Attractors for the Generalized Benjamin–Bona–Mahony Equation

A. O. Çelebi

Department of Mathematics, Middle East Technical University, 06531 Ankara, Turkey

V. K. Kalantarov

Department of Mathematics, Hacettepe University, 05532 Beytepe, Ankara, Turkey

and

M. Polat

Department of Mathematics, Middle East Technical University, 06531 Ankara, Turkey

Received August 3, 1998; revised December 10, 1998

We consider the periodic initial-boundary value problem for a multidimensional generalized Benjamin–Bona–Mahony equation. We show the existence of the global attractor with a finite fractal dimension and the existence of the exponential attractor for the corresponding semigroup.

Key Words: attractor; exponential attractor; fractal dimension.

1. INTRODUCTION

We consider the equation

$$u_t - a A u_t - b A u + \nabla \cdot F(u) = h(x), \quad x \in \mathbb{R}^n, \quad t \in \mathbb{R}^+$$

(1)

with the initial condition

$$u(x, 0) = u_0(x), \quad x \in \mathbb{R}^n$$

(2)

and the periodic boundary condition

$$u(x + L_i e_i, t) = u(x, t), \quad x \in \mathbb{R}^n, \quad t > 0, \quad L_i > 0, \quad i = 1, 2, \ldots, n$$

(3)
where a and b are positive constants; e_1, \ldots, e_n is the canonical basis of \mathbb{R}^n, $u_0(x)$ and $b(x)$ are given functions, $\nabla \cdot F = \sum_{i=1}^n (\partial_i \otimes x_i) F_i$, and $F(s) = (F_1(s), F_2(s), \ldots, F_n(s))$ is a given vector field satisfying the following properties:

(i) $F_k(0) = 0$, $k = 1, 2, \ldots, n$;

(ii) the functions F_k, $k = 1, 2, \ldots, n$ are twice continuously differentiable in \mathbb{R}^1;

(iii) the functions $f_k(s) = (d/ds) F_k(s)$, $k = 1, 2, \ldots, n$, satisfy the growth conditions

$$|f_k(s)| \leq C(1 + |s|^m), \quad k = 1, 2, \ldots, n,$$

where $0 \leq m < \infty$ if $n = 2$, $0 \leq m < 2$ if $n = 3$ and $m = 0$ if $n \geq 4$. No growth condition is required if $n = 1$.

Using the standard Faedo–Galerkin method, it is not difficult to prove that if $h \in L^2(\Omega)$ and $u_0 \in H^1_{per}(\Omega)$, then the problem (1)-(3) has a unique solution $u \in C(\mathbb{R}^+; H^1_{per}(\Omega))$.

The Cauchy problem for the Benjamin–Bona–Mahony equation

$$u_t - uu_x + u_{xxx} + uu_x = 0 \quad (4)$$

and some of its generalizations has been investigated by several authors, such as Amick et al. [2], Bona and Dougalis [6], and Karch [11]. In these articles the problem of global unique solvability and long time behaviour of solutions are studied.

Kalantarov [10] has proved the existence of a global attractor for the semigroup generated by the initial-boundary value problem for the Kelvin–Voigt equations

$$\nu_t - \nu - \Delta \nu_x - v \Delta v + \text{grad} p + v \nu_x = h(x),$$

$$\text{div} \nu = 0. \quad (5)$$
On the other hand Wang [16–18] using the technique of Ghidaglia [8] has proved the existence of a global attractor for the semigroup generated by (1)–(3) in one dimensional case, that is, the periodic initial-boundary value problem for the equation

$$u_t - u_{xxxt} + f(u) u_x = g(x), \quad x \in \mathbb{R}, \quad t \in \mathbb{R}^+ \quad (6)$$

In our studies, we have used the ideas of Hale [9] and Ladyzhenskaya [13] on attractors for asymptotically compact semigroups. In the sequel we will use the following theorems.

