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Abstract

We discuss means of constructing fullerene graphs from their eigenvalues and angles. An
algorithm for such a construction is given.
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0. Introduction

Let G be a graph on n vertices with adjacency matrix A. Let {e1, e2, . . . , en}
constitute the standard orthonormal basis for Rn. Then A has spectral decomposi-
tion A = µ1P1 + µ2P2 + · · · + µmPm, where µ1 > µ2 > · · · > µm and Pi repre-
sents the orthogonal projection of Rn onto E(µi) (moreover, P 2

i = Pi = P T
i , i =

1, . . . , m; and PiPj = O, i /= j ). The non-negative quantities αij = cosβij , where
βij is the angle between E(µi) and ej , are called angles of G. Since Pi represents
the orthogonal projection of Rn onto E(µi) we have αij = ‖Piej‖. The sequence

∗ Corresponding author.
E-mail addresses: ecvetkod@etf.bg.ac.yu (D. Cvetković), p.w.fowler@exeter.ac.uk (P. Fowler),
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αij (j = 1, 2, . . . , n) is the ith eigenvalue angle sequence; αij (i = 1, 2, . . . , m) is
the jth vertex angle sequence. For further properties of angles, see Section 6 and the
monograph [7].

Eigenvalues and angles do not constitute a complete set of graph invariants, but
they carry a great deal of information about the graph. Cvetković in [2] presented
an algorithm for constructing all trees with given eigenvalues and angles, and in [3]
constructed a graph which is the supergraph of all graphs with given eigenvalues
and angles. Stevanović [20] presented a branch-and-bound algorithm based on this
supergraph for the construction of all graphs with given eigenvalues and angles.

Fullerenes have attracted much attention in the chemical and mathematical liter-
ature. Here we mention some results on eigenvalues of fullerene graphs from chem-
ical literature. Definitions of the chemical terms used in this paper may be found
in [13,21].

Approximations to the energy levels of the �-system represented by the molec-
ular graph of the fullerene are found by diagonalisation of the adjacency matrix
(see, for example, [21]). With the eigenvalues λ1, . . . , λn in non-increasing order,
the possible configurations for neutral Cn (n �-electrons) are [12]: properly closed
(λn/2 /= λn/2+1, λn/2 > 0, λn/2+1 � 0); pseudo-closed (λn/2 /= λn/2+1, λn/2+1 >

0); meta-closed (λn/2 /= λn/2+1, λn/2 � 0); open (λn/2 = λn/2+1). Overwhelmingly
most fullerenes have the pseudo-closed �-configuration. Examples of fullerenes with
λn/2 < 0 are known at high n (see [11]). The rare properly closed shells are ideal
for the �-electrons: all electrons are in bonding levels, and no bonding capacity is
‘wasted’ in unfilled, potentially bonding levels. Three series with properly closed
�-shells are as follows [13].

(i) Leapfrogs. All leapfrog fullerenes have closed �-shells [16,18]. A leapfrog is
obtained by omnicapping and then dualising a parent fullerene, giving an equisym-
metric new fullerene with disjoint pentagons and three times the vertex count [16]:
leapfrog fullerenes occur at n = 60 + 6k (k /= 1) with the number of leapfrogs at n
equal to the total number of fullerene isomers at n/3. Leapfrog fullerenes have non-
zero HOMO–LUMO gaps, λn/2 − λn/2+1. As the size of the fullerene increases, the
typical gap is expected on physical grounds to decrease, as graphite itself has a zero
gap. The result for leapfrog fullerenes is part of a classification for leapfrogs of cubic
maps [8,14,18]: leapfrogs of cubic polyhedra with all faces of sizes divisible by three
have open shells with λn/2 = λn/2+1 = 0 [14,18]; analogues of leapfrog fullerenes
on the torus, Klein-bottle and elliptic plane have four, two and zero eigenvalues
λ = 0, respectively [8].

(ii) Carbon cylinders. Carbon cylinder fullerenes, formed by tubular extension
along the fivefold axis of the truncated icosahedron, or the sixfold axis of the unique
C72 isolated-pentagon fullerene. They have closed shells with positive λn/2 and
λn/2+1 = 0 [10] at every third member of the series, i.e. at vertex numbers n =
70 + 30k (k = 0, 1, 2, . . .) and n = 84 + 36k (k = 0, 1, 2, . . .).

(iii) ‘Sporadic’ Closed Shells. Extra properly closed isomers occur for large val-
ues of n [13]. The known isomer counts for n � 140 are 112(1), 116(1), 120(1),
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122(1), 124(3), 128(3), 130(3), 132(4), 134(7), 136(9), 138(4), 140(12). All
members of this set have small eigenvalues λn/2+1 (∼ −10−3) and in a chemical
sense appear to be only ‘accidentally’ closed-shell [13].

A numerical survey of the distribution of Ramanujan graphs amongst small fulle-
renes, i.e. graphs that have one eigenvalue +3 and all others in the range 2

√
2 � λ �

−2
√

2, has also been published [15].
In this paper we discuss means for constructing fullerene graphs from their eigen-

values and angles using two approaches. The first approach is a continuation of the
above mentioned research. An algorithm for such a construction using this approach
is given. The possibility of designing an improved algorithm using results of this
paper is indicated. The second approach stems from the experience of chemists; it
uses the so-called topological coordinates of fullerene (cf., e.g., [13, pp. 101–105]).
Further research is necessary to clarify details of this approach.

