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Abstract

We describe algorithms for solving a given system of multivariate polynomial equations via the Rational
Univariate Reduction (RUR). We compute the RUR from the toric resultant of the input system. Our
algorithms derandomize several of the choices made in similar prior algorithms. We also propose a new
derandomized algorithm for solving an overdetermined system. Finally, we analyze the computational
complexity of the algorithm, and discuss its implementation and performance.
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1. Introduction

Solving systems of multivariate polynomial equations is a common problem across many
applications. In this paper, we describe a method for solving such a system based on the Rational
Univariate Reduction (RUR) of the system. Given a system of polynomials in n variables, the
RUR reduces the system into n + 1 univariate polynomials h and h1, . . . , hn so that the value of
the i th coordinate of a common root of the input system is the value of the univariate polynomial
hi evaluated at some root of the univariate polynomial h. This representation of the common roots
of the input system is called the Rational Univariate Representation or the geometric resolution
of the system.

The RUR of a square system of multivariate polynomials a system where the number of
polynomials and the number of the variables are the same is obtained by looking at the quotient
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ring modulo the ideal generated by polynomials belonging to the system. The structure of this
quotient ring is usually understood by computing the Gröbner basis for this ideal. We instead
derive the RUR from the toric u-resultant of the system. In terms of computational complexity,
the method is more efficient than those methods using the Gröbner basis.

Our method succeeds even if the zero set of the input system is not zero-dimensional. We
compute the RUR for some finite set that contains all the isolated common roots of the input
system as well as at least one point from every irreducible component of the zero set of the
system. Taking advantage of this feature, we develop a new algorithm for computing the RUR of
an overdetermined system of multivariate polynomial equations.

One improvement on prior method is that it is “derandomized”; we have eliminated random
choices made in prior approaches. For us, a random choice is made only when we know
beforehand that the probability of failure is 0, when we have a method to determine when such a
failure occurs, and when a (less efficient) deterministic alternative is also known.

The algorithms we describe here can be used to compute the exact RUR, meaning that all
the coefficients of univariate polynomials forming the RUR are computed to full precision. In
particular, when the coefficients of the input system belong to the field of rational numbers
or some finite field, our algorithms can be implemented on a Turing machine (i.e. existing
computers) to compute the exact RUR.

1.1. Main results

In contrast to the earlier work on computing the RUR using the toric u-resultant, the main
new results we present here are:

• We present a derandomized version of the algorithm for solving square systems (Section 3.1).
• We present a new derandomized algorithm for solving overdetermined systems

(Section 3.2.2).
• We present a new algorithm for finding real roots of zero-dimensional square systems

(Section 3.3).
• We analyze the arithmetic complexity of our algorithm and give a tight bound (Section 5).
• We describe an implementation of the algorithm and show some experimental results

(Section 6).

1.2. Organization

This paper is organized as follows:

• In Section 2, we describe the theoretical background and the algorithms presented in this
paper. We list related work (Section 2.1) and preliminary definitions and results (Section 2.2).
• In Section 3, we state our algorithms precisely and prove their correctness. We first describe

the algorithm for computing the toric roots of a square system (Section 3.1). Then, we describe
the RUR for the affine zero set of a non-square system (Section 3.2). Finally, we discuss the
algorithm for computing the real roots of a system of polynomials with rational coefficients
(Section 3.3).
• In Section 4, we show some examples.
• In Section 5, we give the complexity analysis of our main algorithm.
• In Section 6, we describe an implementation of our algorithm and show some experimental

results.
• In Section 7, we conclude and list some directions for future work.
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2. Background

2.1. Previous work

The RUR for a system of polynomials has been known for a long time. The RUR was first
seen in Kronecker (1895–1931), and variations on it have been known for a while (Canny, 1988).
The RUR has become prominent in computer algebra mainly in the recent years.

If an input system is of dimension zero then the RUR can be computed via the “multiplication
table method” (Rouillier, 1999; Gonzalez-Vega et al., 1999; Basu et al., 2003). An extension of
this method finds all the isolated real roots as well as at least one point from every real positive-
dimensional component (Aubry et al., 2002; Din and Shost, 2004). A standard implementation of
the method requires reduction of the input polynomials into some normal form via the Gröbner
basis. The Gröbner basis is discontinuous with respect to changes in the coefficients of the input
polynomials (Mourrain, 1999).

A Gröbner-free algorithm to compute the RUR for a zero-dimensional system has been
proposed (Giusti et al., 2001). Recent work even handles systems with multiple roots (Lecerf,
2002). The complexity analysis of this algorithm is considered in Jeronimo et al. (2004).

The toric resultant (or the sparse resultant) of a system of n + 1 polynomials with
indeterminate coefficients in n variables is a polynomial with integer coefficients in these
indeterminates (as variables) that vanishes iff the system has a common root on some toric variety
over an algebraic closure of the field to which the coefficients of the polynomials belong (Gelfand
et al., 1994; Cox et al., 1998; Sturmfels, 2002; Cox, 2003). The toric resultant is expressed as a
divisor of the determinant of some square matrix, called the toric resultant matrix or the Newton
matrix (Sturmfels, 1994; Emiris, 1996; Rojas, 2003). The mixed-subdivision-based algorithm
(Canny and Emiris, 1993, 2000; Emiris, 2003) is historically the first practical algorithm that
constructs the resultant matrix, but the size of the matrix constructed is often too large. Another
version of this algorithm first constructs a small matrix and incrementally constructs larger
matrices until one that works is found (Emiris and Canny, 1995). Several efforts have been
made to construct smaller resultant matrices in order to speedup the toric resultant computation
(D’Andrea, 2002; Emiris, 2002; Hong and Minimair, 2002; Minimair, 2002; Dickenstein and
Emiris, 2003; Khetan, 2003, 2005).

The resultant-based method for solving a system of polynomial equations fails if the zero set
of the input system has some positive-dimensional components. In order to solve such systems,
a perturbation technique is used. The Generalized Characteristic Polynomial (GCP) by Canny
(1990) can be used to express solutions to dense homogeneous square systems with degeneracies.
The toric perturbation is defined as a particular coefficient of the toric GCP (Rojas, 1997, 1999a,
2000). The toric perturbation works even if an input square system has some multiple roots at the
point at infinity. A potentially more efficient perturbation technique that finds expectedly fewer
monomials has been proposed by D’Andrea and Emiris (2001; 2003).

The toric resultant-based method can be modified so that it finds some set containing all the
affine roots of a square system (Rojas and Wang, 1996; Li and Wang, 1996; Rojas, 1999b,a,
2000).

The algorithm for computing the RUR of a given system of polynomials with rational
coefficients described in this paper improves the versions in Rojas (1999a) and Keyser et al.
(2005).

2.2. Definitions and prior results

Let K be a field. Write K for the algebraic closure of K and K∗ for K \ {0}.
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2.2.1. Rational univariate reduction
Consider a square system of n polynomials f1, . . . , fn in n variables with coefficients in K.

It is known (Rojas, 1999a; Rouillier, 1999; Basu et al., 2003) that there exists a finite set Z ′

containing all the isolated common roots of the input system (in Kn
) such that each coordinate

of points in Z ′ is represented as some univariate polynomial hi with coefficients in K evaluated
at a root (in K) of some other univariate polynomial h with coefficients in K. That is

Z ′ =
{
(h1 (θ) , . . . , hn (θ)) ∈ Kn

| θ ∈ K with h (θ) = 0
}

. (1)

This reduction is called a Rational Univariate Reduction (RUR) and this representation of the
zero set of the system is called a Rational Univariate Representation (RUR).

In the rest of paper, we write M ′ for the cardinality of the finite set of Z ′. Generally, the
quantity M ′ is the number of the roots of the input system. More precisely, if the input system is
zero-dimensional and all the roots are toric, i.e. there are finite roots in (K∗)n , then M ′ matches
the number of distinct roots of the input system.2

We derive the RUR from the toric perturbation (Rojas, 1999a), which is a generalization of
the “toric” u-resultant. In this section, we will describe preliminary facts about toric resultants
and toric perturbations.

2.2.2. Toric resultants
Let f be a polynomial in n variables X1, . . . , Xn with coefficients in K. Define the support

of f to be the finite set A of exponents of all the monomials appearing in f with non-zero
coefficients. Thus, A is some non-empty finite set of integer points in Rn , and

f =
∑
a∈A

ca Xa, ca ∈ K∗

where Xa
= Xa1

1 · · · X
an
n for a = (a1, . . . , an).

Fix n + 1 non-empty sets A0, A1, . . . , An of integer points in Rn . A system of n + 1
polynomials f0, f1, . . . , fn in n variables X1, . . . , Xn with supports A0, A1, . . . , An is specified
via coefficient vectors c0, c1, . . . , cn where

ci =
(
cia ∈ K∗ | a ∈ Ai

)
such that fi =

∑
a∈Ai

cia Xa .

For i = 0, 1, . . . , n, write MV−i for the mixed-volume of the convex hulls of
A0, A1, . . . , Ai−1, Ai+1, . . . , An (Sturmfels, 1994; Cox et al., 1998; Sturmfels, 2002). Recall
that all these mixed-volumes are non-negative, i.e., MV−i ≥ 0 for i = 0, 1, . . . , n (Cox et al.,
1998). Assume that at least one of these mixed-volumes MV−0, MV−1, . . . , MV−n is strictly
positive, i.e.,

∑n
i=0 MV−i > 0. Then, there exists a unique (up to sign) irreducible polynomial

TResA0,A1,...,An (c0, c1, . . . , cn) ∈ Z [c0, c1, . . . , cn] ,

called the toric resultant or the sparse resultant of the system which has the following property:

the system ( f0, f1, . . . , fn) has a common root in (K∗)n

=⇒ TResA0,A1,...,An (c0, c1, . . . , cn) = 0.

The toric resultant is also written as TRes ( f0, f1, . . . , fn).

2 Vanishing of the toric resultant of a system of polynomials with coefficients in K actually tells us whether or not
the system has common roots in the toric variety rather than (K∗)n . The toric variety has a naturally embedded copy of
(K∗)n and, for simplicity, we use (K∗)n instead of the toric variety.
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Several algorithms for computing the toric resultant of a given system of n+1 polynomials in
n variables with supports A0, A1, . . . , An have been proposed (Emiris and Canny, 1995; Canny
and Emiris, 2000). These algorithms construct a square matrix N , called the toric resultant matrix
or the Newton matrix, whose determinant is some non-trivial multiple of the toric resultant. The
non-zero entries of every row of N are the coefficients ci of some input polynomial fi . It follows
that det N is a homogeneous polynomial in each coefficient vector ci , and thus, the total degree
of det N with respect to each coefficient vector ci , degci

(det N ), is well-defined. These quantities
degci

(det N ) are bounded in terms of the mixed-volumes. More precisely, it is known that

degc0
(det N ) = MV−0, (2)

degci
(det N ) ≥ MV−i , i = 1, . . . , n. (3)

Note that equality (2) always holds, while, in (3), the equalities hold only when det N is the toric
resultant without any extraneous factor (Pedersen and Sturmfels, 1993).

2.2.3. Toric perturbations
Consider a square system of n polynomials f1, . . . , fn ∈ K [X1, . . . , Xn] with supports

A1, . . . , An . Assume that the mixed-volume MV−0 of the convex hulls of A1, . . . , An is strictly
positive, i.e., MV−0 > 0.

Let A0 = {o, b1, . . . , bn} where o is the origin and bi is the i th standard basis vector in Rn .
Also, let f0 = u0 + u1 X1 + · · · + un Xn where u = (u0, u1, . . . , un) is a vector of parameters.
Choose n polynomials f ∗1 , . . . , f ∗n ∈ K [X1, . . . , Xn] with supports contained in A1, . . . , An ,
that have only finitely many common roots in (K∗)n . Define the toric Generalized Characteristic
Polynomial TGCP (s, u) for the system ( f1, . . . , fn) to be the toric resultant of the perturbed
system

(
f0, f1 − s f ∗1 , . . . , fn − s f ∗n

)
:

TGCP (s, u) = TRes
(

f0, f1 − s f ∗1 , . . . , fn − s f ∗n
)
∈ K [s] [u] .