Theorem 1 [9, 13]. If a semigroup \(V_t, t \in \mathbb{R}^+ \) acts on a Banach space \(X \), and \(V_t = W_t + Z_t \) in which \(W_t, t \in \mathbb{R}^+ \), is a family of operators, such that

$$\| W_t(B) \|_X \leq m_1(t) m_2(\| B \|_X), \quad (7)$$

where \(m_1(\cdot) \) and \(m_2(\cdot) \) are continuous functions on \(\mathbb{R}^+ \) and \(m_1(t) \to 0 \), as \(t \to \infty \), \(\| B \|_X = \sup_{v \in B} \| v \|_X \). While \(Z_t, t \in \mathbb{R}^+ \) maps bounded sets into precompact sets, then \(V_t, t \in \mathbb{R}^+ \) is asymptotically compact semigroup.

Theorem 2 [9, 13]. Let \(V_t : X \to X \), \(t \in \mathbb{R}^+ \), be a continuous bounded point-dissipative asymptotically compact semigroup. Then for this semigroup there exists a non-empty global attractor \(\mathcal{A} \). It is compact, invariant, and connected.

Theorem 3 [12]. Let \(B \) be a bounded set in a Hilbert space \(X \), and let there be defined a map \(V : B \to X \) such that \(B \subseteq V(B) \) and for all \(v, \tilde{v} \in B \)

$$\| V(v) - V(\tilde{v}) \|_X \leq \ell \| v - \tilde{v} \|_X, \quad (8)$$

and

$$\| Q_N V(v) - Q_N V(\tilde{v}) \|_X \leq \delta \| v - \tilde{v} \|_X, \quad \delta < 1, \quad (9)$$

where \(Q_N \) is the orthogonal projection of \(X \) onto the subspace \(X_N^\perp \) of codimension \(N \). Then for the fractal dimension of \(B \) the inequality

$$d_F(B) \leq N \log \left(\frac{8\kappa^2\ell^2}{1-\delta^2} \right) \left/ \log \frac{2}{1-\delta^2} \right. \quad (10)$$

is true, where \(\kappa \) is the Gauss constant.
2. EXISTENCE OF THE GLOBAL ATTRACTOR

First let us show that the semigroup V_t is bounded dissipative in a phase space X^1; that is, it has an absorbing ball in X^1. Multiplying Eq. (1) by u in $L_2(\Omega)$ we get

$$\frac{1}{2} \frac{d}{dt} \left[\|u(\cdot, t)\|^2 + a \|\nabla u(\cdot, t)\|^2 \right] + b \|\nabla u(\cdot, t)\|^2 = (h, u). \quad (11)$$

We will use the notations $\|\cdot\|$, (\cdot, \cdot) for the norm and inner product in $L_2(\Omega)$, respectively. Using the Poincaré–Friedrichs inequality

$$\|u\| \leq \lambda_1^{-1/2} \|\nabla u\|, \quad (12)$$

which is valid for each $x \in X^1$, we can easily get

$$|(h, u)| \leq \frac{b}{2} \|\nabla u\|^2 + \frac{\lambda_1^{-1}}{2b} \|h\|^2, \quad (13)$$

where λ_1 is the lowest eigenvalue of the periodic boundary value problem

$$-\Delta \psi(x) = \lambda \psi(x),$$

$$\psi(x + L_i e_i) = \psi(x), \quad i = 1, \ldots, n, \quad (E)$$

$$\int_{\Omega} \psi(x) \, dx = 0.$$

Due to (12) we have

$$\frac{b}{2} \|\nabla u(\cdot, t)\|^2 + \frac{b \lambda_1}{2} \|u(\cdot, t)\|^2 \leq b \|\nabla u(\cdot, t)\|^2. \quad (14)$$