The plan of the paper is as follows. In Section 1 we explain what information
about the fullerene can be obtained from its eigenvalues. Section 2 shows how ver-
tices can be classified according to their distances from pentagons. Some auxiliary
results concerning the infinite hexagonal net are derived in Section 3. The study
of a single pentagon surrounded by hexagons in Section 4 enables us to reconstruct
further details of the fullerene. Section 5 shows how it is possible for vertices lying in
pentagons to be allocated to pentagons. In Section 6 we summarize the information
we have obtained and give an algorithm for the construction of fullerene graphs.
The possibility of an improvement of this algorithm which is based on the results of
Sections 3–5 is indicated as well. Finally, Section 7 outlines the idea of constructing
a fullerene graph on the basis of topological coordinates.

1. Information derived from eigenvalues

From the point of view of spectral graph theory, the most important question
regarding fullerene graphs is whether they are characterized by their spectra. An
exhaustive search of small fullerene graphs shows that no two with n � 100 have the
same spectrum. If this is universally true then it is possible to determine any graph
invariant of a fullerene from its eigenvalues only.

Based on classic results from spectral graph theory, given only the eigenvalues of
a fullerene, we can

• confirm that the graph with such eigenvalues is connected and regular of degree 3
[5, p. 94],

• determine the girth g (g = 5 for fullerenes) and the number of circuits of length g
(12 for fullerenes) [5, p. 95, Theorem 3.26],

• determine the number of circuits of lengths 6, 7, 8 and 9 [5, p. 97, Theorem 3.27].
(For a fullerene graph the number of 7-circuits is 0.)

From this last item, we conclude that we can recognize whether the fullerene has
disjoint pentagons. We shall assume this condition in the sequel.
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If we know the angles of a fullerene in addition to its eigenvalues, we can ask
the weaker question of whether fullerenes are characterized by their eigenvalues and
angles. As a first step, we address the following question in this paper.

Question. Given the eigenvalues and angles of a fullerene F, how much of its struc-
ture can we reconstruct.

A different question is whether it is possible to tell from the eigenvalues (and
angles) of a graph G only that the graph is indeed a fullerene? Here we offer an
answer to this question in an algorithmic way. In our considerations we do not use
any information on G beyond that contained in the spectrum and angles of G. If the
given spectrum and angles do not belong to a fullerene, our algorithm will detect
this and stop. For example, if from the eigenvalues we determine that the graph is
not regular, further considerations will be abandoned. However, if the input data do
belong to a fullerene, all fullerene graphs having the given eigenvalues and angles
will be constructed.

2. Angles, closed walks and pentagons

From eigenvalues and angles we can obtain the generating function

Hj(t) =
∞∑
k=0

Nk(j)t
k,

where Nk(j) is the number of closed walks of length k starting and terminating at
vertex j [7, pp. 82, 83].

For any vertex j of a fullerene F we have

N0(j) = 1, N1(j) = 0, N2(j) = 3, N4(j) = 15.

If j is a vertex of a pentagon, then N5(j) = 2 and, otherwise, N5(j) = 0. If we allow
pentagons to have common vertices, then N5(j) is twice the number of pentagons to
which the vertex j belongs.

If j does not belong to a pentagon, then we can find its distance from the nearest
pentagon. Suppose that the nearest pentagon is at distance s from j. The (s + 2)-
neighborhood of j does not contain odd circuits and it is bipartite, so that N2k+5(j) =
0 for k < s. The distance of the vertex j to the nearest pentagon is called the penta-
distance of a vertex. The pentadistance of a vertex j is obtained from the eigenvalues
and angles as the smallest s for which N2s+5(j) > 0. Let Ps be the set of vertices
at the distance s from the nearest pentagon. Let t be the largest pentadistance of a
vertex. The vertex set is then partitioned into subsets P0, P1, . . . , Pt . From the eigen-
values and angles we can obtain this partition and the numbers |P0|, |P1|, . . . , |Pt |
which can tell us a good deal about the structure of the fullerene. Obviously, when
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the pentagons are disjoint, we have |P0| = 60. In Section 4 we will show how this
sequence can be used to establish the minimal distance between pentagons.

The sequences Nk(j) (j = 1, 2, . . . , n) will be used in the sequel as a basic tool
for detecting details of the structure of a fullerene graph.

3. Enumeration of shortest paths and closed walks in hexagonal nets

The (s + 2)-neighbourhood of a vertex j at distance s from the nearest pentagon
is isomorphic to a subgraph of the infinite, 3-regular, hexagonal net. In the current
section we will study this net in order to obtain results on the number of the shortest
paths between a vertex j and the vertices in its (s + 2)-neighbourhood. The number
of closed walks starting and terminating at a vertex in the hexagonal net will also be
useful.

In a geometric representation of the hexagonal net, each edge in the net has the
same unit length and one of three directions. Denote the unit vectors having these
directions with u, v and w, as shown on Fig. 1. Note that there are two kinds of
vertices: vectors u, v and w leave the vertices of the first kind and enter the vertices
of the second kind. Note also that edges in the hexagonal net always connect vertices
of different kinds.