Also, define a toric perturbation TPert (u) for the system ( f1, . . . , fn) to be the non-zero
coefficient of the lowest degree term in TGCP (s, u) regarded as a polynomial in the variable s.

Theorem 1 (Rojas, 1999a[Main Theorem 2.4]). TPert (u) is well-defined, i.e., for a given
square system of polynomials f1, . . . , fn in n variables with coefficients in K, making a suitable
choice of polynomials f ∗1 , . . . , f ∗n , TGCP (s, u) (regarded as a polynomial in s) always has a
non-zero coefficient. TPert (u) is a homogeneous polynomial in parameters u0, u1, . . . , un with
coefficients in K which has the following properties:

(1) If (ζ1, . . . , ζn) ∈ (K∗)n is an isolated common root of the input system ( f1, . . . , fn) then
u0 + u1ζ1 + · · · + unζn is a linear factor of TPert (u).

(2) TPert (u) completely splits into linear factors over K. Letting Z be the zero set of the system
(which might be infinite), for every irreducible component W of Z ∩ (K∗)n , there is at least
one factor of TPert (u) corresponding to a point (ζ1, . . . , ζn) ∈ W .

Immediately from (2) and (3) together with the definitions above

Corollary 2.

degu0
TPert (u) = MV−0, (4)

degs TGCP (s, u) =

n∑
i=1

MV−i ≤ dim N −MV−0. (5)
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Remark 3. The assumption that MV−0 > 0 can be removed by paying only a reasonable amount
of extra computation. In the event that MV−0 = 0, we can add O(n) points to the supports
A1, . . . , An so that MV−0 is strictly positive. Those points can be chosen deterministically
(Rojas, 1999b) or at random. Because of efficiency, we will use a randomized method, and will
not focus on these details in this paper.

Remark 4. If u0+u1ζ1+· · ·+unζn is a linear factor of TPert (u) then (ζ1, . . . , ζn) is a common
root of the input system in the toric variety associated with the Minkowski sum of the convex
hulls of the supports of the input system. Note that there might exist a root of the input system in
the toric variety but not in (K∗)n .

Remark 5. There is a deterministic method to choose polynomials f ∗1 , . . . , f ∗n in Theorem 1
(Rojas, 1999b). However, because of efficiency, we will use a randomized method.

3. Algorithm

In this section, we will describe an algorithm for computing the RUR. After discussing the
derandomized process for computing the RUR for the toric zero set (the zero set in (K∗)n) of
a square system (Section 3.1), we will discuss extending this to the RUR for the affine zero set
(the zero set in Kn

) of a non-square system (Section 3.2). We will also discuss handling the cases
when K = Q or K = R and we are interested in finding the real roots only (Section 3.3).

In the rest of this paper, we will assume that the characteristic of the field K is 0 or sufficiently
large. The actual value for the characteristic of K (when it is not zero) will be given later in
Section 3.1.

Algorithms described in this section are as follows (Fig. 1):
Algorithm RUR toric square computes the RUR for the toric zero set (the zero set in (K∗)n)

of a square system of polynomials f1, . . . , fn in n variables with rational coefficients.
Algorithm RUR square computes the RUR for the affine zero set (the zero set in Kn

) of a
square system of polynomials f1, . . . , fn in n variables with rational coefficients. It internally
calls algorithm RUR toric square.

Algorithm RUR overconstrained computes the RUR for the affine zero set of a system of
polynomials f1, . . . , fm in n variables with rational coefficients when m > n. It internally calls
Algorithm RUR square.

Algorithm RUR computes the RUR for a system of polynomials f1, . . . , fm in n variables
with rational coefficients. It internally calls Algorithm RUR overconstrained or Algorithm
RUR square.

3.1. Toric RUR for square systems

Consider a square system of n polynomials f1, . . . , fn in n variables with coefficients in K.
Let Z be the zero set of the system. Assume that the mixed-volume MV−0 of the convex hulls
of supports A1, . . . , An of f1, . . . , fn is strictly positive. It follows from Theorem 1 that, with a
suitable choice of polynomials f ∗1 , . . . , f ∗n , there exists a finite subset Z ′ of Z ∩ (K∗)n such that

• Z ′ contains all the isolated common roots of the input system in (K∗)n as well as at least one
point from every irreducible component of Z ∩ (K∗)n , and
• the univariate polynomial h(T ) in the RUR for Z ′ is derived from TPert (u) =

TPert (u0, u1, . . . , un) by setting u0 to a variable T and specializing parameters u1, . . . , un to
some appropriate values in K.
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Fig. 1. Algorithms described in Section 3.

The other univariate polynomials h1, . . . , hn in the RUR are also derived from toric
perturbations. Recall that M ′ is defined to be the cardinality of Z ′ (Section 2.2.1). Note that
if the input system has only finitely many roots then Z ′ = Z ∩ (K∗)n , and thus, the input
system has M ′ distinct common roots (in (K∗)n). Auxiliary polynomials f ∗1 , . . . , f ∗n can be
chosen deterministically (Rojas, 1999a), though the process is costly. In practice, polynomials
with random coefficients are used. The probability that random polynomials work suitably is 1
over the real numbers and unsuitable choices are detectable. (See steps 11, 12 in Section 3.1.1.)
Thus, we will describe a version of the algorithm in which choices of auxiliary polynomials
remain randomized. The conditions for an appropriate specialization of parameters u1, . . . , un
will be clarified later. We will see that parameters u1, . . . , un can be appropriately specialized.

We give an algorithm for computing the RUR for Z ′ (Section 3.1.1). Step-by-step details are
given immediately afterward (Section 3.1.2).

The algorithm computes the RUR only when the mixed-volume MV−0 for the convex hulls
of supports A1, . . . , An of polynomials f1, . . . , fn is strictly positive. If MV−0 turns out to be 0
then the algorithm adds some points to A1, . . . , An so that MV−0 becomes strictly positive. See
Remark 3 and steps from 3 through 6 (Section 3.1.1).

3.1.1. Toric RUR for square systems: Algorithm
Algorithm RUR toric square
Input: f1, . . . , fn ∈ K [X1, . . . , Xn] with supports A1, . . . , An ⊆ Zn .
Output: h, h1, . . . , hn ∈ K [T ] forming the RUR for some finite set Z ′ which contains all the

isolated common roots of the input system in (K∗)n as well as at least one point from
every irreducible component of the zero set of the input system in (K∗)n .
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1: A0 ← {o, b1, . . . , bn} where o is the origin and bi is the i th standard basis vector in Rn

2: compute MV−0 of the convex hulls of A1, . . . , An

3: if MV−0 = 0 then
4: for i := 1, . . . , n do:
5: choose a point a ∈ Zn with random coordinates and Ai ← {a} ∪ Ai

6: go to 2
7: compute MV−1, . . . , MV−n and construct the toric resultant matrix N for a system of

polynomials with supports A0, A1, . . . , An

8: (u0, u1, u2, . . . , un)← (1, 0, 0, . . . , 0)

9: choose polynomials f ∗1 , . . . , f ∗n in variables X1, . . . , Xn with random coefficients in K and
supports contained in A1, . . . , An

10: set d to be a non-negative integer such that sd is the lowest degree term with non-zero
coefficient in TGCP (s, u) (regarded as a polynomial in s)

11: if TGCP (s, u) is identically zero then
12: go to 9
13: u ← 0 and M ← 0
14: (u1, u2, . . . , un)←

(
1, u, . . . , un−1

)
15: compute p(T ) := TPert (T, u1, . . . , un) where TPert (u) is the coefficient of the term sd in

TGCP (s, u) (regarded as a polynomial in s)
16: compute the square-free part q(T ) of p(T )

17: if degT p(T ) = degT q(T ) then /* if p(T ) is square-free then */
18: M ← degT p(T )

19: else /* if p(T ) is not square-free then */
20: if u ≤ n

(MV−0
2

)
then

21: if M < degT q(T ) then
22: M ← degT q(T )

23: increment u and go to 14
24: else /* if u > n

(MV−0
2

)
then */

25: M ← M
26: u ← 0
27: (u1, u2, . . . , un)←

(
1, u, . . . , un−1

)
28: compute p(T ) := TPert (T, u1, . . . , un)

29: compute the square-free part q(T ) of p(T )

30: if degT q(T ) < M then
31: increment u and go to 27
32: for i := 1, . . . , n do:
33: compute p±i (t) := TPert (t, u1, . . . , ui−1, ui ± 1, ui+1, . . . , un) 3

34: compute the square-free part q±i (t) of p±i (t)
35: if degt q−i (t) < M or degt q+i (t) < M then
36: increment u and go to 27
37: h(T )← q(T )

38: for i := 1, . . . , n do:

3 Step 33 does not make sense when the characteristic of K is 2, but we assume that the characteristic of K is 0 or
sufficiently large.
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39: compute the first subresultants4 ri,0 and ri,1 of q−i (t) and q+i (2T − t) regarded as
polynomials in the variable t with coefficients in K [T ]
/* ri,0 and ri,1 are polynomials in K [T ] */

40: compute hi (T ) := −T − ri,1(T )

ri,0(T )
mod h(T )

The algorithm differs from the prior version (Rojas, 1999a) in the following:

• The loop from step 3 through step 6 handles the input system when MV−0 is 0.
• Step 10 uses a new criteria (see Proposition 6) to determine a non-negative integer d such that

sd is the lowest degree term with non-zero coefficient in TGCP (s, u).
• The specialization of u is derandomized:

The loop from step 13 through step 25 finds an appropriate specialization of parameters
u1, . . . , un for computing an upper bound M for the cardinality M ′ of Z ′ (counting without
multiplicity).

Steps 26 through 36 find an appropriate specialization of parameters u1, . . . , un for
computing all the univariate polynomials h and h1, . . . , hn in the RUR.

3.1.2. Toric RUR for square systems: Description
Step 2 computes MV−0.
The loop from step 3 through step 6 adds points to A1, . . . , An so that MV−0 is assured to be

strictly positive. Those points are chosen randomly or deterministically. For efficiency, we use a
randomized method.

Step 7 computes MV−1, . . . , MV−n and constructs the toric resultant matrix N for a system of
n+1 polynomials with supports A0, A1, . . . , An . Entries of matrix N remain undetermined, and
will be specialized to some values later at steps 10, 15, 29 and 33. Step 7 needs to be performed
once and only once for any square system of n polynomials in n variables with given supports
A1, . . . , An .

The loop from step 8 through step 12 determines a non-negative integer d such that TPert (u)

is the coefficient of the term sd in TGCP (s, u).
We will show, in Proposition 6, that if sd is the lowest degree term with non-zero coefficient

in TGCP (s, 1, 0, 0, . . . , 0) then TPert (u) is the coefficient of the term sd in TGCP (s, u). Thus,
parameters u0, u1, . . . , un are specialized to 1, 0, . . . , 0 at step 8 and fixed throughout the loop.

Step 9 chooses auxiliary polynomials f ∗1 , . . . , f ∗n . While randomly chosen f ∗i ’s could turn
out not to be suitable, this is almost never the case, and is detected at step 11 if they are. As
mentioned earlier, there is a deterministic method for choosing suitable auxiliary polynomials
(Rojas, 1999a), but the method is costly, and suffers from expression swell. Thus, we stick with
the randomized method.