By using (13), (14) we get from (11)

$$\frac{d}{dt} \left[\|u(\cdot, t)\|^2 + a \|\nabla u(\cdot, t)\|^2 \right] + \frac{b}{2} \|\nabla u(\cdot, t)\|^2 + \frac{b \lambda_1}{2} \|u(\cdot, t)\|^2 \leq \frac{1}{b \lambda_1} \|h\|^2$$

or

$$\frac{d}{dt} \left[\|u(\cdot, t)\|^2 + a \|\nabla u(\cdot, t)\|^2 \right] + K_0 \left[\|u(\cdot, t)\|^2 + a \|\nabla u(\cdot, t)\|^2 \right] \leq \frac{1}{b \lambda_1} \|h\|^2, \quad (15)$$
where \(K_0 = \min\left\{ b\lambda_1/2, b/2a \right\} \). Integrating (15) we find
\[
\|\mathbf{u}(\cdot, t)\|^2 \leq \frac{1}{a} \left[\|\mathbf{u}_0\|^2 + a \|\mathbf{Vu}_0\|^2 \right] e^{-K_0 t} + \frac{1}{bK_0\lambda_1} \|h\|^2.
\]
From this inequality it follows that
\[
B_0 := \left\{ u \in X^1 : \|u(\cdot, t)\|_{X^1} \leq \left(\frac{2}{\lambda_1 b K_0} \right)^{1/2} \|h\| \right\}
\]
is an absorbing ball for the semigroup \(V_t \) in \(X^1 \).

Now, we will prove that the semigroup \(V_t \) is asymptotically compact, that is, for each sequence \(\{t_k\} \rightarrow \infty \) and each bounded sequence \(\{v_k\} \subset X^1 \), the set \(\{ V_{t_k}(v_k) \} \) is precompact. To do this we will use Theorem 1. It is clear that the solution \(\mathbf{u}(x, t) \) of the problem (1)–(3) can be represented in the form
\[
\mathbf{u}(x, t) = \mathbf{w}(x, t) + \mathbf{z}(x, t),
\]
where \(\mathbf{w}(x, t) \) is a solution of the problem
\[
\begin{align*}
\mathbf{w}_t - a \mathbf{w} - b \mathbf{w} = 0, & \quad x \in \mathbb{R}^n, \quad t \in \mathbb{R}^+, \quad (16) \\
\mathbf{w}(x, 0) = \mathbf{u}_0(x), & \quad x \in \mathbb{R}^n, \quad (17) \\
\mathbf{w}(x, t) = \mathbf{w}(x + \mathbf{L}_i e_i, t), & \quad i = 1, \ldots, n, \quad t \in \mathbb{R}^+. \quad (18)
\end{align*}
\]
while \(\mathbf{z}(x, t) \) is a solution of the problem
\[
\begin{align*}
\mathbf{z}_t - a \mathbf{z} - b \mathbf{z} + \mathbf{V} \cdot \mathbf{F}(\mathbf{w} + \mathbf{z}) = h(x), & \quad x \in \mathbb{R}^n, \quad t \in \mathbb{R}^+ \quad (19) \\
\mathbf{z}(x, 0) = 0, & \quad x \in \Omega \quad (20) \\
\mathbf{z}(x, t) = \mathbf{z}(x + \mathbf{L}_i e_i, t), & \quad x \in \mathbb{R}^n, i = 1, \ldots, n, \quad t \in \mathbb{R}^+. \quad (21)
\end{align*}
\]
Thus, the semigroup \(V_t \) has the representation
\[
V_t = W_t + Z_t, \quad (22)
\]
where \(W_t \) is the semigroup generated by (16)–(18) and \(Z_t \) is a solution operator of the problem (19)–(21). Multiplying Eq. (16) by \(w \) in \(L_2(\Omega) \), after some elementary operations we can easily get
\[
\frac{d}{dt} \left[\|\mathbf{w}(\cdot, t)\|^2 + a \|\nabla \mathbf{w}(\cdot, t)\|^2 \right] + k_1 \left[\|\mathbf{w}(\cdot, t)\|^2 + a \|\nabla \mathbf{w}(\cdot, t)\|^2 \right] \leq 0. \quad (23)
\]
Integrating (23) and then using Poincaré–Friedrichs inequality we obtain
\[
\|\nabla u(\cdot, t)\|^2 \leq e^{-k_1 t} \left(\frac{1}{\lambda_1 a} + 1 \right) \|\nabla u(\cdot, 0)\|^2.
\]
That is, the semigroup \(W_t : X^1 \rightarrow X^1 \) satisfies the condition (7) of Theorem 1 with \(m_1(t) = e^{-k_1 t} (d/(\lambda_1 a) + 1) \) and \(m_2(t) = t \).