Consider an arbitrary shortest path P: v0, v1, . . . , vm−1, vm. If there exist num-
bers k and l (0 � k < l < m) such that −−−−→vkvk+1 = u and −−−→vlvl+1 = −u, then we may
obtain a shorter path P ′ between v0 and vm of length m − 2 if, instead of the path
vk, vk+1, . . . , vl, vl+1, we take the path between vk and vl+1 which is symmetric to
the path between vk+1 and vl w.r.t. the intersection point of the line between vertices
vk and vl and the line between vertices vk+1 and vl+1. If we say that a path contains a
vector if there is an edge of the path equal to the vector, then the above consideration
shows that no shortest path between any two vertices in a hexagonal net contains
both u and −u. Similar restrictions hold for v and −v, and w and −w.

In addition, there can be no shortest path containing vectors u, v and w, since
when we traverse the edge along vector u, the next edge must be traversed either
along −v or along −w. For the same reason, there is no shortest path containing
vectors −u, −v and −w.

All shortest paths from a fixed vertex A to all other vertices may be divided into
classes based on the set of vectors they contain:

Fig. 1. Two kinds of vertices in hexagonal net.
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Fig. 2. Hexagonal subnets of the hexagonal net.

{u, v,−w}, {−u,−v,w},
{u,−v,w}, {−u, v,−w},
{−u, v,w}, {u,−v,−w}.

These classes divide the hexagonal net into six hexagonal subnets starting from A, as
shown in Fig. 2. There are two kinds of hexagonal subnets. We will call the hexagonal
subnet having only one edge with an end in A the hex subnet of the first kind, while
the hexagonal subnet having two edges with ends in A will be called the hex subnet
of the second kind.

Suppose that A is a vertex of first kind, so that u, v and w leave the vertex A.
Consider the vertex B from the hex subnet of the first kind that corresponds to the set
of vectors {−u,−v,w}. Let d be the distance between A and B. Along any shortest
path between A and B, positive and negative vectors appear consecutively. Since
the first edge is traversed along the vector w, this means that every odd edge is
traversed along the vector w, and every even edge is traversed along one of u and
v. Let ax be the number of edges on the shortest path from A to B along the vec-
tor x ∈ {−u,−v,w}. From the above considerations, we can write the following
equations:

−→
AB=a−u(−u) + a−v(−v) + aww,⌊
d

2

⌋
=a−u + a−v,

⌈
d

2

⌉
= aw.
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Since w = −u − v we have(
a−u +

⌈
d

2

⌉)
u +

(
a−v +

⌈
d

2

⌉)
v = −−→

AB.

The vectors u and v are linearly independent, and therefore a−u and a−v are uniquely
determined. For each order of the a−u vectors −u and a−v vectors −v there is exactly
one shortest path between A and B, and so we conclude that the number of shortest
paths is equal to(� d

2 �
a−u

)
=

(� d
2 �

a−v

)
.

Returning to Fig. 2, let us coordinatise the hex subnet: vertex B (as well as the
number of shortest paths from A to B) is uniquely determined by the distance d and
min{a−u, a−v} up to the symmetry of the hex subnet. Thus d and min{a−u, a−v}
may be viewed as the coordinates of B in this hex subnet. Other hex subnets may be
coordinatised in the same manner, and our coordinatisation ensures that vertices on
the border between two neighboring hex subnets have the same coordinates in both
hex subnets.

By similar reasoning, in the case of a hex subnet of the second kind we find that

the number of shortest paths is equal to
(� d

2 �
a

)
, where a is equal to the smaller member

of the pair {au, a−u}, {av, a−v} or {aw, a−w}, depending on the type of vertex A and
the signs of the vectors occuring in shortest paths in particular hex subnet. This
subnet may be coordinatised in the same manner as above, and we see that if vertex
B is on the border line between two hex subnets then the second coordinate is equal
to 0.

Thus we have proved:

Proposition 1. Let d and a be the coordinates of B in the hex subnet starting from A.
If B belongs to a hex subnet of the first kind starting from A, then the number of

shortest paths between A and B is equal to
(� d

2 �
a

)
. If B belongs to a hex subnet of the

second kind starting from A, then the number of shortest paths between A and B is

equal to
(� d

2 �
a

)
.

Next, we turn to the similar problem of calculating the number of closed walks of
given length in hexagonal net. Since the graph of this net is bipartite, the number of
closed walks of odd length is equal to 0. Let Nk be the number of closed walks of
length k starting and terminating at a given vertex. We shall prove:

Proposition 2. The number of closed walks of length 2m starting and terminating
at a vertex in the hexagonal net is given by

N2m =
m∑
l=0

(
m

l

)2(2l

l

)
.



44 D. Cvetković et al. / Linear Algebra and its Applications 356 (2002) 37–56

Proof. Any closed walk T of length 2m consists of edges traversed along one of the
six vectors: u, −u, v, −v, w and −w. Let ax be the number of edges of T traversed
along the vector x for x ∈ {u,−u, v,−v,w,−w}. Since the walk T is closed, we
have

auu + a−u(−u) + avv + a−v(−v) + aww + a−w(−w) = 0,

i.e.

(au − a−u)u + (av − a−v)v + (aw − a−w)w = 0.

Since the vectors u, v and w satisfy u + v + w = 0, and any pair of these vectors is
linearly independent, it must be true that

au − a−u = av − a−v = aw − a−w. (1)

Positive and negative vectors appear consecutively along T. Since T has length
2m, we conclude that m edges are traversed along positive vectors and m edges are
traversed along negative vectors. This means that

au + av + aw = m, (2)

a−u + a−v + a−w = m. (3)

From Eqs. (1)–(3) we obtain

au − a−u = av − a−v = aw − a−w = 0,

i.e.

au = a−u, av = a−v, aw = a−w.