Step 10 determines a non-negative integer d such that sd is the lowest degree term with
non-zero coefficient in TGCP (s, 1, 0, 0, . . . , 0). From (5), degs TGCP (s, 1, 0, 0, . . . , 0) =∑n

i=1 MV−i , the right-hand side of which can easily be calculated from the quantities computed
at step 7, and thus, all the coefficients of TGCP (s, 1, 0, 0, . . . , 0) can be computed via
interpolation. More precisely, choose

∑n
i=1 MV−i+1 many values for s, specialize the entries of

N with the coefficients of f0 (which is the constant polynomial 1 here), f1− s f ∗1 , . . . , fn − s f ∗n ,
evaluate TGCP (s, 1, 0, 0, . . . , 0), and interpolate TGCP (s, 1, 0, 0, . . . , 0) from these values.

4 (Canny (1990) and Gonzalez-Vega (1991)).
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Recall that the determinant of the resultant matrix N is some non-trivial multiple of the toric
resultant. In order to calculate the explicit value of TGCP (s, u) at fixed s and u, the contribution
of the extraneous factor must be eliminated. An elimination of the extraneous factor is done
by another level of interpolation through the values of the determinant of N whose entries are
specialized in several ways. One such method is called the division method (Canny and Emiris,
2000), which applies to both cases — when the characteristic of K is 0 or positive.

If the characteristic of K is 0 then d can be determined by scanning the coefficients
of some non-trivial multiple of TGCP (s, 1, 0, 0, . . . , 0) instead of the coefficients of
TGCP (s, 1, 0, 0, . . . , 0) without any extraneous factor. From (5), degs TGCP (s, 1, 0, 0, . . . , 0)

is known to be bounded from above by dim N − MV−0, and thus, some non-trivial multiple
of TGCP (s, 1, 0, 0, . . . , 0) can be computed via interpolation from the values of det N . More
precisely, choose dim N − MV−0 + 1 many values for s, specialize the entries of N with the
coefficients of f0 (which is the constant polynomial 1 here), f1 − s f ∗1 , . . . , fn − s f ∗n , evaluate
det N , and interpolate.

Step 11 checks whether or not the randomly chosen f ∗i ’s at step 9 are suitable.
The loop from step 13 through step 25 finds an appropriate specialization of parameters

u1, . . . , un for computing an upper bound M for the cardinality M ′ of Z ′ (counting without
multiplicity).

Step 14 specializes parameters u1, . . . , un to some integer values.
Step 15 computes p(T ) := TPert (T, u1, . . . , un) introducing a variable T . From (4),

degT TPert (T, u1, . . . , un) = MV−0, the right-hand side of which has been computed at
step 7, and thus, TPert (T, u1, . . . , un) can be computed via interpolation: choose MV−0 +

1 many values for u0, evaluate the coefficient TPert (u) = TPert (u0, u1, . . . , un) of the
term sd in TGCP (s, u), and interpolate TPert (T, u1, . . . , un) from these values. From (5),
degs TGCP (s, u) is known, and thus, the coefficient of the term sd in TGCP (s, u) can be
computed via another level of interpolation: choose

∑n
i=1 MV−i+1 many values for s, specialize

the entries of N with the coefficients of f0, f1−s f ∗1 , . . . , fn−s f ∗n , calculate the explicit values of
TGCP (s, u), and interpolate TGCP (s, u) from these values. Note that calculation of the explicit
values of TGCP (s, u) requires an elimination of the extraneous factor from det N .

The above paragraph holds when the characteristic of K is 0 or positive. If the characteristic
of K is 0 then TPert (T, u1, . . . , un) can be computed via interpolation from the values of the
coefficient of the term sd in some non-trivial multiple of TGCP (s, u) instead of the values of the
coefficient of the term sd in TGCP (s, u) without any extraneous factor. This is possible because,
by (4), the contributions of the extraneous factor are independent of u, in particular u0, and
will be canceled out during interpolation. More precisely, choose MV−0+ 1 many values for u0,
evaluate the coefficient of the term sd in some non-trivial multiple of TGCP (s, u), and interpolate
TPert (T, u1, . . . , un) from these values. The coefficient of the term sd in some non-trivial
multiple of TGCP (s, u) is computed via another level of interpolation: choose dim N−MV−0+1
many values for s, specialize the entries of N with the coefficients of f0, f1−s f ∗1 , . . . , fn−s f ∗n ,
evaluate det N , and interpolate.

Step 16 computes the square-free part q(T ) of p(T ) := TPert (T, u1, . . . , un) by dividing
p(T ) by the greatest common divisor of p(T ) and its derivative p′(T ) found using the Euclidean
algorithm.

Steps 17 through 25 find M . If, for some specialization of parameters u1, . . . , un , p(T ) :=

TPert (T, u1, . . . , un) is square-free then M = degT p(T ) and the computation immediately
exits from the loop. On the contrary, if p(T ) remains non-square-free for all n

(MV−0
2

)
+ 1 many
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specializations of parameters u1, . . . , un then M is set to be the maximum degree of the square-
free part q(T ) of p(T ). The correctness of this part of the algorithm will be shown later.

Steps 26 through 36 find an appropriate specialization of parameters u1, . . . , un for computing
all the univariate polynomials h and h1, . . . , hn in the RUR.

Step 27 specializes parameters u1, . . . , un to some integer values.
Steps 28 and 29 are the same as steps 15 and 16, respectively. In the loop from step 13

through step 25, we have already tried several specializations of parameters u1, . . . , un , and
have found at least one appropriate specialization (possibly more if step 25 has been reached)
for computing M and possibly some inappropriate ones. For those specializations of parameters
u1, . . . , un that have been tried in the previous loop, steps 28 and 29 do not need to be performed.
If a specialization of parameters u1, . . . , un has been found inappropriate then the computation
immediately goes back to step 27. On the other hand, if a specialization of parameters u1, . . . , un
has been found appropriate for computing M , which means that it is appropriate for computing
h, then the computation jumps to step 32 and checks whether or not it is also appropriate for
computing h1, . . . , hn .

Similar to step 15, at step 33, p±i (t) are computed via interpolations, and similar to step 16,

at step 34, q±i (t) := p±i (t) / gcd
(

p±i (t) ,
(

p±i
)′
(t)
)

.

Step 37 determines the univariate polynomial h in the RUR, and the loop from step 38 through
step 40 determines the univariate polynomials h1, . . . , hn in the RUR.

Step 39 computes the first subresultants r0 and r1 of q−i (t) and q+i (2T − t) regarded as
polynomials in the variable t with coefficients in K [T ] (Canny, 1990; Gonzalez-Vega, 1991).
By definition, r0 and r1 are the determinants of some submatrices of the Sylvester matrix for
q−i (t) and q+i (2T − t) in (K [T ]) [t]. Each of these submatrices consists of M − 1 rows whose
entries are the coefficients of q−i (t) (or 0) and M − 1 rows whose entries are the coefficients
of q+i (2T − t) (or 0). Since the coefficients of q+i (2T − t) are actually polynomials in K [T ]
of degree M , r0 and r1 are also polynomials in K [T ] and both are of degree M(M − 1). Thus,
they can be computed via interpolation: choose M(M − 1) many values for T , specialize the
entries of these submatrices with the coefficients of q−i (t) ∈ K [t] and q+i (2T − t) ∈ (K [T ]) [t],
evaluate the determinant of these submatrices and interpolate r0(T ) and r1(T ) from these values
of the determinant.

Step 40 computes univariate polynomials h1(T ) , . . . , hn(T ) with coefficients in K. We will
show that whenever parameters u1, . . . , un are appropriately specialized, if θ ∈ K is a root of
h(T ) ∈ K [T ] then (h1(θ) , . . . , hn(θ)) is either a root of the input system or not toric.

3.1.3. Toric RUR for square systems: Proof for correctness
The following proposition completes the proof of the correctness of the loop from step 8

though step 12 of the algorithm.

Proposition 6. If sd is the lowest degree term with non-zero coefficient in TGCP (s, 1, 0, 0, . . . ,0)

then TPert (u) is the coefficient of the term sd in TGCP (s, u).

Proof. Suppose otherwise. Then, there exists a non-negative integer e < d such that TPert (u) is
the non-zero coefficient of the term se in TGCP (s, u). By Theorem 1, TPert (u) splits into (not
necessarily distinct) linear factors:

TPert (u) = c
M∏

j=1

(
u0 +

n∑
l=1

ulζ
( j)
l

)µ( j)

(6)
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where c is a non-zero constant belonging to K and µ(1), . . . , µ(M) are positive integers. Thus,
TPert (1, 0, 0, . . . , 0) 6= 0. This is a contradiction, since the coefficient TPert (1, 0, 0, . . . , 0) of
the term se in TGCP (s, 1, 0, . . . , 0) is not identically zero but e < d. �

In the rest of this section, we describe the conditions for an appropriate specialization of
parameters u1, . . . , un , the existence of appropriate specializations and the remaining proofs of
the correctness of the algorithm.

We use the famous concept of separating polynomials and their properties. For more details,
see textbooks like Basu et al. (2003).

A polynomial f in n variables with coefficients in a field L is said to separate two distinct
points α and β in Ln if f (α) 6= f (β). A polynomial f in n variables with coefficients in L is
said to separate a finite subset A of Ln if f separates every pair of two distinct points in A.

Lemma 7. Let L be a field of characteristic 0 or a finite field of characteristic at least n + 1.
Furthermore, let α and β be two distinct points in Ln+1. Then, at least one of the linear
polynomials in n + 1 variables X0, X1, . . . , Xn with integer coefficients

vu = X0 + u X1 + · · · + un Xn, u = 0, 1, . . . , n, (7)

separates α and β.

We describe the conditions for an appropriate specialization of parameters u1, . . . , un .
Recall that Z ′ is some finite subset of the zero set of the input system of polynomials

with coefficients in K such that the univariate polynomial h(T ) in the RUR for Z ′ is derived
from TPert (u) by setting u0 to a variable T and specializing parameters u1, . . . , un to some
appropriate values in K. Let M ′ be the cardinality of Z ′ so that

Z ′ =
{(

ζ
(1)
1 , . . . , ζ (1)

n

)
, . . . ,

(
ζ
(M ′)
1 , . . . , ζ

(M ′)
n

)}
. (8)

By Bernstein’s theorem (Bernstein, 1975)

M ′ ≤ M ≤ MV−0 = degT TPert (T, u1, . . . , un) . (9)

We say that parameters u1, . . . , un are appropriately specialized if the linear polynomials in
n variables

u1 X1 + · · · + un Xn (10)

and

u1 X1 + · · · + ui−1 X i−1 + (ui ± 1) X i + ui+1 X i+1 + · · · + un Xn,

i = 1, . . . , n (11)

separate Z ′, or equivalently, the following conditions are satisfied:

j 6= k ⇒
n∑

l=1

ulζ
( j)
l 6=

n∑
l=1

ulζ
(k)
l (12)

and

j 6= k ⇒
n∑

l=1

ulζ
( j)
l ± ζ

( j)
i 6=

n∑
l=1

ulζ
(k)
l ± ζ

(k)
i , i = 1, . . . , n. (13)

We show that there always exists an appropriate specialization of parameters u1, . . . , un .
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Proposition 8. At least one of the n-tuples in{
(u1, . . . , un) =

(
u, . . . , un) ∣∣∣∣ u = 0, 1, . . . , n

(
MV−0

2

)}
satisfies (12).

Proof. Let u be a non-negative integer and vu =
∑n

i=0 ui X i as in (7). Define

Y ′ =

{(
0, ζ

( j)
1 , . . . , ζ

( j)
n

) ∣∣∣∣ j = 1, . . . , M ′
}

. (14)

Condition (12) holds if there exists a non-negative integer u such that vu separates
(M ′

2

)
pairs of

distinct points in Y ′. Now, apply Lemma 7 and (9). �

Proposition 9. At least one of the n-tuples in{
(u1, . . . , un) =

(
u, . . . , un) ∣∣∣∣ u = 0, 1, . . . , (2n + 1) n

(
M

2

)}
satisfies (12) and (13).

