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1. INTRODUCTION 

There have been many papers dealing with dynamical systems with impulsive effects in recent 

years. ,The dynamic behavior of such systems is more complex than that of the classical dynam- 
ical systems. Several works have been presented in the literature [l-5] analyzing the stability 
of dynamical systems with impulsive effects. However, the absolute stability analysis of Lurie 
systems has been studied for several decades [6-g], and the absolute stability analysis of Lurie 
systems with impulsive effects was not considered. In the present paper, we study the absolute 
stability of Lurie systems with impulsive effects. 

2. PRELIMINARIES 

Denote by R the set of real numbers, R+ the set of nonnegative real numbers, N the set of 
positive integers, and R” the real n-space. For x E R”, denote by xT = (x1, x2,. . . ,z,) the 
transpose of 5, IJx/I the Euclidean vector norm, i.e., \lxlI = a. Let R”‘” denote the set of 
real n x n matrices. For A E R”‘” denote by i[All th e norm of A induced by the Euclidean 
vector norm, i.e., l\All = dm. For B E R”‘“, denote by BT the transpose of B. For 
a symmetric matrix P, we write P > 0 (P < 0) if P is a positive definite (negative definite) 
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matrix. Denote by &n(P), X,,,(P), respectively, the smallest and the largest eigenvalues of 
the matrix P. 

Consider the Lurie system 

k(t) = Ax(t) + bf(a(t)), u(t) = cTx(t), 

where z(t) E Rn is the state variable, A E Rnx”, b, c E R”, A is asymptotically stable, and 

f(g) E F, = {f(u) I f(O) = 0, 0 < af(u) 5 ~0~9 c # 0, f(u) E C[R, RI} . 

Consider a discrete set {tk} of time instants, where 0 < tl < t2 < . . . < tk < t&+1 < ... , 
tk --f 00, as k + 03. &, time instants tk, jumps in the state variable 2 are denoted by A&t, = 
x(tt) - x(tk), where x(tkf) = lim t-t: x(t), k E N. Let Ik E C[Rn, R”] denote the incremental 
change of the state at the time tk,. and Ik(O) = 0 for all k E N. Then, we get the following 
impulsive Lurie system: 

k(t) = Ax(t) + bf(a(t)), t#ttk, 

a(t) = 2x(t), t#tk, 

Ax = I/&), t=tk, (1) 

x (to’) = x0, to 2 0, k E N. 

It is clear that the impulsive Lurie system (1) has a trivial solution. 

DEFINITION 1. The impulsive Lurie system (1) is said to be absolutely stable if for any f in F,, 
the trivial solution of system (1) is globally asymptotically stable. 

To study the absolute stability of the impulsive Lurie system (l), we use the following definition 
and lemma [ 11. 

DEFINITION 2. Letting V : R, x R” + R,, for (t,x) E (tk-1, tk] x R”, we define 

D+V(t,+Em+sup;{V[t+h,z+h(Az+bf(cTx))] -V(t,z)}. 

LEMMA. Assume that 

(i) m : Rt + Rt is continuous on (&-l,tk], lim,,, 2 m(t) = m(tk+) exists for all k E N, and 
satisfies the inequalities 

D+m(t) I g(4 m(t)>, t #tkr 

m (tl) 5 Jk(m@k)), k E N, 

m(t0) I uo, 

where g : R+ x R+ + R+ is continuous on (t&l, tk] x R+, lim(,,U),(,t,,) g(& u) = g(tk+, u) 
exists, and Jk : R+ + R+ is nondecreasing for each k E N. 

(ii) y(t) is the maximal solution of the following scalar impulsive differential equation: 

c = g(4’1L), t#tk, 

u (t;) = Jk(‘dh)), k E N, 

u(to) = uo 2 0, 

existing on [to, co). 

Then, we have m(t) < y(t), t > to. 
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3. MAIN RESULTS 

In this section, we shall establish some sufficient conditions for absolute stability of the impul- 
sive Lurie system. 

THEOREM 1. Assume that 

(i) there exist a matrix P > 0 and two numbers p > 0, y > 0 such that 

AT (P + y&ccT) + (p + y mcT) A (P + ynccT) b + (P - y)ATc + c 
R= 

bT (P + yr;ccT) + (P - y)cTA + cT a(/? - y)cTb - f 1 < 0; (2) 

(ii) for ,& 2 0, k E N, 

[ 
(1 + Pk)Xmin(P) 1 

l/2 
Ildtk) + M4tk))ll I LL3x(P) + 4P + Y)lM2 Il4Qll> (3) 

where cr=“=, Pk < co. 