The closed walk T may be identified by the order of positive and negative vec-
tors along the walk. Since the walk may leave a vertex in any direction, we see
that any alternating order of positive and negative vectors corresponds to a closed
walk. The number of closed walks of length 2m with fixed au, av and aw is equal to
[m!/(au!av!aw!)]2, and the total number of closed walks of length 2m in the hexag-
onal net is given by

N2m =
∑

au+av+aw=m

(
m!

au!av!aw!
)2

.

By simple combinatorial transformations we find that

N2m =
m∑
l=0

(
m

l

)2(2l

l

)
. �

The sequence N2m may be found in [19]. It has appeared in a number of refer-
ences [1,9,17] in connection with different problems. There seems to be no closed
form for N2m, for if we look at the first few numbers (m = 0, 1, . . .)

1, 3, 15, 93, 639, 4653, 35169, 272835, 2157759, 17319837, 140668065, . . .
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then we see that they contain large prime factors (for example, 140668065 = 32 · 5 ·
3125957), which makes it unlikely that there is a “nice” formula for N2m.

For any vertex j of a fullerene graph we can compare the sequences Nk(j) and
Nk . The smallest index k for which Nk(j) /= Nk indicates the presence of an object
foreign to the hexagonal net in the �k/2�-neighborhood of j. In our case, it is of
course a pentagon. More details can be obtained in a similar way.

4. Penta-hex subnets and the nearest pentagons

In order to obtain the distance between the nearest pentagons in the fullerene,
we need to study the 3-regular, plane penta-hexagonal net, consisting of a central
pentagon p surrounded by an infinite number of hexagons, shown in Fig. 3.

The infinite sequence of hexagons h1, h2, . . . such that h1 has a common edge
with p, hi+1 has a common edge with hi for i ∈ N and the centres of the pentagon
p and all hexagons h1, h2, . . . are collinear is called a pentagonal band. The subnets
consisting of hexagons lying between two pentagonal bands for which the initial
hexagons have a common edge are called penta-hex subnets. There are five pentago-
nal bands and five penta-hex subnets. Notice that penta-hex subnets are disjoint and
taken together contain all vertices of the penta-hexagonal net. A penta-hex subnet
is isomorphic to a hexagonal subnet and can be coordinatised in the same manner
(cf. Fig. 3).

Let Hk be the number of closed walks of length k starting and terminating at a
vertex of the pentagon in the penta-hexagonal net of Fig. 3. We do not know a general
explicit expression for Hk but actual values for a finite number of values of k, which

Fig. 3. Part of a penta-hexagonal net with pentagonal bands and penta-hex subnets.
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we might need, can be computed. Accordingly we shall assume that the sequence Hk

is known. We have H0 = 1, H1 = 0, H2 = 3, H3 = 0, H4 = 15, H5 = 2, . . .

Lemma 1. The number of vertices at distance d from the pentagon in a penta-hex-
agonal net is given by 5�d/2� + 5.

Proof. In a fixed penta-hex subnet, each vertex at distance 2m (m � 0) from the
pentagon is adjacent to exactly one vertex at distance 2m + 1. Also, each vertex at
distance 2m + 1 is adjacent to exactly two vertices at distance 2m + 2. On the other
hand, each of two vertices at distance 2m + 2, that belong to pentagonal bands, is
adjacent to exactly one vertex in this penta-hex subnet at distance 2m + 1, while the
remaining vertices at distance 2m + 2 are adjacent to exactly two vertices at distance
2m + 1. If we denote the number of vertices in the penta-hex subnet at distance d
from the pentagon by nd , we conclude that

n2m+1 = n2m and n2m+2 = n2m+1 + 1.

Since n0 = 1, we have by induction that nd = �d/2� + 1. �

Next we turn our attention from pentahexagonal nets to fullerenes. Since there
are 12 pentagons in the fullerene, the number of vertices with pentadistance d is
equal to 60�d/2� + 60, in the case that d-neighbourhoods of all pentagons are
disjoint.

Proposition 3. Let s be the smallest number such that |Ps | /= 60�s/2� + 60. The
distance DF between the nearest pentagons in a fullerene F is equal to either 2s − 1
or 2s. For each pair of pentagons at distance DF it is the case that if DF = 2s − 1
then one of the pentagons is in the penta-hex subnet of the other, and if DF = 2s
then one of the pentagons is in the pentagonal band of the other.

Proof. Consider an arbitrary vertex v of an arbitrary pentagon p in F. We show
that we can determine whether there is any pentagon at distance 2s − 1 from v in
the penta-hex subnet corresponding to v. In the case that there is no pentagon at
distance 2s − 1 in this penta-hex subnet, we can then determine whether there is any
pentagon at distance 2s from v, not necessarily in this penta-hex subnet. In this way,
by checking for existence of pentagons at distance 2s − 1 and, if needed, at distance
2s, we can determine the correct value of DF .