Proof. Let u be a non-negative integer and vu =
∑n

i=0 ui X i as in (7). Define Y ′ as in (14) and
define

Y ′±i =

{(
±ζ

( j)
i , ζ

( j)
1 , ζ

( j)
2 , . . . , ζ

( j)
n

) ∣∣∣∣ j = 1, . . . , M ′
}

, i = 1, . . . , n.

Note that the cardinality of each Y ′±i is M ′. Conditions (12) and (13) hold if there exists a non-

negative integer u such that vu separates
(M ′

2

)
pairs of distinct points in Y ′,

(M ′

2

)
pairs of distinct

points in Y ′+i for i = 1, . . . , n, and
(M ′

2

)
pairs of distinct points in Y ′−i for i = 1, . . . , n, in total,

(2n + 1)
(M ′

2

)
pairs of distinct points. Now, apply Lemma 7. �

Remark 10. Parameters u1, . . . , un are appropriately specialized to some integers.5

We complete the proof of the correctness of the algorithm.
First, we show that condition (12) holds iff, at step 18 or step 25, M is correctly set.
By Theorem 1, TPert (T, u1, . . . , un) splits into (not necessarily distinct) linear factors:

TPert (T, u1, . . . , un) = c
M∏

j=1

(
T +

n∑
l=1

ulζ
( j)
l

)µ( j)

(15)

where c ∈ K∗ and µ(1), . . . , µ(M) are some positive integers.
Suppose TPert (u1, . . . , un) is not square-free. The possible situations are

(1) µ( j) ≥ 2 for some j , and/or
(2) parameters u1, . . . , un are inappropriately specialized so that condition (12) does not hold.

5 Since we assume that the characteristic of K is 0 or sufficiently large, K always contains integers.
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If µ(1) = · · · = µ(M) = 1 then, by Proposition 8, within finitely many attempts, a
specialization of parameters u1, . . . , un satisfying condition (12) will be found eventually to
compute TPert (T, u1, . . . , un) which becomes square-free. Thus, the computation reaches step
25 only if µ( j) ≥ 2 for some j . In this case, n

(MV−0
2

)
+ 1 many specializations of parameters

u1, . . . , un are tried. Again, by Proposition 8, at least one of them must satisfy condition (12).
Whenever a specialization of parameters u1, . . . , un satisfying condition (12) is used, degT q(T )

at step 21, which precisely matches the number of distinct linear factors of TPert (T, u1, . . . , un),
is maximized, since, with any inappropriate specialization of parameters u1, . . . , un breaching
condition (12), TPert (T, u1, . . . , un) must have fewer distinct linear factors.

Next, we show that conditions (13) hold iff, at step 30, degT q(T ) = M and simultaneously,
at step 35, degt q±i (t) = M for i = 1, . . . , n.

By (15), TPert (t, u1, . . . , ui−1, ui ± 1, ui+1, . . . , un) splits into (not necessarily distinct)
linear factors:

TPert (t, u1, . . . , ui−1, ui ± 1, ui+1, . . . , un)

= c
M∏

j=1

(
t +

n∑
l=1

ulζ
( j)
l ± ζ

( j)
i

)µ( j)

, i = 1, . . . , n.
(16)

If conditions (13) hold then every q±i (t) computed at step 34 is a product of M distinct linear
factors:

q±i (t) = c
M∏

j=1

(
t +

n∑
l=1

ulζ
( j)
l ± ζ

( j)
i

)
, i = 1, . . . , n. (17)

Thus, degt q±i (t) = M for i = 1, . . . , n.

On the other hand, if not all conditions (13) hold then, for some i , q−i (t) or q+i (t) has strictly
fewer than M distinct linear factors. Thus, degt q−i (t) < M or degt q+i (t) < M for some i .

Furthermore, by Proposition 9, an appropriate specialization of parameters u1, . . . , un
satisfying conditions (12) and (13) will be found eventually, which results in degT q(T ) =

degt q±i (t) = M for i = 1, . . . , n. This shows that the computation eventually exits from the
loop from step 26 through step 36.

Finally, we show that whenever parameters u1, . . . , un are appropriately specialized, if θ ∈ K
is a root of h(T ) ∈ K [T ] then (h1(θ) , . . . , hn(θ)) is either a root of the input system or not toric.

It follows that, provided condition (12) holds, at step 37, h(T ) is a product of M distinct linear
factors in K [T ]:

h(T ) = c
M∏

j=1

(
T +

n∑
l=1

ulζ
( j)
l

)
, (18)

and thus, h(T ) has precisely M distinct roots θ (1), . . . , θ (M) in K where

θ ( j)
= −

n∑
l=1

ulζ
( j)
l , j = 1, . . . , M. (19)
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Substituting (19) into (17), we see that, provided (12) and (13) hold, q−i (t) and q+i (2T − t) split
into linear factors over K:

q−i (t) = c
M∏

j=1

(
t −

(
θ ( j)
+ ζ

( j)
i

))
,

q+i (2T − t) = c
M∏

j=1

(
2T − t −

(
θ ( j)
− ζ

( j)
i

))
,

i = 1, . . . , n. (20)

Fixing T = θ ( j) in (20), we claim that q−i (t) and q+i
(
2θ ( j) − t

)
have a common linear factor

t −
(
θ ( j) + ζ

( j)
i

)
in K [t]:

q−i (t) = q+i

(
2θ ( j)

− t
)
= 0⇔ t = θ ( j)

+ ζ
( j)
i ,

i = 1, . . . , n,

j = 1, . . . , M.
(21)

In fact, any root of q−i (t) in K is of the form θ (k) + ζ
(k)
i for some k. But, if k 6= j then

q+i
(
2θ ( j) − t

)
is not square-free as a polynomial in K [t].

We now show that, for every hi (T ) computed at step 40, hi
(
θ ( j)

)
= ζ

( j)
i for j = 1, . . . , M ′.

Fix any i ∈ {1, . . . , n} and j ∈ {1, . . . , M}. It is known (Canny, 1990; Gonzalez-Vega,
1991) that r∗i,0 and r∗i,1 are the first subresultants of a pair of univariate polynomials q−i (t) and

q+i
(
2θ ( j) − t

)
in the variable t with coefficients in K then the ratio

r∗i,1
r∗i,0

matches the ratio of the

constant term−
(
θ ( j) + ζ

( j)
i

)
and the coefficient 1 of the linear term of the common linear factor

t −
(
θ ( j) + ζ

( j)
i

)
of q−i (t) and q+i

(
2θ ( j) − t

)
in K [t]:

r∗i,1
r∗i,0
= −

(
θ ( j) + ζ

( j)
i

)
.

Then

hi

(
θ ( j)

)
= −θ ( j)

−
ri,1
(
θ ( j)

)
ri,0
(
θ ( j)

) = −θ ( j)
−

r∗i,1
r∗i,0
= −θ ( j)

+

(
θ ( j)
+ ζ

( j)
i

)
= ζ

( j)
i .

Of course, the above argument does not make sense if some root θ ( j) of h(T ) corresponds to
some common root of the input system outside of the torus (C∗)n . In such a case, some of the
univariate polynomials h1, . . . , hn identically vanish, and we can effectively ignore them. The
number of common roots of the input system outside of the torus(C∗)n is the difference between
M and M ′.

3.2. RUR

Recall that Algorithm RUR toric square computes the RUR for the toric zero set (the zero
set in (K∗)n) of a square system. We would like to develop an algorithm for computing the RUR
for the affine zero set (the zero set in Kn

) for a system which is not necessarily square.

3.2.1. RUR for square systems
Consider a square system of polynomials f1, . . . , fn in n variables with coefficients in K. Let

Z be the zero set of the system. Write A1, . . . , An for the supports of f1, . . . , fn , respectively.
It is known (Li and Wang, 1996; Rojas, 1999a, 2000) that if, in Algorithm RUR toric square,
instead of A1, . . . , An , the sets {o} ∪ A1, . . . , {o} ∪ An are used then the algorithm computes the
RUR for some finite set Z

′
that contains all the isolated common roots of the input system (in
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Kn
) as well as at least one point from every irreducible component of Z(⊆ Kn

). Note that Z
′

may contain some extraneous points which do not belong to Z .

Algorithm RUR square
Input: f1, . . . , fn ∈ K [X1, . . . , Xn].

Output: h, h1, . . . , hn ∈ K [T ] forming the RUR for some finite set Z
′

which contains all the
isolated common roots of the input system as well as at least one point from every
irreducible component of the zero set of the input system.

1: for i := 1, . . . , n do:
2: set Ai to be the support of fi

3: Ai ← {o} ∪ Ai where o is the origin in Rn

4: call Algorithm RUR toric square on the input f1, . . . , fn and A1, . . . , An to compute
h, h1, . . . , hn ∈ K [T ].

3.2.2. RUR for overdetermined systems
The method described here is different from Keyser et al. (2005). In the previous paper, linear

algebra is used while, in this paper, algebraic geometry is used. The previous approach produces
some extra points other than the common roots of the input system, and, in order to get rid of
them, the extra work is required. However, the resultant matrix used in the previous approach is
generically smaller than the resultant matrix used in the new approach.

Throughout this paragraph, let L be an algebraically closed field containing K.
Let f1, . . . , fm be polynomials in n variables with coefficients in L. Write Z(n) ( f1, . . . , fm)

for the zero set of polynomials f1, . . . , fm in Ln :

Z(n) ( f1, . . . , fm)

=
{
(z1, . . . , zn) ∈ Ln

| f1(z1, . . . , zn) = · · · = fm(z1, . . . , zn) = 0
}
.

We will use the following facts. The proofs are found in textbooks of algebraic geometry, e.g.,
Cox et al. (1996).

• Let f1 and f2 be polynomials in n variables with coefficients in L. Then

Z(n) ( f1, f2) = Z(n) ( f1) ∩ Z(n) ( f2) . (22)

and

Z(n) ( f1 · f2) = Z(n) ( f1) ∪ Z(n) ( f2) . (23)

• An algebraic set Z in Ln is written as a finite union of irreducible algebraic sets in Ln :

Z = V1 ∪ · · · ∪ Vl (24)

where V1, . . . , Vl are irreducible algebraic sets in Ln . A decomposition (24) of Z is said to be
minimal if Vi 6⊆ V j for i 6= j . A minimal decomposition of Z always exists and is unique up
to the order in which V1, . . . , Vl are written.
• Let Z1 and Z2 be irreducible algebraic sets in Lm and Ln , respectively. Then, Z1 × Z2 is an

irreducible algebraic set in Lm+n .
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In the rest of this paragraph, assume that m > n.
Let f1, . . . , fm be polynomials in n variables X1, . . . , Xn with coefficients in L. Introducing

m − n variables Xn+1, . . . , Xm , f1, . . . , fm are seen as polynomials in m variables
X1, . . . , Xn, Xn+1, . . . , Xm with coefficients in L. Thus, Z(m) ( f1, . . . , fm) is well-defined and

Z(m) ( f1, . . . , fm)

=

{
(z1, . . . , zn, zn+1, . . . , zm) ∈ Lm

∣∣∣∣ (z1, . . . , zn) ∈ Z(n) ( f1, . . . , fm) ,

(zn+1, . . . , zm) ∈ Lm−n

}
.

Let Π denote the projection from Lm onto Ln which ignores the last m − n coordinates:

Π : Lm
3(z1, . . . , zn, zn+1, . . . , zm) 7→(z1, . . . , zn) ∈ Ln .

Proposition 11. Let f1, . . . , fm be polynomials in n variables X1, . . . , Xn with coefficients in
L. Furthermore, let

Z(n) ( f1, . . . , fm) = V1 ∪ · · · ∪ Vl (25)

be the unique minimal decomposition of Z(n) ( f1, . . . , fm) into a union of distinct irreducible
algebraic sets in Ln . For k = 1, . . . , l, define

Wk = Vk × Lm−n

=

{
(z1, . . . , zn, zn+1, . . . , zm) ∈ Lm

∣∣∣∣ (z1, . . . , zn) ∈ Vk,

(zn+1, . . . , zm) ∈ Lm−n

}
.

