
0 1 0 −1
0 0 1 −1
0 0 0 1− a

 , TR =

0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

 .
Clearly ρ(TG) = 0.

5. Concluding remarks

(1) Matrix B:

The diagonally dominant ratio is defined by ti =
∑n
j=1,j6=i |aij|
|aii|

, for all i. Moreover, the average diagonally dominant ratio

is defined by tav =
∑n
i=1 ti
n . For matrix A, tav = 0.275, while for B, tav = 0.84158. Thus the preconditioning effect on A is

better than that on B.Moreover, since thematrix Bdoes not satisfy Eq. (2.8),wehaveρ(TS) = 0.4888 < ρ(Tm) = 0.5032.
Hence, in contrast to the case for matrix A, we cannot obtain an extremely small value of ρ(Ts+m).
Matrix C:
Put y = (t1, . . . , tn). As shown below, the preconditionedmatrix PSC is not diagonally dominant only in the last row:
y = (0.2597, 0.4168, 0.2597, 0.4168, 0.2597, 0.4168, 0.2597,−.0151). Put y = (1, 1, 1, 1, 1, 1, 1, 1.1). Then from

the inequality of Definition 3.2 we have tn = 0.849. Thus PSC is an H-matrix. Readers interested in the criterion of
H-matrices may refer to [9] for further details. The use of other upper preconditioners can also produce an H-matrix.
From 6 in Theorem 3.5, C is an H-compatible splitting.

(2) As shown in Table 1, for example with reference to the results for C , ρ(Tsmr) ≤ ρ(Tsm) does not hold. We now
investigate the reasons for these results. Since C is not an H-matrix,

∑n−1
k=1,k6=j |ankakj| is of large value. Therefore, since

the value of asmrnn is small, the relation ρ(Tsmr) > ρ(Tsm) can be satisfied. For this matrix we have the numerical results,
asmnn = 1, a

smr
nn = 0.693 and a

G
nn = 0.7702. To confirm the validity of our assertion,we put Psmr ′ = (I+S+Sm+0.9R). Then

we have asmr
′

nn = 0.86470 and ρ(Tsmr ′) = 0.0922. Since matrix C is not a Z-matrix, the description of γm is meaningless,
but we have included these values in Table 1 for reference.

(3) From the numerical results, we have seen that the EGS method with the preconditioner PG(γopt) produces an extremely
small spectral radius. A development of a simple estimation scheme for γopt is a subject for future study.
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