First, we want to determine whether there is any pentagon at distance 2s − 1 from
v in the corresponding penta-hex subnet (see Fig. 4). There are s vertices at distance
2s − 1 and s + 1 vertices at distance 2s from v in its penta-hex subnet. Thus, if
there are two pentagons at distance 2s − 1 from v in its penta-hex subnet, then the
maximum distance between them is 2s − 2: this is a contradiction and we conclude
that there can be at most one pentagon at distance 2s − 1 from v. To determine
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Fig. 4. Pentagon at distance 2s − 1 from v in its penta-hex subnet.

whether there exists a pentagon at distance 2s − 1 we compare the number of closed
walks of length 2(2s − 1) + 5, starting and terminating at v, in F and in the penta-hex
net. If there is no such pentagon, then

N4s+3(v) − H4s+3 = 0,

otherwise there is one pentagon at distance 2s − 1.
If there is no pentagon at distance 2s − 1 from v, then by comparing N4s+5(v) −

H4s+5 with 0, we can tell if there is at least one pentagon at distance 2s from v. In
this case we cannot claim that such pentagons reside in the same penta-hex subnet
of v, because it may happen that they occur in penta-hex subnets corresponding
to the neighbours of v in the pentagon p, and that they are at distance 2s − 1 from
the pentagon p. Then by taking for v its relevant neighbour in the pentagon p we
reduce the situation to the case already considered. In the case that there is no pen-
tagon at distance 2s − 1 from neighbours of v in p, we may claim that pentagons at
distance 2s from v reside in pentagonal bands attached to v. This case is shown in
Fig. 5. �

The largest k for which |Pk| = 60�k/2� + 60 is called the width of the fullerene F.

Examples. The leapfrog [13] of C60, i.e. icosahedral C180 has 60 vertices in penta-
gons, 60 vertices at distance 1 and 60 at distance 2 from pentagons, so it has width 1.

Any leapfrog of any fullerene where the parent had at least one pentagon adjacen-
cy has width 0. For example, there are 40 isomers of C120 that are leapfrogs of C40
isomers.

The leapfrog of the icosahedral C80, i.e. C240 has 60 vertices in pentagons, 60
vertices at distance 1 and 120 vertices at distance 2, so it has width 2.
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Fig. 5. Pentagons at distance 2s from v in its pentagonal bands.

If W is the width of F, then the W-neighbourhoods of pentagons are clearly rec-
onstructible. In particular, we have the following proposition.

Proposition 4. If W is the width of F, then coordinates of vertices in the corre-
sponding penta-hex subnets are reconstructible from eigenvalues and angles of F for
all vertices in W-neighborhoods of pentagons.

Proof. In W-neighborhoods of pentagons each vertex has a unique closest penta-
gon. The coordinates of a vertex x in corresponding penta-hex subnet are determined
by the pentadistance of x and by the number of shortest paths N between x and
the closest vertex on the pentagon. If the pentadistance of x is d, then we have
N2d+5(x) = 2N2. Since d and N2d+5(x) can be determined from eigenvalues and
angles, the proof is completed. �

5. Individualization of vertices on pentagons

We have partitioned the vertex set of F into sets P0, P1, . . . , Pt , but have not yet
individualized the vertices. The criterion for membership of Pt was the distance t to
the closest pentagon. Now we shall partition the set P0 into individual pentagons.
This will be done by using the distance to the closest pentagon to which the vertex
does not belong.

As in Section 2, for any j ∈ P0 we determine the sequence Nk(j) (k = 0, 1, 2, . . .).
We shall classify vertices in P0 according to Nk(j).

It is useful to compare Hk (defined in Section 4) with Nk(j). The smallest index k
for which Nk(j) /= Hk is called the first jump of j.

In Proposition 3 we have estimated the distance between the closest pentagons.
Now we can be more precise.
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Proposition 5. Let j ∈ P0 have the smallest first jump h. Then the smallest distance
between j and a pentagon to which j does not belong is equal to 1

2 (h − 5).

Proof. The deviation from Hk can occur only in the presence of a pentagon P in
the penta-hexagonal net which is different from the basic one B, to which j be-
longs. Let s be the distance between P and B. Then we have h = 2s + 5, hence the
assertion. �

Suppose now that j does not necessarily have the smallest first jump. If P be-
longs to the penta-hex subnet corresponding to j, then we have h = 2s + 5. If P
belongs to the penta-hex subnet corresponding to a neighbour of j in P, then we have
h = 2s + 7. Finally, if P belongs to the penta-hex subnet corresponding to a vertex
of P not adjacent to j, then we have h = 2s + 9.

Of course, since the distance between the nearest pentagons in F is equal to DF ,
the smallest first jump of vertices from P0 is equal to 2DF + 5. If there are just two
pentagons at a smallest distance DF , then there will be two vertices j1, j2 in these
two pentagons with the same first jump 2DF + 5. If they are unique they belong to
different pentagons. If one of pentagons is in the pentagonal band of the other, there
will be two vertices in each pentagon with this property.

The above discussion gives some information on how the vertices may be grouped
into pentagons. Let j1, j2 ∈ P0 and let h1, h2 be their first jumps, respectively. Then
j1 and j2 may be adjacent (and belong to the same pentagon) only if |h1 − h2| � 2.
Also, j1 and j2 may belong to the same pentagon (without being adjacent) only if
|h1 − h2| � 4.