Then

Z(m) ( f1, . . . , fm) = W1 ∪ · · · ∪Wl (26)

is the unique minimal decomposition of Z(m) ( f1, . . . , fm) into a union of distinct irreducible
algebraic sets in Lm .

Proof. It is easy to see that equality (26) holds. It remains to be shown that (26) is a
decomposition of Z(m) ( f1, . . . , fm) into a union of irreducible algebraic sets in Lm and is
actually the unique minimal decomposition.

For k = 1, . . . , l, a product Wk of an irreducible algebraic set Vk in Ln and an irreducible
algebraic set Lm−n is an irreducible algebraic set in Lm .

Because of the minimality of the decomposition (25) of Z(n) ( f1, . . . , fm), Vi 6⊆ V j for i 6= j ,
i.e., there exists a point (z1, . . . , zn) ∈ Vi \ V j . Then, for every m − n-tuple (zn+1, . . . , zm) ∈

Lm−n , (z1, . . . , zn, zn+1, . . . , zm) is a point in Wi \ W j , i.e., Wi 6⊆ W j for i 6= j . Thus, (26) is
a minimal decomposition of Z(m) ( f1, . . . , fm) into a union of distinct irreducible algebraic sets
in Lm , and its uniqueness follows from the minimality. �

Corollary 12. Let f1, . . . , fm be polynomials in n variables X1, . . . , Xn with coefficients in L.
Furthermore, let

Z(m) ( f1, . . . , fm) = W1 ∪ · · · ∪Wl (27)

be the unique minimal decomposition of Z(m) ( f1, . . . , fm) into a union of distinct irreducible
algebraic sets in Lm . Then

Z(n) ( f1, . . . , fm) = Π (W1) ∪ · · · ∪Π (Wl) (28)
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is the unique minimal decomposition of Z(n) ( f1, . . . , fm) into a union of distinct irreducible
algebraic sets in Ln .

Proof. Let Z(n) ( f1, . . . , fm) = V1 ∪ · · · ∪ Vl ′ be the unique minimal decomposition of
Z(n) ( f1, . . . , fm) into a union of distinct irreducible algebraic sets in Ln . By Proposition 11,
Z(m) ( f1, . . . , fm) = V1 × Lm−n

∪ · · · ∪ Vl ′ × Lm−n is the unique minimal decomposition of
Z(m) ( f1, . . . , fm) into a union of distinct irreducible algebraic sets in Lm . Thus, l ′ = l and,
relabeling if necessary, for k = 1, . . . , l, Wk = Vk × Lm−n which implies Vk = Π (Wk). �

Consider a system of m polynomials f1, . . . fm in n variables X1, . . . , Xn with coefficients
in K. Introducing m − n variables Xn+1, . . . , Xm , construct a square system of m polynomials
g1, . . . , gm in m variables X1, . . . , Xm with coefficients in K:

gi (X1, . . . , Xm) = fi (X1, . . . , Xn) ·(Xn+1 − an+1) · · · · ·(Xm − am) i = 1, . . . , m,

(29)

where an+1 . . . , am are some constants in K.
Let

Z(m) ( f1, . . . , fm) = W1 ∪ · · · ∪Wl (30)

be the unique minimal decomposition of Z(m) ( f1, . . . , fm) into a union of distinct irreducible
algebraic sets in Km

.

Proposition 13. Following the notations above,

Z(m) (g1, . . . , gm) = W1 ∪ · · · ∪Wl ∪ Z(m) (Xn+1 − an+1) ∪ · · · ∪ Z(m) (Xm − am) (31)

is the unique minimal decomposition of Z(m) (g1, . . . , gm) into a union of distinct irreducible
algebraic sets in Km

.

Proof. Equality (31) holds since

Z(m) (g1, . . . , gm) =

m⋂
i=1

Z(m) (gi )

=

m⋂
i=1

(
Z(m) ( fi ) ∪

m⋃
j=n+1

Z(m)
(
X j − a j

))

=

m⋂
i=1

Z(m) ( fi ) ∪

m⋃
j=n+1

Z(m)
(
X j − a j

)
= Z(m) ( f1, . . . , fm) ∪

m⋃
j=n+1

Z(m)
(
X j − a j

)
=

l⋃
k=1

Wk ∪

m⋃
j=n+1

Z(m)
(
X j − a j

)
where the first and the fourth equalities follow from (22), the second equality follows from (23)
and the last equality follows from (30).

All the components appearing on the right-hand side of (31) are irreducible. By assumption,
W1, . . . , Wl are all irreducible. Each Z(m)

(
X j − a j

)
is the zero set of a linear polynomial

X j − a j , and thus, is irreducible.
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Furthermore, all the components appearing on the right-hand side of (31) are distinct. By
assumption, Wi 6⊆ W j for i 6= j . Any pair of Wk and Z(m)

(
X j − a j

)
are distinct because Wk

contains a point whose j th coordinate is not a j . If i 6= j then Z(m) (X i − ai ) 6⊆ Z(m)
(
X j − a j

)
since the former contains a point whose j th coordinate is not a j . Hence, the decomposition (31)
is minimal, and its uniqueness follows from the minimality. �

Note that all the irreducible components of the unique minimal decomposition of
Z(m) (g1, . . . , gm) are of positive dimension; each Wk contains a copy of Km−n

and each

Z(m)
(
X j − a j

)
contains a copy of Km−1

.
Suppose Algorithm RUR square will be applied to the square system of polynomials

g1, . . . , gm in m variables with coefficients in K and univariate polynomials h and h1, . . . , hm

with coefficients in K are returned. These polynomials form the RUR for some finite set Y
′

that contains at least one point from every irreducible component of Z(m) (g1, . . . , gm). By
Proposition 13, Y

′
contains at least one point from each Wk : for k = 1, . . . , l, there exists a root

θ (in K) of h such that Wk 3 (h1 (θ) , . . . , hm(θ)). By Proposition 11 and Corollary 12, there is
a bijective correspondence between irreducible components V1, . . . , Vl of Z(n) ( f1, . . . , fm) and
irreducible components W1, . . . , Wl of Z(m) ( f1, . . . , fm), and Vk = Π (Wk) for k = 1, . . . , l.
Thus, for k = 1, . . . , l, there exists a root θ (in K) of h such that Vk 3 (h1(θ) , . . . , hn(θ)).
Hence, the set

Z
′
= Π

(
Y
′
)
=

{
(h1 (θ) , . . . , hn (θ)) | θ ∈ K with h(θ) = 0

}
contains at least one point from every irreducible component of Z(n) ( f1, . . . , fm). In particular,
Z
′

contains all the isolated roots of the input system of polynomials f1, . . . , fm in n variables.

Algorithm RUR overconstrained
Input: f1, . . . , fm ∈ K [X1, . . . , Xn].
Output: h, h1, . . . , hn ∈ K [T ] forming the RUR for some finite set Z

′
which contains all the

isolated common roots of the input system as well as at least one point from every
irreducible component of the zero set of the input system.

1: for i := 1, . . . , m do:
2: gi (X1, . . . , Xm)← fi (X1, . . . , Xn) ·(Xn+1 − an+1) · · · · ·(Xm − am) where an+1, . . . , am

are some constants in K.
3: call Algorithm RUR square on the input g1, . . . , gm ∈ K [X1, . . . , Xm] to compute

h, h1, . . . , hm ∈ K [T ] forming the RUR for some finite set Y
′

which contains at least one
point from every irreducible component of the zero set (in Km

) of the system of polynomials
g1, . . . , gm

4: discard hn+1, . . . , hm to obtain h, h1, . . . , hn ∈ K [T ] forming the RUR for Z
′

One may suspect that the RUR for (some finite subset of) Z(m) ( f1, . . . , fm) may be computed
via Algorithm RUR square by simply treating polynomials f1, . . . , fm as polynomials in m
variables X1, . . . , Xm instead of generating g1, . . . , gm . Unfortunately, this is not so. Recall
that all irreducible components W1, . . . , Wl of Z(m) ( f1, . . . , fm) are of positive dimension. In
order to compute the RUR for (some finite subset of) the zero set of positive dimension, the
input system of polynomials f1, . . . , fm must be perturbed by auxiliary polynomials f ∗1 , . . . , f ∗m
with the conditions (1) the support of f ∗i is contained in the support of fi for i = 1, . . . , m,



830 K. Ouchi, J. Keyser / Journal of Symbolic Computation 43 (2008) 811–844

and (2) f ∗1 , . . . , f ∗m have only finitely many common roots in Km
. (See step 9 of Algorithm

RUR toric square.) Suppose condition (1) is satisfied. Since variables Xn+1, . . . , Xm do not
appear in the supports of f1, . . . , fm , they are not in the supports of f ∗1 , . . . , f ∗m . Then, the

zero set of f ∗1 , . . . , f ∗m never becomes finite; it always contains Km−n
. Thus, there is no system

of polynomials f ∗1 , . . . , f ∗m satisfying the above two conditions simultaneously, and step 9 of
Algorithm RUR toric square always fails.

3.2.3. RUR for underdetermined systems
Consider a system of m polynomials f1, . . . , fm in n variables with coefficients in K. Assume

that m < n. Then, we can construct a square system by adding n − m copies of fm to the input
system and use Algorithm RUR square.

In general, the zero set of an underdetermined system has some positive-dimensional
components. Our algorithm cannot find them, but just picks up finitely many points on them.
This is not very interesting, as the result is nearly meaningless in any real application.

3.2.4. Algorithm RUR
Putting the results from the previous sections together, given a system of m polynomials

f1, . . . , fm in n variables with coefficients in K, even though m 6= n, we can compute the RUR
for some set Z

′
which contains all the isolated common roots of the input system in Kn

(rather
than in (K∗)n) as well as at least one point from every irreducible component of the zero set of
the input system.

Algorithm RUR
Input: f1, . . . , fm ∈ K [X1, . . . , Xn].
Output: h, h1, . . . , hn ∈ K [T ] forming the RUR for some finite set Z

′
which contains all the

isolated common roots of the input system as well as at least one point from every
irreducible component of the zero set of the input system.

1: if m > n then
2: call Algorithm RUR overconstrained to compute h, h1, . . . , hn ∈ K [T ] forming the RUR

for Z
′

3: else if m = n then
4: call Algorithm RUR square to compute h, h1, . . . , hn ∈ K [T ] forming the RUR for Z

′

5: else /* if m < n then */
6: g1 ← f1, . . . , gm ← fm, gm+1 ← fm, . . . , gn ← fm

7: call Algorithm RUR square on the input g1, . . . , gn to compute h, h1, . . . , hn ∈ K [T ]
forming the RUR for Z

′

3.3. Real solving via RUR

Consider a square system of polynomials f1, . . . , fn in n variables with coefficients in Q.
Assume that MV−0 > 0. We have seen that we are able to compute the RUR for some set
Z
′
⊆ (C∗)n . The value of the i th coordinate of a point in Z

′
can be obtained by evaluating the

univariate polynomial hi with coefficients in Q at some root θ of the univariate polynomial h
with coefficients h. If θ ∈ R then, obviously, hi (θ) ∈ R. In this section, we will show that, under
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a certain condition, the converse is also true. We would like to point out that the converse is not
a direct consequence of the existence of the RUR, but instead follows from the fact that a certain
type of random choices can always be made in algorithm RUR square.

Let the RUR for the zero set of a given system of polynomials with rational coefficients be{
(h1 (θ) , . . . , hn (θ)) ∈ Kn

| θ ∈ K with h (θ) = 0
}

.

In order to approximate all the coordinates of all the roots of the input system in the RUR to
any given precision, we should be able to approximate all the roots of h to any given precision
simultaneously. We will show that the point (h1 (θ) , . . . , hn(θ)) is real iff θ is real. Thus, in
order to approximate all the coordinates of all the real roots of the input system in the RUR to
any given precision, we should be able to approximate all the real roots of h simultaneously, but
this can be done by using, e.g., Sturm’s method. On the other hand, it is not trivial to enumerate
all the roots of h.