It remains now to show that \(Z_t : X^1 \rightarrow X^1 \) is precompact for each \(t > 0 \), when \(n = 3 \); the cases \(n = 1, 2 \) and \(n > 3 \) can be dealt with in a similar way.

In order to see this property, let us rewrite Eq. (19) in the form
\[
z_t - a \Delta z_t - b \Delta z = h(x) - \sum_{i=1}^n f_i(u) u_{x_i}
\]
\[= g(x, t). \quad (24)
\]
Let \(p = 6/(m + 3) \); using the Hölder’s inequality and the condition (iii) we can easily get the estimate
\[
\int_{\Omega} |f_i(u) u_{x_i}|^p \, dx \leq \left(C_1 + C_2 |u|^{mp} |u_{x_i}|^p \right) \int_{\Omega} |u_{x_i}|^p \, dx
\]
\[\leq C_3 \left(1 + \int_{\Omega} |u_{x_i}|^2 \, dx \right) + C_2 \left(\int_{\Omega} |u_{x_i}|^2 \, dx \right)^{p/2} \left(\int_{\Omega} |u|^{mp(2-p)} \, dx \right)^{(2-p)/2}.
\]
Since \(mp(2/(2-p)) = 6 \), by using the well-known inequality [14, p. 45]
\[
\|u(\cdot, t)\|_{L^p(\Omega)} \leq c \|\nabla u(\cdot, t)\|_{L^2(\Omega)},
\]
which is valid for each \(u \in H^1_{per}(\Omega), \Omega \subset \mathbb{R}^3 \) we obtain
\[
\int_{\Omega} |f_i(u) u_{x_i}|^p \, dx \leq C_3 \left(1 + \int_{\Omega} |u|^2 \, dx \right) + C_4 \left(\int_{\Omega} |\nabla u|^2 \, dx \right)^{3(2-p)/2}.
\]
Since \(V_t : X^1 \rightarrow X^1 \) is bounded dissipative
\[
\max_{t \in \mathbb{R}^+} \|\nabla u(\cdot, t)\|_{L^2(\Omega)} \leq C_5
\]
and \(h \in L_2(\Omega) \), we get \(g \in C(\mathbb{R}^+; L_2(\Omega)) \). By the embedding theorem (see Triebel [15, p. 327]) \(L_2(\Omega) \subset H_{\text{per}}^{1+\sigma}(\Omega), \sigma = 1 - (m/2) \), we have

\[
g = h + \sum_{i=1}^N f_i(u_i) u_{\xi_i} \in L_2(0, T; \dot{H}_{\text{per}}^{1+\sigma}(\Omega)), \quad \forall T > 0
\]

and the precompactness of the operator \(W_t : X^1 \to X^1 \) follows from

Proposition 4. If \(g \in L_2(0, T; \dot{H}_{\text{per}}^s(\Omega)) \) and \(v_0 \in \dot{H}_{\text{per}}^{s+2}(\Omega) \), then the initial value problem

\[
v_t - a \Delta v_t - b \Delta v = g(x, t), \quad x \in \mathbb{R}^n, \quad t \in (0, T)
v(x, 0) = v_0(x), \quad x \in \mathbb{R}^n,
v(x, t) = v(x + L_ie_i, t), \quad i = 1, \ldots, n, \quad t \in (0, T),
\]

has a solution \(v(x, t) \) in \(C(0, T; \dot{H}_{\text{per}}^{s+2}(\Omega)) \) for \(s \in \mathbb{R} \).