Then, the impulsive Lurie system (1) is gJobaJJy asymptotically stable. 

PROOF. Consider the following Lyapunov function: 

V(2) = XT Pz + ap J gSTz fCsj ds + 2y J”‘(m - f(s)) ds. 
0 

Since P > 0, P > 0, y > 0, fT” f(s) ds > 0, and JiTz(~s - f(s)) ds 2 0, we see that V(z) is 
radially unbounded and 

~min(P)llxl12 i v(zc) I [AmaX + (P + Y)Kllcl12J 11~112~ 

For any P in LMI (2)) we find ~1 > 0 and ~2 > 0 such that 

cl< [-:I J2] <o. 

From f E F, we know that 
KCTZf (C’X) - f2 (c’x) 2 0. 

When t # tk we have 

(4) 

(5) 

(6) 

D+V(z) = zT (ATP + PA) 2 + (bTP3: + zTPb) f (c’x) + 2pf (c’z) cT [AL-C + bf (c’x)] 

+ 27 (KC~Z - f (C’LZT)) cT [AX + bf (c’z)] 

Using (5) and (6) we get 

D+v(z) = -E [ ‘cT2f kTz> - f2 k’d] + [ f &.) ] T a [ f &)I (7) 
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where 

a = A,,,(P) +;; + Y)+,,2 > O. 
When t = tk, by Condition (ii) and (4), we have 

v(z + I,+)) = (x + &(+)T+ + I+)) + 2,b 
/ 

CT (z+ItG (I)) 
f(s) ds 

0 

I 

CT (I+& (2)) 
+ 27 (KS - f(s)) ds 

5 lAmax%, + (P + -/)KItc~~2~ 11~ + Ik(z) ti2 

5 (1-k Pk)hnin(P)ll~/12 5 (I+ pk)v(x), 

AV(z)It=t, = v(x + Ik(x)) - v(x) i pkv(x). (8) 

Let E > 0 and to E R+ be given. Let M = n&(1 + a). Since V(0) = 0, there exist 
S = 6(te) > 0 such that V(x) < ((X,i,(P))/M)E2, for llzll < 6. Let cc(t) = z(t,to,zo) be any 
solution of system (1) with IIzcll < 6. We are going to show that Ilz(t)II < E for t 2 to. 

If this is not true, then there exist t* > to such that 

Ils(t*)ll 2 E and IMt)II CL, t E [to,t*), (9) 
then for t E [tO,t*], define m(t) = V(z(t)). Then, by (7) and (8), we get 

D+m(t) 5 -m(t) 5 0, t E [tO,t*], t # tk, 

Am(h) 5 @k+k), to < tk < t*, 

which implies m(t) I ntoctkct(l + ,8k)m(tO), t E [to,t*]. 

Hence, m(t*) 5 Mm(to) = MV(zo) < Xmin(P)s2, IIzell < 6. But, (4) and (9) imply 
m(t*) = V(z(t*)) 2 Anin(P)llz(t*)l12 Z Anin(P) which is a contradiction. Thus, we must 
have Ilz(t)II < E for t 2 to, and hence, the trivial solution of system (1) is stable. Now, consider 
the impulsive system 

?i = --cm, t # tk, 

A&, = @ku(tk), k E N, (10) 

.u(to) = V(xo). 
For any t 2 0 and V(m) 2 0 the solution u(t, to, ~0) of system (10) is given by 

u(t) = u(t, to, u0) = v(q) n (1 f Pk)emucteto) 5 h!fv(zo)e-a(t-to), t 2 to. (11) 
to<tk<t 

For any solution z(t, to,zo) of system (l), define m(t) = V(z(t, tO,xo)), then by (7) and (8), we 
get 

D+m(t) 5 -cm(t), t#tk, 

m (tk+) 5 (1 + pk)+k), k E N, 

m(to) = V(xo). 

By the lemma, we have m(t) < y(t), t 2 to, where y(t) is the maximal solution of system (10). 
Hence, from (11) we know that m(t) 5 MV(xo)e-Ll(t--to), t > to. 
Let E > 0, to E R+, and ~0 E R” be given, since MV(zo)e-a(t-to) + 0 as t -+ 00. There 

exist T = T(E, to, 20) > 0, such that m(t) 5 MV(zo)e-a(t-to) 5 Amin( for t 2 to + T, then 
it follows from (4) that Xmin(P)IlZ(t, to, ze)ll” 5 m(t) < Amin( for t > to + T, which implies 
Ilz(t, to, zo)ll < E for t 2 to + T. 