Consider a square system of n polynomials f1, . . . , fn in n variables with rational coefficients.
Let Z be the zero set of the input system (in Cn). Suppose that Algorithm RUR square is called
on the input f1, . . . , fn and returns the univariate polynomials h and h1, . . . , hn with rational
coefficients forming the RUR for some finite set Z

′
. The set Z

′
contains all the isolated common

roots of the input system.

Proposition 14. For any root θ of h,

θ ∈ R ⇔ (h1 (θ) , . . . , hn (θ)) ∈ Rn . (32)

Proof. The sufficient condition is obvious. Thus, we only need to show the necessary condition.
Rewriting (19), θ = −

∑n
l=1 ul · hl(θ). By Remark 10, u1, . . . , ul ∈ Z. Hence,

h1(θ) , . . . , hn(θ) ∈ R⇒ θ ∈ R. �

If Z is of dimension zero then all the common roots of the input system are isolated, and thus,
Z
′
⊇ Z . Hence, the set

Z
′

R = {(h1 (θ) , . . . , hn (θ)) | θ ∈ R with h (θ) = 0} ⊆ Rn

contains all the real roots of the input system. Therefore, our algorithm can be used for the real
solving of zero-dimensional square systems.

On the other hand, if Z is of positive dimension then there may be some real roots of the input
system which are not contained in Z

′

R. Algorithm RUR square picks up least one point from
each of the positive-dimensional components of Z . These positive-dimensional components of
Z contain finitely or infinitely many real points. However, there is no guarantee that the points
picked up by the algorithm are real, even if there are only finitely many real roots on some
positive-dimensional components. Note that Proposition 14 still holds, though it is not useful in
this case.

4. Examples

In this section, we give examples that illustrate the results and shortcomings of our algorithms.
Due to the limited space available to display results, all the examples listed are of low dimension.
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Example F1:

Consider a system F1 of 2 polynomials in 2 variables with integer coefficients:

f1 = 1+ 2X − 2X2Y − 5XY + X2
+ 3X3Y,

f2 = 2+ 6X − 6X2Y − 11XY + 4X2
+ 5X3Y.

(33)

The zero set of F1 consists of 2 isolated points (1, 1) ,
(

1
7 , 7

4

)
and 1 irreducible component

X = −1 of dimension 1.
The RUR for the zero set of F1 is computed as follows:

h(T ) = 84T 4
+ 306T 3

− 574T 2
− 1545T + 1989,

h1(T ) = −T −
r1,1(T )

r1,0(T )
, (34)

h2(T ) = −T −
r2,1(T )

r2,0(T )

where

r1,1(T ) = −1382279494376841984T 3
− 5914280670220800T 2

+ 9458729449441411392T − 8992070973148449600,

r1,0(T ) = −396314714894789376T 3
− 1262397960878976T 2

+ 2717758211316680448T − 2585831836226329728,

r2,1(T ) = −
541204302243578448279294533632

3176523
T 3

−
3120374299759092128055296

27
T 2

+
1069598558052109058795873435648

1058841
T

−
262531016085535220116679598080

352947
,

r2,0(T ) = −
9874040237517291328323911680

151263
T 3

+
1904111379091981805699072

27
T 2

+
90160740289030972717139378176

151263
T

−
36109849182685470578177769472

50421
.

The univariate polynomial h has 4 roots θ and the values of the real and imaginary parts of
h1(θ) and h2(θ) are approximated as follows:

(Re h1(θ) , Im h1(θ)), (Re h2(θ) , Im h2(θ))

(−1, −1.0561× 10−46), (−0.32019, −1.6753× 10−47)

(1, 1.6658× 10−47), (1, 8.0503× 10−48)

(0.14286, 1.0519× 10−51), (1.75, 1.0512× 10−51)

(−1, −5.2409× 10−43), (0.19519, −3.5186× 10−40)
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The table above suggests that, for the RUR computed as (34), we find 2 isolated roots along with
2 points on the positive-dimensional component.

Example F2:
Consider a system F2 of 3 polynomials in 3 variables with integer coefficients:

f1 = X2
+ Y 2

+ Z − 1,

f2 = X2
+ Y 2

− Z + 1, (35)

f3 = Z − 1.

It is easy to see that F2 has one and only one real root (0, 0, 1) which actually lies
on the intersection of 2 complex positive-dimensional components

{(
−
√
−1Y, Y, 1

)}
and{(√

−1Y, Y, 1
)}

of the zero set of the input system.
The univariate polynomial h in the RUR for the zero set of F2 is computed as follows:

h = −T 4
− 4T 3

− 6T 2
− 4T − 5. (36)

Since the degree of h is 4, the RUR for the set determines 4 points lying on the positive-
dimensional components. By using Sturm’s method, we can easily see that h has no real roots.
Thus, by Proposition 14, none of those 4 points are real.

In general, if the zero set of the input system has some positive-dimensional components on
which there are only finitely many real points then our algorithm often will not pick up (some or
all of) these real points. See Section 3.3.

Example F3:
Let L3 be a system of 3 linear polynomials in 3 variables with integer coefficients:

l1 = 3X − Y − 1,

l2 = X − Y + 1, (37)

l3 = X + Y − 3.

The zero set of L3 consists of a single point (1, 2).
Now, consider a system F3 of 3 polynomials in 2 variables with integer coefficients:

f1 = l2 · l3 = X2
− 2X − Y 2

+ 4Y − 3,

f2 = l1 · l3 = 3X2
+ 2XY − 10X − Y 2

+ 2Y + 3, (38)

f3 = l1 · l2 = 3X2
− 4XY + 2X + Y 2

− 1.

By construction, we immediately see that the zero set of F3 consists of a single point
(1, 2). Note, however, that the zero sets of any subsystem consisting of 2 polynomials has a
positive-dimensional component. (The subsystems ( f1, f2), ( f1, f3) and ( f2, f3) have positive-
dimensional components l3, l2 and l1, respectively.) Thus, an approach such as finding solutions
for one pair of equations and then “checking” the third equation would not be sufficient.

Since F3 is an overdetermined system, Algorithm RUR overconstrained constructs a square
system G3 of 3 polynomials in 3 variables with rational coefficients:

g1 = f1 ·(Z − 1) =
(

X2
− 2X − Y 2

+ 4Y − 3
)

(Z − 1) ,

g2 = f2 · (Z − 1) =
(

3X2
+ 2XY − 10X − Y 2

+ 2Y + 3
)

(Z − 1) , (39)

g3 = f3 · (Z − 1) =
(

3X2
− 4XY + 2X + Y 2

− 1
)

(Z − 1) .
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The univariate polynomial h in the RUR for the zero set of G3 is computed as follows:

h = −5505024000T 10
− 391643136000T 9

− 9566787993600T 8
− 43491325378560T 7

+ 2475168513392640T 6
+ 58123559884554240T 5

+ 571184791525785600T 4
+ 2276891395149004800T 3

− 4405394155933532160T 2
− 70411662389988556800T

− 176330303770208501760.

(40)

Likewise, but not shown here, we compute h1, h2, and h3. The RUR for the zero set of F3 is
obtained from the RUR of the zero set of G3 by ignoring the last coordinate (i.e. ignoring h3).
Evaluating h1 and h2 at roots of h gives us multiple points at the single location (1, 2).

5. Complexity analysis

In this section, we give a worst-case asymptotic complexity analysis of Algorithm
RUR toric square described in Section 3.1.

The computational model used here is either the Turing machine or the BSS machine (Blum
et al., 1997). If K is Q or some finite field then the algorithm can be implemented on Turing
machines (or existing computers). On the other hand, if K is R or C then the algorithm cannot be
implemented (exactly) on Turing machines. In this case, the BSS machine over R or C is used.
On the BSS machine over a field K, an arithmetic operation over K is done in constant time,
and thus, roughly speaking, the time complexity of a given algorithm matches the number of
arithmetic operations over K. In order to make a valid argument on either of those computational
models, in this section, we only consider the arithmetic complexity (the number of arithmetic
operations) of the algorithm. The bit-length of the quantities appearing in the algorithm is not
discussed here, but some discussion of the practical performance can be found in Section 6.1.2.

The following notations are used:
Let O∗ ( ) denote a big oh notation in which a polylog factor is ignored: O∗(n) = O

(
n logr n

)
for some r ≥ 0. Also, let ω be the constant so that the matrix multiplication of two square
matrices of dimension l takes O(lω) arithmetic operations. It is well-known that ω < 2.376.

5.1. Arithmetic complexity analysis

Consider a square system of polynomials f1, . . . , fn in n variables with coefficients in K. Let
Ai be the support of fi for i = 1, . . . , n. Suppose Algorithm RUR toric square is called on the
input f1, . . . , fn and A1, . . . , An and returns the RUR for some finite subset Z ′ of the zero set Z
of the input system. The algorithm sets the support A0 of f0 so that f0 is a linear polynomial.

We introduce two quantitiesM and N .
As before, let MV−i denote the mixed-volume of the convex hulls of A0, A1, . . . , Ai−1, Ai+1,

. . . , An . (See Section 2.2.2.) Define M =
∑n

i=0 MV−i . Thus, M is the degree of the toric
resultant.

Step 7 of the algorithm constructs the toric resultant matrix N whose determinant is some
non-trivial multiple of the toric resultant. Let N = dim N .

Step 18 or step 26 of the algorithm determines the cardinality M of Z ′ which matches the
degree of the univariate polynomial h in the RUR.
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Recall the following facts (von zur Gathen and Gerhard, 2003):

• Given l + 1 distinct values in K, a unique univariate polynomial of degree at most l with
coefficients in K that takes those values at l + 1 distinct points in K can be computed via
interpolation using O∗(l) arithmetic operations over K.
• Given two univariate polynomials with coefficients in K of degree at most l, their GCD is

computed using O∗(l) arithmetic operations over K. Thus, given a univariate polynomial with
coefficients in K of degree at most l, its square-free part is computed using O∗(l) arithmetic
operations over K.

The value of the toric resultant of a system of n + 1 polynomials in n variables with supports
A0, A1, . . . , An with arbitrary but fixed coefficients in K is calculated using O∗(nMNω)

arithmetic operations over K (Emiris and Canny, 1995; Canny and Emiris, 2000).
The arithmetic complexity of the algorithm is governed by the loop from step 13 through step

25 or the loop from step 26 through 36.
By (5), degs TGCP (s, u) =

∑n
i=1 MV−i = M − MV−0, and thus, the coefficients of

TGCP (s, u) at fixed u (regarded as a univariate polynomial in s) are computed via interpolation
using O∗

(
nM2Nω

)
arithmetic operations over K.

By (4), degT TPert (T, u1, . . . , un) = MV−0. Thus, at step 15 or step 28,
TPert (T, u1, . . . , un) at fixed (u1, . . . , un) is computed via interpolation using O∗(
nMV−0M2Nω

)
arithmetic operations over K, and at step 16 or step 29, the square-free part of

TPert (T, u1, . . . , un) is computed using O∗(MV−0) arithmetic operations over K.
By the same argument as in the previous paragraph, for i = 1, . . . , n, at step

33, TPert (t, u1, . . . , ui−1, ui ± 1, ui+1, . . . , un) at fixed (u1, . . . , un) are computed using
O∗
(
nMV−0M2Nω

)
arithmetic operations over K, and at step 34, q±i (t) are computed using

O∗(MV−0) arithmetic operations over K. Hence, the for loop from step 33 through step 36 is
executed using O∗

(
n2MV−0M2Nω

)
arithmetic operations over K.

By Proposition 8, the loop from step 13 through step 25 is repeated O
(
nMV2

−0

)
times, and

each iteration uses O∗
(
nMV−0M2Nω

)
arithmetic operations over K. Thus, in total, the number

of arithmetic operations over K needed to process this loop is O∗
(
n2MV3

−0M
2Nω

)
.