This proposition can be proved by using the standard Fourier method. Following the technique used in Babin and Vishik [4, Theorem 6.2] it can be proved that \(\mathcal{M} \) is bounded in \(X^2 = \dot{H}_{\text{per}}^2(\Omega) \cap \dot{H}_{\text{per}}^4(\Omega) \). So we have obtained

Theorem 5. Suppose that the vector field \(F \) satisfies the conditions (i)–(iii) and \(h \in L_2(\Omega) \). Then the semigroup \(V_t : X^1 \to X^1 \) has a global attractor \(\mathcal{M} \) which is compact, invariant and connected in \(X^1 \). \(\mathcal{M} \) is included and bounded in \(X^2 \).

3. Estimate of the Fractal Dimensions of the Attractor

Now we are going to show that for some \(t_1 > 0 \), the operator \(V = V_{t_1} \) satisfies the conditions of Theorem 3, from which we get the estimate of the dimension of the global attractor. Let \(u \) and \(v \) be two solutions of the problem (1)–(3) with \(u(x, 0) = u_0(x) \) and \(v(x, 0) = v_0(x) \) in \(\mathcal{M} \). Then from the Theorem 5, it follows that \(u(\cdot, t), v(\cdot, t) \in \mathcal{M}, \forall t \in \mathbb{R}^+ \). Let us define \(w = u - v; \) then \(w \) will satisfy the equation

\[
w_t - a \Delta w_t - b \Delta w + \nabla \cdot (F(u) - F(v)) = 0. \tag{26}
\]