In order to obtain more information on the graph structure consider the set J of
vertices j from P0 with the smallest first jump h. For any j ∈ J , let nj = Nh(j).
Consider separately the situations in which DF is even and odd.
(1) If DF = D is even, closest pentagons lie in the pentagonal bands of each other,

as in Fig. 5. Let mD be the number of closed walks of length 2D + 5 which start
and terminate at a vertex j from J and contain edges of a fixed closest pentagon.
Then we have nj = mD or nj = 2mD depending on whether j has one or two
pentagons at distance D. In the first case we say that j belongs to a subset J1 of J
and in the second case to J2. So we have a partition J = J1 ∪ J2. Now it is not
difficult to construct all possible structures of pentagons at the mutual distance
D. In particular, one can recognize “triangles” of pentagons at distance D, as in
Fig. 5. In some situations, as in Fig. 5, there is a “central” vertex c of the triangle
at the same distance from the three pentagons which can be clearly identified by
N2D+5(c).

(2) If DF = D is odd, two closest pentagons Q1,Q2 each lie in a penta-hex subnet
of the other. Let j1 ∈ Q1, j2 ∈ Q2 and j1, j2 ∈ J . Then j1 has the same coor-
dinates w.r.t. Q2 as j2 w.r.t. Q1. These coordinates are obtainable from basic
spectral information if there is no third pentagon Q3 at the same distance from
Q1 or/and Q2. For different pairs of pentagons at distance D these coordinates
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my be different. Although the situation is a little more complex compared with
case (1), certainly one can easily reconstruct all possible structures of closest
pentagons.

The above observations make it possible not only to individulise vertices on pen-
tagons but also to reconstruct the local structure of the fullerene graph for vertices
with pentadistance equal to and a little larger than the width.

6. Reconstruction of a fullerene

In this section we give a backtracking-based algorithm for constructing all fulle-
renes with given eigenvalues and angles. We then indicate how the basic form of the
algorithm can be improved using results from Sections 3–5.

We have seen in previous sections that the (DF + 2)-neighbourhood of each pen-
tagon in a fullerene F coincides with the (DF + 2)-neighbourhood of a pentagon
in the penta-hexagonal net. However, these neighbourhoods may overlap and, at the
moment, we cannot determine the relation between them. Nevertheless, the (s − 1)-
neighbourhoods are disjoint, and we can use them to start the construction of the
fullerene F.

To construct the remaining part of the fullerene, we apply the edge condition and
the fuzzy image of a graph from [3].

Let PH (x) be the characteristic polynomial of a graph H. From the eigenvalues of
a graph G we can, of course, determine its characteristic polynomial PG(x). From the
eigenvalues and angles of G we can determine characteristic polynomials PG−u(x)

of all vertex-deleted subgraphs G − u of G (cf. [7, p. 83]).

Theorem 1 [3]. Let G be a graph with n vertices and m edges, and let uv be an edge
of G. Then there exists a polynomial q(x) of degree at most n − 3 such that

(xn − (m − 1)xn−2 + q(x))PG(x) + PG−u(x)PG−v(x) is a square. (4)

The necessary condition (4) for two vertices u and v to be adjacent is called the
edge condition. The quasi-graph Q(G) of the graph G is defined as the graph with
the same vertices as G, with two vertices adjacent if and only if they fulfil the edge
condition. Obviously, any graph is a spanning subgraph of its quasi-graph.

If G is regular and both G and G are connected, then from the eigenvalues and
angles of G we also know the eigenvalues and angles of G [6]. The edge condition
in G is a necessary condition for non-adjacency in G, and any two distinct vertices
of G are adjacent either in Q(G) or in Q(G). If they are adjacent in one and not
adjacent in the other, then their status coincides with that in Q(G). Thus, the fuzzy
image FI(G) is defined as the graph with the same vertex set as G and two kinds
of edges, solid and fuzzy. Vertices u and v of FI(G) are joined by a fuzzy edge
if they are adjacent in both Q(G) and Q(G), otherwise they are joined by a solid
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edge if they are adjacent in Q(G) and they are non-adjacent if they are non-adja-
cent in Q(G). The graph G contains all solid edges and some of the fuzzy edges of
FI(G).

To decrease the number of fuzzy edges in the fuzzy image we can use the lower
bounds on the distance between vertices. Let d(j, k) be the distance between vertices
j and k in G.

Lemma 2 [4]. If g = min
{
s : ∑m

i=1 |µs
i |αij αik � 1

}
, then d(j, k) � g.

Lemma 3 [20]. If g = min
{
s : ∑m

i=1 |µs+2
i |αij αik � dj + dk + δs−1 − s

}
, where

δs−1 is the sum of s − 1 smallest degrees of vertices other than j and k, then
d(j, k) � g.

The lower bounds given by these lemmas are mutually independent and rarely
greater than 3. They are also independent of the edge condition, so that if for any
two vertices u and v, either Lemma 2 or Lemma 3 gives a lower bound on distance
at least 2, then we can remove the fuzzy edge uv from the fuzzy image.

The Basic Fullerene Construction Algorithm
Input: Eigenvalues and angles of a fullerene.
Output: All fullerene graphs with given eigenvalues and angles.
Step 1a Find the fuzzy image F ∗ and lower bounds on distance (Lemmas 2 and 3).

Remove the fuzzy edges from F ∗ for all pairs of vertices for which the
lower bound on distance is at least 2.

Step 1b Find the pentadistance of each vertex, and the sets Ps for each s = 0, 1,
. . . , t, where t is the largest pentadistance.

Step 1c Find the value of the width W . If W = 0, output the graph of the fulle-
rene C60 and go to Step 8. Otherwise set k = w − 1. The subgraph Fk

induced by
⋃k

i=0 Pi is the disjoint union of 12 pentagons together with
their k-neighborhoods in a penta-hexagonal net.