By Proposition 9, the loop from step 26 through step 36 is repeated O
(
n2 M2

)
times, and each

iteration uses O∗
(
n2MV−0M2Nω

)
arithmetic operations over K. Thus, in total, the number of

arithmetic operations over K needed to process this loop is O∗
(
n4 M2MV−0M2Nω

)
.

Putting all of this together, the univariate polynomials h and h1, . . . , hn forming the RUR are
computed using O∗

(
n2
(
MV2
−0 + n2 M2

)
MV−0M2Nω

)
arithmetic operations over K.

By (9), MV−0 ≥ M . The equality holds if Z ′ does not contain any multiple root of the
input system. In this case, the loop from step 26 through step 36 governs the complexity of
the algorithms. On the other hand, if Z ′ contains some multiple roots of the input system then
TPert (T, u1, . . . , un) is not square-free and

degT TPert (T, u1, . . . , un) = MV−0 > M = deg h. (41)

In this case, there is a slight chance that the loop from step 13 through 25 takes more arithmetic
operations over K than the loop from step 26 through step 36. When the loop from step 13
through 25 is executed, M has not yet been determined. On the other hand, the loop from step 26
through step 36 is executed after M is correctly determined. Thus, the loop from step 26 through
step 36 does not have to be repeated unnecessarily.
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5.1.1. M and N
We have seen that the arithmetic complexity of the algorithm is expressed in terms ofM and

N . In this section, we consider how the relation of those two quantities affects the complexity of
the algorithm.

When the characteristic of K is 0, at step 15 or step 28 or step 33, TPert (T, u1, . . . , un) at
fixed (u1, . . . , un) (regarded as a polynomial in K [T ]) is computed via interpolation through
the values of the coefficient of the term sd in some non-trivial multiple of TGCP (s, u) instead
of the values of the coefficient of the term sd in TGCP (s, u) without any extraneous factor.
The value of any coefficient of some non-trivial multiple of TGCP (s, u) is interpolated from
the values of det N and N has been constructed at step 7. On the other hand, the value of
any coefficient of TGCP (s, u) without any extraneous factor is interpolated from the values
of TRes

(
f0, f1 − s f ∗1 , . . . , fn − s f ∗n

)
, but evaluation of TRes

(
f0, f1 − s f ∗1 , . . . , fn − s f ∗n

)
requires additional steps to eliminate the contribution of the extraneous factor from the value
of det N . The use of det N instead of TRes

(
f0, f1 − s f ∗1 , . . . , fn − s f ∗n

)
allows us to avoid

executing these additional steps. (See Section 3.1.) In such a case, TPert (T, u1, . . . .un) at
fixed (u1, . . . , un) is computed using O∗

(
MV−0N 1+ω

)
arithmetic operations over K, and thus,

the number of arithmetic operations over K needed to compute univariate polynomials h and
h1, . . . , hn forming the RUR becomes O∗

(
n
(
MV2
−0 + n2 M2

)
MV−0N 1+ω

)
.

The quantity N actually depends on the algorithm used to construct the resultant matrix
N . From (2) and (3), N ≥ M. However, no algorithm that constructs an optimal N (i.e.,
N satisfying N = M) has been found except for very small n (Khetan, 2003, 2005). Even
if the best algorithm currently known is used, there is a risk that N becomes exponentially

bigger than M (Emiris and Canny, 1995; Canny and Emiris, 2000): N = O
(

en
√

n
M
)

. Thus,

asymptotically, the cost of additional steps to eliminate the extraneous factor will be negligible
compared to the cost of interpolations through the values of the determinant of a bigger matrix.
Hence, even if the characteristic of K is 0, the “best” worst-case arithmetic complexity of
Algorithm RUR toric square remains O∗

(
n2
(
MV2
−0 + n2 M2

)
MV−0M2Nω

)
. In practice, N

rarely becomes exponentially bigger thanM. This matter is discussed more later in Section 6.
Nevertheless, developing an algorithm for computing a resultant matrix of smaller (or the
smallest) size is still an active area of research.

6. Implementation

In this section, we describe implementations of the algorithms.
Our goal is to develop a library for computing the RUR for the zero set of a system of m

polynomials with rational coefficients such that (1) the exact RUR is computed, meaning that all
the rational coefficients of the univariate polynomials forming the RUR will be computed to full
precision, and (2) for small m, the library runs in an acceptable amount of time in practice.

Since all the algorithms reduce to Algorithm RUR toric square (see Fig. 1), we mainly
discuss the implementation of Algorithm RUR toric square.

We also show some experimental results.

6.1. Implementation of RUR toric square

We discuss here an implementation of Algorithm RUR toric square for computing the exact
RUR for the zero set of a square system of n polynomials f1, . . . , fn in n variables with rational
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coefficients. Let Ai be the support of fi for i = 1, . . . , n. The algorithm sets, at step 1, the
support A0 of f0 so that f0 is a linear polynomial.

Step 7 constructs the toric resultant matrix N of a system of n + 1 polynomials in
n variables with supports A0, A1, . . . , An . We implement Emiris’s incremental algorithm
(Emiris and Canny, 1995). This algorithm computes, as byproducts, the convex hulls Qi
of Ai and the quantities MV−i for i = 0, 1, . . . , n where MV−i is the mixed-volume of
Q0, Q1, . . . , Qi−1, Qi+1, . . . , Qn . The computation of Qi and the computation of MV−i both
reduce to some linear programming problems (Emiris and Canny, 1995; Canny and Emiris, 2000)
where all the linear constraints have rational coefficients. These linear programming problems
are solved via a standard two-phase simplex method that is implemented with multi-precision
rational number arithmetic in order to help deal with instability issues. Further discussion of
alternative toric resultant implementations is given below in Section 6.1.1.

Note that, for the resultant matrix constructed by Emiris’s incremental algorithm, equality
(2) holds (Emiris and Canny, 1995). Thus, equality (4) also holds, on which the correctness of
Algorithm RUR toric square relies.

Recall that, in Section 5.1.1, when the characteristic of K is 0, in particular, K = Q, there
are two options for determining d at step 10 and computing TPert (T, u1, . . . , un) at fixed
(u1, . . . , un) at step 15, step 28 and step 33. We implement a version in which d at step 10
is determined by scanning the coefficients of some non-trivial multiples of TGCP (s, 1, 0, . . . , 0)

instead of the coefficients of TGCP (s, 1, 0, . . . , 0) without any extraneous factor. Also, we
compute TPert (T, u1, . . . , un) via interpolation through the values of the coefficient of the term
sd in some non-trivial multiple of TGCP (s, u) instead of the values of the coefficient of the term
sd in TGCP (s, u) without any extraneous factor. That is, we do not eliminate the contribution of
the extraneous factor from det N before interpolating some non-trivial multiple of TGCP (s, u).
(See Section 3.1.) In Section 5.1.1, we have seen that, asymptotically, the cost of eliminating the
extraneous factor is negligible compared to the cost of interpolations through the values of the
determinant of a bigger resultant matrix. However, this is not true in practice. The resultant
matrix constructed by Emiris’s incremental algorithm is generically not too big (Emiris and
Canny, 1995). In particular, for small n, we usually gain significant speedup by avoiding the
costly process of elimination of the extraneous factors, even though the cost of interpolations
slightly increases.

Whenever det N is evaluated, the non-zero entries of N are specialized to the coefficients of
the linear u polynomial f0 = u0 + u1 X1 + · · · + un Xn and polynomials in the perturbed system
f1− s f ∗1 , . . . , fn − s f ∗n . By Proposition 6 and Remark 10, parameters u0, u1, . . . , un are always
specialized to some integers. The coefficients of the input polynomials f1, . . . , fn are rational
numbers. Since the characteristic of Q is 0, the coefficients of auxiliary polynomials f ∗1 , . . . , f ∗n
can be chosen from rational numbers at step 9, and at any interpolation, we can assign rational
values to s. Thus, the entries of N are always specialized to rational numbers. Hence, all the
coefficients of some non-trivial multiple of TGCP (s, u) are rational numbers. It immediately
follows that all the coefficients of TPert (T, u1, . . . , un) are rational numbers and they can be
computed to full precision.

The rest of the algorithm involves arithmetic operations and the Euclidean algorithm over
the ring of univariate polynomials with rational coefficients, and the computation of the first
subresultant of two univariate polynomials. Therefore, by the use of multi-precision rational
number arithmetic, all the steps of Algorithm RUR toric square can be implemented exactly
and the exact RUR will be computed.
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6.1.1. Alternative toric resultant computations
In order to have a practically efficient implementation, it is important to choose a fast

algorithm that constructs resultant matrices of reasonable size. There are several algorithms for
computing the toric resultant of a square system of polynomials (Canny and Emiris, 2000; Emiris
and Canny, 1995; D’Andrea, 2002; Emiris, 2003; Khetan, 2003). While we implement Emiris’s
incremental algorithm, the other algorithms can be used if the prerequisite conditions are met.

D’Andrea’s formula (D’Andrea, 2002) computes the toric resultant as a quotient of two
determinants. The matrix whose determinant becomes the numerator is as big as the resultant
matrix constructed by Emiris’s algorithms. Thus, evaluating the toric resultant using this formula
costs at least as much as evaluating the determinant of the toric resultant matrix (with some
extraneous factor) constructed by Emiris’s algorithms.

Khetan’s formula (Khetan, 2003, 2005) computes the toric resultant as the determinant of a
single matrix. Formulas have been found for unmixed systems of 3 polynomials in 2 variables
(Khetan, 2003) and 4 polynomials in 3 variables (Khetan, 2005), but it is probably impossible
to find such formulas for general systems of n + 1 polynomials in n variables. If we apply the
formula to a mixed system with supports A0, A1, . . . , An then we must treat the input system as
unmixed by pretending that all the input polynomials have the identical support

⋃n
i=0 Ai . The

degree of the toric resultant of this “fake” unmixed system could be much larger than that of
the original system. Also, the resultant matrix contains a block whose entries themselves are the
determinants of some other matrices. Thus, the cost of evaluating the resultant matrix constructed
using Khetan’s formula is more than the cost of evaluating the optimal resultant matrix.

Besides Emiris’s incremental algorithm, we could instead use his mixed-subdivision-based
algorithm (Canny and Emiris, 2000). The mixed-subdivision-based algorithm constructs a single
resultant matrix that works, but the size of the resultant matrix constructed is often much
larger than the optimal one. In fact, the difference might become exponential in n (Canny and
Emiris, 2000; Emiris and Canny, 1995). On the other hand, the incremental algorithm (Emiris
and Canny, 1995) tries several matrices. Starting at a matrix of the smallest possible size,
the algorithm keeps enlarging matrices until one that works is found. If none of these trials
are successful, the incremental algorithm constructs the same resultant matrix as the mixed-
subdivision-based algorithm does. Thus, in the worst case, the incremental algorithm requires
much more computation and still ends up returning a big matrix. However, we observe in practice
that the incremental algorithm usually constructs a resultant matrix of reasonable size within only
a few iterations.

In terms of the arithmetic complexity, the argument above is rephrased as follows: letting
NS and NI be the size of the resultant matrices constructed by the mixed-subdivision-based
algorithm and the incremental algorithm, respectively, the arithmetic complexity for these

algorithms is O∗
(
Nω

S

)
and O∗

(
N 1+ω

I

)
, respectively. In the worst case, NI = NS , however,

usually, NI is much smaller than NS .
Note that, for both versions, the number of rows of the resultant matrix whose entries are

specialized to the coefficients of f0 is fixed to MV−0. Thus, equality (2) holds (Canny and Emiris,
2000; Emiris and Canny, 1995).