Taking the inner product with \(w(x, t) \) in \(L_2(\Omega) \), we obtain

\[
\frac{1}{2} \frac{d}{dt} \left[\| w(\cdot, t) \|^2 \right] + a \| \nabla w(\cdot, t) \|^2 + b \| \nabla w(\cdot, t) \|^2 + (\nabla \cdot (F(u) - F(v)), w) = 0.
\]
Now let us consider the last term,
\[
|\nabla \cdot (F(u) - F(v), w)| = \left| \sum_{i=1}^{n} (F_i(u) - F_i(v), \nabla w) \right|
\]
\[
= \left| \sum_{i=1}^{n} \left(\int_{0}^{1} \frac{d}{d\theta} F_i(\theta u + (1 - \theta)v) \, d\theta, \nabla w \right) \right|
\]
\[
\leq \sum_{i=1}^{n} \int_{0}^{1} \left| F_i(\theta u + (1 - \theta)v) \right| \, |w| \, |\nabla w| \, dx.
\]
Since
\[
|f_i(\theta u + (1 - \theta)v)| \leq C_6(1 + |u|^m + |v|^m), \quad i = 1, 2, ..., n,
\]
using the Hölder’s inequality and (25) we get
\[
|\nabla \cdot (F(u) - F(v), w)| \leq C_6 \sum_{i=1}^{n} \int_{0}^{1} (1 + |u|^m + |v|^m) \, |w| \, |\nabla w| \, dx \leq C_7 \|w\| \|\nabla w\|
\]
and utilizing Young’s inequality
\[
|\nabla \cdot (F(u) - F(v), w)| \leq C_7 \left[\|w\|^2 + \frac{1}{4a} \|w\|^2 \right] \leq \mu [\|w\|^2 + a \|\nabla w\|^2],
\]
where \(\mu = C_7 \max\{1, 1/4a\} \). So we obtain
\[
\frac{d}{dt} \left[\|w(\cdot, t)\|^2 + a \|\nabla w(\cdot, t)\|^2 \right] \leq \mu [\|w(\cdot, t)\|^2 + a \|\nabla w(\cdot, t)\|^2].
\]
Thus
\[
\|w(\cdot, t)\|^2 + a \|\nabla w(\cdot, t)\|^2 \leq \left[\|w(\cdot, 0)\|^2 + a \|\nabla w(\cdot, 0)\|^2 \right] e^{\mu t}
\]
and
\[
\|\nabla w(\cdot, t)\| \leq (a + \lambda_1^{-1})^{1/2} \|\nabla w(\cdot, 0)\| \, e^{\mu t/2}.
\]
Now, let \(P_N \) denote the orthogonal projection to the subspace \(X_N^1 \) of \(X^1 \) spanned by the first \(N \) basis elements of \(X^1 \), that is, the first \(N \)
eigenfunctions of the problem \((E)\). Multiplying Eq. \((26)\) in \(L^2(\Omega)\) by \(Q_N w := (I - P_N) w\), we obtain
\[
(w_t (\cdot, t), Q_N w (\cdot, t)) - a (Dw_t (\cdot, t), Q_N w (\cdot, t)) + b \|\nabla Q_N w (\cdot, t)\|^2 = (\nabla \cdot F(u) - \nabla \cdot F(v), Q_N w)
\]
\[
= \left(\sum_{i=1}^n f_i(u) u_x - f_i(v) v_x, Q_N w \right)
\]
\[
= \left(\sum_{i=1}^n \left[f_i(u) w_x + (f_i(u) - f_i(v)) v_x \right], Q_N w \right)
\]
\[
= \left(\sum_{i=1}^n f_i(u) w_x, Q_N w \right) + \left(\sum_{i=1}^n \int_0^1 f_i'(\theta u + (1 - \theta) v) \, d\theta \, w_x, Q_N w \right). \tag{28}
\]
Since the attractor \(\mathcal{M}\) is bounded in \(H^2(\Omega)\) we have
\[
\max_{x \in \Omega} |u|, \quad \max_{x \in \Omega} |v|, \quad |u|_{H^1(\Omega)}, \quad |v|_{H^1(\Omega)} \leq M_0. \tag{29}
\]
Using the condition (iii), the Hölder inequality (29), (25) we can estimate the right hand side of (28) as
\[
\left| \left(\sum_{i=1}^n f_i(u) w_x, Q_N w \right) + \left(\sum_{i=1}^n \int_0^1 f_i'(\theta u + (1 - \theta) v) \, d\theta \, w_x, Q_N w \right) \right|
\]
\[
\leq C_8 \int \|\nabla w(x, t)\| \|Q_N w(x, t)\| \, dx
\]
\[
+ C_9 \int \|w(x, t)\| \|\nabla w(x, t)\| \|Q_N w(x, t)\| \, dx
\]
\[
\leq C_8 \|\nabla w (\cdot, t)\| \|Q_N w (\cdot, t)\|
\]
\[
+ C_9 \left(\int \|w(x, t)\|^6 \, dx \right)^{1/6} \left(\int \|\nabla w(x, t)\|^3 \, dx \right)^{1/3} \left(\int \|Q_N w(x, t)\|^2 \, dx \right)^{1/2}
\]
\[
\leq C_8 \|\nabla w (\cdot, t)\| \|Q_N w (\cdot, t)\|
\]
\[
+ C_{10} \|\nabla w (\cdot, t)\| \|v (\cdot, t)\|_{H^1(\Omega)} \|Q_N w (\cdot, t)\|
\]
\[
\leq C_{11} \|\nabla w (\cdot, t)\| \|Q_N w (\cdot, t)\|.
\]
So (28) implies
\[\frac{1}{2} \frac{d}{dt} \left[\|Q_Nw(\cdot, t)\|^2 + a \|\nabla Q_Nw(\cdot, t)\|^2 \right] + b \|\nabla Q_Nw(\cdot, t)\|^2 \]
\[\leq C_{11} \|\nabla w(\cdot, t)\| \|Q_Nw(\cdot, t)\|. \] (30)