Step 2 Increment k and let Fk be the graph obtained from Fk−1 by adding isolated
vertices of Pk . In the fullerene, there are adjacencies between vertices in
Pk and there are edges from Pk to Pk−1. Using the modified fuzzy image
F ∗, construct all possible sets of edges Ek,1, Ek,2, . . . , Ek,ek which join
vertices of Pk and which join vertices of Pk to vertices of Pk−1.

Step 3 Set jk = 1 and add the edges of Ek,1 to Fk .
Step 4 If the subgraph Fk is planar with (i) all or all but one of its faces five-sided

or six-sided, (ii) maximal degree at most 3, (iii) eigenvalues satisfying the
Interlacing Theorem, then go to Step 2 in case k < t , otherwise output the
graph Ft .

Step 5 If jk < ek , then delete the edges of Ek,jk from Fk , increment jk and add
the edges of Ek,jk to Fk . Go to Step 4.
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Step 6 While jk = ek decrement k. If k < w − 1 then go to Step 8, else go to Step
5.

Step 7 For each output graph, obtained in Step 4, check whether it has the given
eigenvalues and angles. If not, delete it from the list.

Step 8 Stop

Note that it may happen that vertex angle sequences given as input data of the
algorithm are actually assigned to vertices of an output graph only at the end of the
algorithm (Step 7). For example, at the beginning of the execution of the algorithm
we certainly know what the subgraph Fw−1 looks like although we do not know the
distribution of vertices from P0 among pentagons.

It is difficult to estimate the complexity of this algorithm. On the other hand,
the question of complexity has second order significance. Certainly, the algorithm
is much better than the constructing all fullerenes with the given number of vertices
and checking for each one whether it has given eigenvalues and angles. The point of
the algorithm is to show what information on the structure of a fullerene is contained
in eigenvalues and angles and how this information can be used.

One might expect that automorphisms present potential pitfalls for the execution
of this algorithm. Equivalent vertices have the same angles, making it impossible for
the algorithm to distinguish between them. This could lead to exponentially large
numbers of edge sets found in Step 2, and also to exponentially long running times.
In particular, a large automorphism group can cause many fuzzy edges in the fuzzy
image of the graph. For example, the automorphism group of C60 is transitive on
vertices and the fuzzy image of C60 is a complete graph containing only fuzzy edges.
(In this basic case, however, reconstruction is immediate.)

In many cases it can happen that a great number of solid edges in the fuzzy image
forces the reconstruction by diminishing the number of alternatives, or that some spe-
cial distribution of pentagons over the fullerene surface can lead to lower execution
times of the algorithm.

The basic form of the algorithm does not use any result from Sections 3–5 con-
cerning details of the fullerene graph under reconstruction. The algorithm can be
improved by appropriate use of information from these sections. This could lead
to the reduction in number of possible sets Ek,jk for the construction of the sub-
graph Fk . We omit a formal description of such an improved algorithm but
indicate its spirit. Namely, it would contain many heuristics each applicable if cer-
tain conditions are met. The use of heuristics should be guided by the principles
of building artificial intelligence programs, and we could then speak about an
expert system for constructing fullerenes on the basis of their eigenvalues and
angles.

Although we have presented an algorithm for constructing all fullerene graphs
with given eigenvalues and angles, we have not yet answered the question of whether
the construction ends with a unique graph. Further research is necessary to clarify
this and related questions.
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7. Topological coordinates

In this section we describe an alternative approach to the problem of constructing
fullerene graphs from their eigenvalues and angles.

It is well known that a graph is determined by its eigenvalues and eigenvectors
(cf., e.g., [7, p. 22]). Of course, it is sufficient to know eigenvalues and a basis of
corresponding eigenvectors. Our position is less favourable since from eigenvalues
and angles the eigenvectors cannot be uniquely reconstructed in general.

For simple (i.e. non-degenerate) eigenvalues the eigenvalue angle sequence is
equal to the sequence of moduli of the coordinates of the corresponding eigenvector.
Consequently to determine the eigenvector in this case we should only determine
correct signs for the coordinates. If we have a lot of simple eigenvalues the orthog-
onality between eigenvectors reduces the number of possibilities substantially. In
particular, the largest eigenvalue is simple, with an eigenvector whose all coordinates
are equal to 1 which implies that the sum of coordinates of eigenvectors belonging
to other eigenvalues is equal to 0.

Calculations show that typical fullerene graphs usually have many simple eigen-
values; perhaps one can say almost all eigenvalues are simple. This fact opens a
possibility to design an algorithm for constructing fullerene graphs from their eigen-
values and angles via eigenvectors. However, there is something more to be said;
namely we shall see that it is usually sufficient to construct just three mutually or-
thogonal eigenvectors.

In what follows we need the eigenvectors of the Laplacian matrix L = D − A

of a graph where A is the adjacency matrix and D the diagonal matrix of vertex
degrees. However, fullerene graphs are regular and the matrices A and L have the
same eigenvectors, so we can deal equally well with either.

The first relevant fact is that for a graph that represents a spherical polyhedron, the
Laplacian eigenvectors are approximate solutions of the particle-on-a-sphere wave
equation

∇2ψ0m(θ, φ) = 0(0 + 1)ψ0m(θ, φ),

where ∇2 is the operator
∑

i �
2/�x2

i which can be transformed to polar coordinates
θ, φ on the unit sphere.