The SYNAPS library6 provides an alternative implementation of Emiris’s toric resultant
algorithm that is nearly identical to ours, with some small differences. SYNAPS computes
the mixed-volume of the convex hulls of given sets of points (steps 2 and 7 in Algorithm

6 http://www-sop.inria.fr/galaad/software/synaps/.

http://www-sop.inria.fr/galaad/software/synaps/
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RUR toric square). In contrast to the SYNAPS implementation, which uses floating point
numbers to implement the simplex method for solving linear programming problems, our
implementation uses multi-precision arithmetic in order to avoid problems due to numerical
inaccuracies. SYNAPS also provides the algorithm for computing the stable mixed-volume
(Huber and Sturmfels, 1997).

SYNAPS provides an implementation for computing the toric resultant of a given system of
n+1 polynomials in n variables using a generic programming formulation that can be instantiated
over the field to which the coefficients of the input polynomials belong. Our implementation is
more limited, assuming that the coefficients of the input polynomials are rational numbers. Also,
in contrast to SYNAPSE (but for greater efficiency) we implement only a portion of the algorithm
(step 7 in Algorithm RUR toric square); we stop once the resultant matrix is constructed. The
determinant of the matrix is some multiple of the resultant, but the extraneous factor will be
canceled out later.

6.1.2. Expression swell
The algorithms given suffer from expression swell, thus slowing the performance. While large

input coefficients are a concern, even if the coefficients of the input polynomials are small, the
intermediate and final quantities can grow quite large.

Algorithm RUR toric square consists of exact evaluation of the determinant of a given
square matrix with rational entries, polynomial interpolations over rational numbers and
operations over the ring of univariate polynomials with rational coefficients. We can thus
use modular arithmetic in order to avoid expression swell occurring in exact evaluation of
determinants.

At step 10, step 15, step 28 and step 33, we evaluate the determinant of the toric resultant
matrix N whose entries are specialized in several ways, while, at step 39, we evaluate the
determinant of the first subresultant matrices of size 2M−1 where M = deg h. We have seen that
dim N > MV−0 ≥ M , but dim N is not necessarily larger than 2M−1. The size of the entries of
N depends on the input and could be large or small, while the entries of the first subresultant
matrices are usually large because of expression swell of intermediate quantities. Thus, we
always use modular arithmetic to compute the first subresultants, while modular arithmetic is
used to evaluate det N only when dim N is large and/or the size of the entries of N is large. For
more about exact evaluation of determinants, see Emiris (1998) and Kaltofen and Villard (2004).

Modular arithmetic can also be used for interpolations and operations over the polynomial
ring. See von zur Gathen and Gerhard (2003).

Recall that, at step 40, hi (T ) = −T−ri,1(T )·ri,0(T )−1 mod h(T ) where ri,0(T )+ri,1(T ) t is
the first subresultant of q−i (t) and q+i (2T − t). Given ri,0(T ), its inverse modulo h is computed
using the extended Euclidean algorithm, which usually causes significant expression swell.
In order to avoid this problem, we instead could compute hi (T ) as a rational representation:
hi (T ) = −T − ri,1(T )

ri,0(T )
mod h(T ). In most applications, rational representations with significantly

smaller coefficients are preferable to polynomials with large coefficients.

6.2. Experiments

We have implemented Algorithm RUR exactly. In this section, we show some experimental
results of our implementation. The implementation is compiled with GNU C++. The GNU Multi-
Precision (GMP) arithmetic library is used to support multi-precision rational number arithmetic.
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Table 1
Timing breakdown for several examples F1, . . . , F6

Input System F1 F2 F3 F4 F5 F6

# of polynomials 2 3 3 2 2 2
# of variables 2 3 2 2 2 2

max. degree of monomials 4 2 2 2 2 2
max. bit-length of coefficients 4 1 4 307 51 95

# of roots of system ∞ ∞ ∞ 2 ∞ 4

MV−0 4 4 12 2 4 4
M =

∑n
i=0 MV−i 12 12 36 5 8 8

N = dim N 12 17 42 6 10 10
M = # of roots of h 4 4 10 2 4 4

max. bit-length of coefficients of h 18 20 68 844 159 292
max. bit-length of coefficients of ri, j 173 96 1549 1686 2061 2820
max. bit-length of coefficients of hi 44 11 273 358 8563 416

total time (sec) .333 1.87 111 .0662 .672 .628
computing resultant matrix (%) 27 41 0 70 10 11

computing h (%) 14 13 9 2 4 1
computing q±i (%) 48 44 51 6 13 3
computing hi (%) 11 2 40 22 73 86

Rows 2 through 6 characterize the input systems. Rows 7 through 10 characterize the complexity of the toric resultant
algorithm (See Section 5). N is the toric resultant matrix computed by the incremental algorithm. Rows 11 through 13
characterize the outputs. Rows 14 through 18 show the timing. Row 15 shows the percentage of computing the resultant
matrix (Steps 1 through 7 in Algorithm RUR toric square). Row 16 shows the percentage of computing h (Steps 8
through 31 in Algorithm RUR toric square). Row 17 shows the percentage of computing q±i (Steps 32 through 36
in Algorithm RUR toric square). Row 18 shows the percentage of computing hi (Steps 38 through 40 in Algorithm
RUR toric square).

All the experiments shown in this section are performed on a 3 GHz Intel Pentium CPU with 6
GB memory using Linux Kernel 2.6.

In Table 1, we show timing breakdowns for the application of the exact RUR to a few sample
systems. We give a brief discussion of each case, and summarize the results.

Systems F1 through F3 are all drawn from examples described in Section 4, while systems
F4 through F6 are all drawn from cases encountered in an actual geometric boundary evaluation
computation. The source data is real-world data provided by the BRL-CAD (Dykstra and Muuss,
1989) solid modeling system.

For the overconstrained system F3 we present the results for RUR toric square applied to
the modified system G3, as discussed in Section 4.

System F4 consists of an intersection of a line with an ellipse. There are 2 intersections and
both are real.

System F5 consists of two ellipses. Rather than real intersections, these ellipses have 2
complex intersections.

System F6 consists of two ellipses with supports

(2, 0) , (1, 0) , (0, 2) , (0, 1) , (0, 0)

and

(2, 0) , (1, 1) , (1, 0) , (0, 2) , (0, 1) , (0, 0) ,

respectively. System F6 has 4 roots and all of them are real.
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For this example, we spent the most time computing polynomials h1 and h2. This was because
the coefficients of the polynomial h, h1 and h2 become huge.

6.2.1. Summary of timing breakdowns
While the examples shown above are not comprehensive, from these and other cases we have

examined, we can draw the following conclusions:

• The performance of our algorithm is reasonable for lower dimension/degree systems.
However, for higher dimension/degree systems, the implementation tends not to be very
practical.
• Constructing the toric resultant matrix takes up an insignificant portion of the time. Evidently,

the use of Emiris’s incremental algorithm rather than the mixed-subdivision-based algorithm
is justified.
• For lower dimension/degree systems, the most time consuming part of the algorithm is

repeated evaluation of the determinant of the toric resultant matrix. By the use of the
incremental algorithm, we are able to construct resultant matrices of reasonably small size
and sometimes even the optimal one (e.g. F1). However, the size of the toric resultant matrix
grows quite rapidly with respect to the dimension/degree of the input system.
• For positive-dimensional systems, the resultant evaluation contributes a certain amount to the

total time, while for the zero-dimensional systems, the resultant evaluation is insignificant.
• For higher dimension/degree systems, the most time consuming part is computing univariate

polynomials forming the exact RUR, mainly because of their huge coefficients. Further
optimization such as extending the use of modular arithmetic (already used in determinant
computation) to polynomial operations should be a target of future speedup efforts.
• For these examples, except for F5, we did not find any benefit in using rational representations

for hi instead of univariate polynomials. For higher dimension/degree systems, though,
significant improvement might be seen.

7. Conclusion

We have given a detailed description of algorithms for computing the RUR for the zero set
of a given system of multivariate polynomial equations. We briefly summarize our major results
here:

• Our algorithm for computing the RUR for the zero set of a square system improves on
the algorithm originally introduced in Rojas (1999a). In both algorithms, the univariate
polynomial h in the RUR is derived from the toric perturbation, which is a generalization of
the toric u-resultant, by specializing the indeterminates to some appropriate values. We have
described a deterministic way to specialize those indeterminates appropriately. Our algorithm
correctly counts the number of roots of a given zero-dimensional system without multiplicity.
• We have developed a new algorithm for computing the RUR for the zero set of an

overdetermined system. We construct a square system of higher dimension so that the
projection of the RUR for the zero set of the square system will become the RUR for the zero
set of the input system. In contrast to the algorithm for an overdetermined system described in
Rojas (2000), where a square system of the same dimension is constructed from the input
system with some random choices, our algorithm is deterministic. For small dimension,
a single execution of our algorithm usually takes less time than several executions of the
randomized algorithm.
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• As a consequence of derandomization, we have developed a simple algorithm for computing
real roots of a given system of multivariate polynomial equations.
• We have analyzed the arithmetic complexity of our algorithm. Since the derandomized

algorithm correctly counts the number of distinct roots of the input system, we are able to
give a tighter bound on the arithmetic complexity of the algorithm. Also, we have observed
that the size of the resultant matrices governs the complexity of the algorithm.
• We have described an implementation of the algorithms for the case when all the coefficients

of the input polynomials are rational numbers. The implementation is optimized for relatively
small n. The implementation is exact; all the rational coefficients of the univariate polynomials
forming the RUR will be computed to full precision. We have shown some experimental
results. Tested systems include examples of a degenerate system and an overdetermined
system as well as some problems picked from real-world industry.

7.1. Future work

There are several avenues of future work open, some of which we list here.
Our algorithm computes the RUR for some finite set that contains all the isolated roots of the

input system as well as at least one point from each irreducible component of the zero set of the
system. Under certain circumstances, this finite set may be redundant — it may contain some
points that are not roots of the input system. There are other techniques (presented elsewhere)
that can be used to eliminate those redundant points.

We could easily develop a randomized algorithm to detect whether or not the zero set of
the input system has some (complex) positive-dimensional components. Namely, we run the
algorithm RUR a few times. If the zero set of the input system is of dimension zero then, at each
execution of the algorithm RUR, the same set of points are returned. On the other hand, if the
zero set of the input system has some positive-dimensional components then, at each execution,
different points would be picked from those positive-dimensional components. While it would
also be nice to develop means of actually finding a representation for the positive-dimensional
components of the zero set of the input system, this would be a much harder problem.

We have not analyzed the asymptotic arithmetic complexity of our algorithm for an
overdetermined system. We strongly believe that the arithmetic complexity of our algorithm is
worse compared to the algorithm described in Rojas (2000), although the new algorithm behaves
better for small n. A bit-complexity analysis of these algorithms would also be useful.

Although we have included some efficiency improvements, the implementation of our
algorithms can be further optimized. One avenue in particular would be to use better algorithms
for constructing the resultant matrices or evaluating the toric resultant. Any improvement here
would be helpful, since the resultant computation governs the performance of the algorithms both
in theory and practice. Also, faster subroutines for linear algebra operations and polynomial ring
operations would be useful. For instance, we should take advantage of the sparse structure of the
resultant matrix when its determinant is evaluated (Emiris and Pan, 2002).

Also, it would be nice to extend our implementation to include coefficients belonging to a
field other than the field of rational numbers. Over a finite field, an implementation must look
different since we cannot use techniques that work over a field of characteristic 0. Also, an
implementation for coefficients that are real or complex algebraic numbers would be interesting.
Even more generally, there are practical reasons to consider polynomials whose coefficients are
not given exactly. In contrast to Gröbner basis approaches to determining the RUR, the toric
approach is continuous over perturbations in the coefficients, thus there is some hope that it
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would offer a method for dealing with such input. Developing theory and implementation to
support such polynomials would be very valuable.

Finally, this work was motivated by work on robust geometric computation. We are currently
exploring application of our algorithms and implementation in this direction.
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