By using the inequality
\[\|Q_N\psi\| \leq \lambda_{N+1}^{-1/2} \|\nabla Q_N\psi\|, \quad \forall \psi \in (X_N')^4, \]
where \(\lambda_N \) is the \(N \)th eigenvalue of the problem \((E) \), we can rewrite (30) as
\[\frac{d}{dt} \left[\|Q_Nw(\cdot, t)\|^2 + a \|\nabla Q_Nw(\cdot, t)\|^2 \right] \\
+ b \|\nabla Q_Nw(\cdot, t)\|^2 + \lambda_1 b \|Q_Nw(\cdot, t)\|^2 \\
\leq 2C_{11} \|\nabla w(\cdot, t)\| \|\nabla Q_Nw(\cdot, t)\| \lambda_{N+1}^{-1/2} \\
\leq C_{11} \lambda_{N+1}^{-1/2} \|\nabla w(\cdot, t)\|^2 + C_{11} \lambda_{N+1}^{-1/2} \|\nabla Q_Nw(\cdot, t)\|^2 \] (31)
or
\[\frac{d}{dt} \left[\|Q_Nw(\cdot, t)\|^2 + a \|\nabla Q_Nw(\cdot, t)\|^2 \right] \\
+ b \lambda_1 \|Q_Nw(\cdot, t)\|^2 \leq C_{11} \lambda_{N+1}^{-1/2} \|\nabla w(\cdot, t)\|^2. \]

Let us choose \(N \) large enough, so that \(b - C_{11} \lambda_{N+1}^{-1/2} > 0 \) and set
\[\mu_1 = \min \left(\frac{b - C_{11} \lambda_{N+1}^{-1/2}}{a}, \lambda_1 b \right). \]

From the last inequality we get
\[\frac{d}{dt} \left[\|Q_Nw(\cdot, t)\|^2 + a \|\nabla Q_Nw(\cdot, t)\|^2 \right] \\
+ \mu_1 \left[\|Q_Nw(\cdot, t)\|^2 + a \|\nabla Q_Nw(\cdot, t)\|^2 \right] \\
\leq C_{11} \lambda_{N+1}^{-1/2} \|\nabla w(\cdot, t)\|^2 \\
\leq (a + \lambda_1^{-1}) C_{11} \lambda_{N+1}^{-1/2} \|\nabla w(\cdot, 0)\|^2 \cdot e^{\mu t} \]
by use of (27). Integrating this inequality, and after some elementary operations we obtain
\[\|Q_Nw(\cdot, t)\|^2 \leq a^{-1} (a + \lambda_1^{-1}) \left[C_{11} \lambda_{N+1}^{-1/2} (\mu + \mu_1)^{-1} e^{\mu t} + e^{-\mu_1 t} \right] \|\nabla w(\cdot, 0)\|^2. \]
Now we can choose N and $t_0 > 0$ so that
\[a^{-1} (a + \lambda_1^{-1}) \left[C_{11} \bar{\mu}_{N+1} (\mu + \mu_1)^{-1} e^{a t_0} + e^{-\mu t_0} \right] \leq \delta < 1. \]
Hence the conditions of the Theorem 3 are satisfied with $V = V_{t_0}$ and we obtain the estimate
\[d_p (\mathcal{U}) \leq N \frac{\log(8 \kappa^2 / (1 - \delta^2))}{\log(2 / (1 + \delta^2))} \]
for the fractal dimension of the global attractor.
So we have established the following theorem:

Theorem 6. Let all conditions of the Theorem 5 be satisfied. Then the attractor of the semigroup $V_t : X^1 \to X^1$ has a finite fractal dimension

4. A REMARK ON THE EXISTENCE OF THE EXPONENTIAL ATTRACTOR

Consider now the one-dimensional version of the problem (1)–(3),
\begin{align*}
u_t - a \nu_{xx} - b \nu_{xx} + f(u) \nu_x &= h(x), \quad x \in \mathbb{R}, \quad t \in \mathbb{R}^+, \quad (32) \\
u(x, 0) &= u_0(x), \quad x \in \mathbb{R}, \quad (33) \\
u(x, t) &= u(x + L, t), \quad x \in \mathbb{R}, \quad t \in \mathbb{R}^+. \quad (34)
\end{align*}
It follows from the Theorem 5, that the problem (32)–(34) has an absorbing ball $B_0 \subset X^1$ and a global attractor \mathcal{A}, which is compact.