Exact solutions of this equation are spherical harmonics (waves on a spherical
planet), characterised by an angular momentum quantum number 0 = 0, 1, . . . For
each value of 0 there is a (20 + 1)-fold degenerate set of harmonics with quantum
number m describing the z-component of the total angular momentum.

The significant properties of the spherical harmonics are their nodal behaviour
and, at least for low 0, their simple dependence on (x, y, z) or (θ, φ). The lowest
solution 0 = 0 is a constant over the sphere i.e. nodeless. For 0 = 1 there are three or-
thogonal solutions which in real form can be chosen as exactly x, y, z in a Cartesian
system (i.e. cos θ and two rotated forms).
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Solutions for 0 = 2 have two angular nodes and degeneracy 5, i.e. five independent
solutions 3z2 − r2, x2 − y2, xy, xz, yz.

Thus the series for the spherical harmonic continuum functions has a monotonic
increase of eigenvalue, node count and multiplicity.

The claim is that in the eigenvectors of L it will be possible to find analogous
node—eigenvalue correlations so that there will be an “S-like” vector, three “P-like”
vectors, and so on. Two factors intervene in a graph with finite point group less
than the spherical R3h: (i) the multiplicities split (the maximum symmetry-enforced
0 multiplicity is 5 in Ih, 3 in cubic graphs, . . . ) (ii) the ordering of the levels will
change, certainly at high nodal count, but perhaps also at low count e.g. if the graph
when embedded is highly non-spherical, a wave such as

may have lower energy than a wave such as

(for straightforward physical reasons based on wavelength), and so the ‘natural’ se-
quence

may be perturbed.
Note that for all cubic polyhedra, the 0 eigenvalue of L has a uniform vector

matching the S harmonic—it is constant everywhere. For sufficiently dense cover-
ings of the sphere, we should always be able to find three vectors that correspond
to the triple of P spherical harmonics, and cut the graph into two connected parts of
opposite sign, possibly separated by some vertices with zero coefficient.

The suggested procedure then is to use the coefficients of these three vectors
as literally x- or y- or z-coordinates of graph vertices in R3. The vertices will be
embedded in a closed surface whose inside domain is a convex set. Pentagon and
hexagon faces of the fullerene graph on this surface will easily be recognized.

If we take eigenvectors for λ2, λ3 and λ4 we will usually get a faithful embedding,
but can occasionally be caught out by intrusion of a more highly noded vector, giving
a non-convex set of coordinates. If, however, we take the first three uninodal vectors
we apparently always get a faithful embedding for a fullerene—certainly for the
many thousands of cases tested.
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It is conceivable that the three vectors would have more than one allowed solu-
tion of signs, but it is hard to believe that more than one such solution would give
a fullerene adjacency matrix on assigning three edges to each vertex on the basis
of physical proximity. Thus topological coordinates offer a promising alternative
method of reconstructing fullerenes, of heuristic value, which should be investigated
and sharpened further, in parallel with the implementation of the algorithm described
in the earlier part of the paper.

Acknowledgement

We thank Felix Goldberg, Nevin Kapur, Helmut Prodinger, Volker Strehl and
Christian Krattenthaler who replied to our message in DMANET mailing list and
pointed us to the references [1,9,17].

References

[1] P. Barrucand, A combinatorial identity, Problem 75-4, SIAM Rev. 17 (1975) 168.
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[7] D. Cvetković, P. Rowlinson, S. Simić, Eigenspaces of graphs, in: Encyclopedia of Mathematics and
its Application, vol. 66, Cambridge University Press, Cambridge, 1997.

[8] M. Deza, P.W. Fowler, A. Rassat, K.M. Rogers, Fullerenes as tilings of surfaces, J. Chem. Inf.
Comp. Sci. 40 (2000) 550–558.

[9] C. Domb, On the theory of cooperative phenomena in crystals, Adv. in Phys. 9 (1960) 149–361.
[10] P.W. Fowler, Carbon cylinders—a class of closed-shell clusters, J. Chem. Soc. Faraday Trans. 86

(1990) 2073–2077.
[11] P.W. Fowler, Fullerene graphs with more negative than positive eigenvalues: the exceptions that

prove the rule of electron deficiency? J. Chem. Soc. Faraday Trans. 93 (1997) 1–3.
[12] P.W. Fowler, J.E. Cremona, J.I. Steer, Systematics of bonding in non-icosahedral carbon clusters,

Theor. Chim. Acta 73 (1988) 1–26.
[13] P.W. Fowler, D. Manolopoulos, An Atlas of Fullerenes, Clarendon Press, Oxford, 1995.
[14] P.W. Fowler, K.M. Rogers, Eigenvalue spectra of leapfrog polyhedra, J. Chem. Soc. Faraday 94

(1998) 2509–2514.
[15] P.W. Fowler, K.M. Rogers, S. Fajtlowicz, P. Hansen, G. Caporossi, Facts and conjectures about

fullerene graphs: leapfrog, cylindrical and Ramanujan fullerenes, in: A. Betten, A. Kohnert, R. Laue,
A. Wassermann (Eds.), Algebraic Combinatorics and Applications, Springer, Berlin, 2000.

[16] P.W. Fowler, J.I. Steer, The leapfrog principle—a rule for electron counts of carbon clusters,
J. Chem. Soc. Chem. Comm. (1987) 1403–1405.
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