Now, assume that u_0, v_0 are arbitrary two elements of B_0, then for $w(\cdot, t) = V_t (u_0) - V_t (v_0) = u(\cdot, t) - v(\cdot, t)$ the inequality (27) is valid:
\[\|w_x(\cdot, t)\|_{\mathcal{L}^2} \leq C_1 (a + \lambda_1^{-1})^{1/2} ||\nabla w(\cdot, 0)|| e^{at}/2. \quad (35) \]
It follows from (32) that w satisfies the equation
\[w_t - a w_{xx} - b w_{xx} + \int_0^1 f'(\theta u + (1 - \theta) v) \ d\theta \cdot w_x + f(v) \ w_x = 0. \quad (36) \]
Let us multiply (36) by $Q_N w$ in $L_2(0, L)$,
\begin{align*}
\frac{1}{2} & \frac{d}{dt} \|Q_N w\|^2 + a \frac{d}{dt} \|Q_N w_x\|^2 + b \|Q_N w_x\|^2 \\
+ & \int_0^1 f'(\theta u + (1 - \theta) v) \ d\theta \cdot w_x Q_N w \ dx + \int_0^L f(v) \ w_x Q_N w \ dx = 0. \quad (37)
\end{align*}
Due to the Sobolev inequality
\[\max_{x \in [0, L]} |z(x)| \leq d_0 \|z\|, \quad \forall z \in H^1_{per}(0, L) \]
we get from the relation (37)
\[
\frac{1}{2} \frac{d}{dt} \left[\|Q_N w(\cdot, t)\|^2 + a \|Q_N w_x(\cdot, t)\|^2 \right] + b \|Q_N w(\cdot, t)\|^2 \\
\leq C_{12} \max_{x \in [0, L]} |w(x, t)| |Q_N w| + C_{13} \|w_x\| \|Q_N w\| \\
\leq C_{14} \|w_x(\cdot, t)\| \|Q_N w(\cdot, t)\| \\
\leq \frac{1}{2} C_{14} \lambda N_{N+1}^{1/2} \|w_x(\cdot, t)\|^2 + \frac{1}{2} C_{14} \lambda N_{N+1}^{1/2} \|Q_N w(\cdot, t)\|^2.
\]
So we have got the inequality similar to (31). Therefore the following inequality holds:
\[
\|Q_N w(\cdot, t)\| \leq a^{-1}(a + \lambda)^{-1}[C_{14} \lambda N_{N+1}^{1/2} (\mu + \mu_t)^{-1} e^{\delta t} + e^{-\mu t}] \|Q_N w(\cdot, 0)\|^2.
\]
It follows from the last estimate that the semigroup \(V_t : X^1 \rightarrow X^1, t \in \mathbb{R}^+ \) satisfies the discrete squeezing property (see [7]), that is, there exists \(N_0 \) and \(t_1 \) such that the operator \(T := V_{t_1} \) satisfies the conditions

\[
\|T x - T y\|_{X^1} \leq \ell_0 \|x - y\|_{X^1}, \quad \forall x, y \in B_0
\]
and for some \(\delta \in (0, 1/\sqrt{2}) \)

\[
\|(I - P_{N_0})(T x - T y)\|_{X^1} \leq \delta \|x - y\|_{X^1}, \quad \forall x, y \in B_0.
\]
Therefore the semigroup \(V_t : X^1 \rightarrow X^1, t \in \mathbb{R}^+ \) has an exponential attractor \(\mathcal{M}_e \) (see [3, 7]), that is a compact set \(\mathcal{M}_e \) such that

(i) \(\mathcal{M} \subseteq \mathcal{M}_e \subseteq B_0 \),

(ii) \(V_t \mathcal{M} \subseteq \mathcal{M}_e \),

(iii) \(\mathcal{M}_e \) has finite fractal dimension,

(iv) there exist \(C_1 \) and \(C_2 \), which does not depend on \(x \) such that \(\forall x \in B \) and each \(t > 0 \)

\[
\text{dist}(V_t x, \mathcal{M}_e) \leq C_1 \exp \{-C_2 t\}.
\]
REFERENCES