Thus, the trivial solution of system (1) is globally attractive. Therefore, the trivial solution of 
system (1) is globally asymptotically stable and Theorem 1 is proved. I 
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COROLLARY 1. Assume that 

(i) there exist a matrix P > 0 and a number @’ > 0 such that 

ATP+PA Pb+pATc+c 

bTP + /?cTA + cT 2pcTb - 2 I 
< 0; 

K 

(ii) for pk > 0, k E N, 

ll4tk) + Ik(dh))ll I 
[ 

C1 + Pk)Xmin(P) 
&n,,(P) + dllcl12 I 

1’2 jlz(tk)ll 
’ 

where Cr=“=, /& < 00. 

Then, the impulsive Lurie system (1) is absolutely stable. 

COROLLARY 2. Assume that 

(i) there exists a matrix P > 0 such that 

ATP+PA Pb+c 

bTP+cT -2 1 < 0; R 
(ii) for ,& > 0, k E N, 

lldtk) + Ik(4tk))ll I 
[ 

C1 + Pk)Xmin(P) 1’2 l~s(tk)ll 

klxm (P) 1 1 
where cy=“=, ,& < co. 

Then, the impulsive Lurie system (1) is absolutely stable. 

THEOREM 2. Assume that 

(i) sup{tk+l - tk} = X < co; 

(ii) Ib$k) + Ik(z(tk))li 5 ~iIx(tk)ll, Q 2 0, k E N; 

(iii) 

II 
&(tw-tk) 

II 
1 I q < 

a (1 + llbil ~~~j~r;Xe~~ll~ll+ll~ll ll~ll~)X) ’ 4 2 0, k E N. 

Then, the impulsive Lurie system (1) is absolutely stable. 

PROOF. Since for any t E (tk,t,++l], 

z(t) = z (tt) -t 
J’ 

t: [Ax(r) -t- bf (c’z(r))] dr, 

which implies that 

llz(t)ll 5 112 (t:) 11 + @All + IV4 Il4~)Il~(~)ll dr, t E (tk, tk+l]. 

By the Gronwall inequality, we obtain 
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So, we get 

(13) 

k E N. 

From (1) and [5] we know that 

x(&+1) = eA@k+l+)S (tk+) + 
I 

tk+1 eA(T-tk)bf (cTx(r)) dr, 
tk 

then, by Conditions (ii), (iii), and (13) we obtain that 

112 K+JII = IW+d +4+1(4trc+d)ll I 4Id~k+l)ll 
= a I[ eA(tk+l-tk) (j (tic’) + e-A(tk+l-tk) 6”’ eA+-tk)/,f (cTz(r)) &) I( 

< cx - II 
eA(tk+l-tk) (1 (11~ (tk+) 11 + ((e-A(tk+letk) (1 / 11:” eAcTmtk)bf (c’x(r)) drll) 

5 aq 1 + l/q ~~c~~rc~e~~ll~ll+ll~ll IMbF 
( ) ll4mllr kEN. 

Letting y = aq(l + llbll Ilcll~EXe(311A11+11b11 IIcIIK)'), th en 0 < y < 1 and the above relation implies 

112 K+;l> II 5 7 llz b;c’> II ’ k E N. (14 

Letting to > 0 be given, without loss of generality, we assume that 0 < to < tr. Then, from (1) 
we get 

which implies that 

x(tl) = 2 (to+) + J” [Ax(r) + bf (c’x(r))] dr, 
to 

Ildh)ll I 115 (G) 1) + ~;‘wll + llbll 1141~)11~(~)11 dr* 

By the Gronwall inequality, we obtain 

IIWII = II4to)lle Wll+llbll IM~c)J 

By Condition (ii) and (15), we have 

(15) 

115 (t;‘) 11 = Ilz(tl) + Il(z(tl))ll I allrc(tl)ll I allzOJIe(~tAl’+llb’t tlcl’K)x, (16) 

For each time point t 2 to there exists a k such that tl, < t 5 tk+l, so, from (12) we get 
(Iz(t)II 5 (Ilc(tk+)lle(llAII+IlbilIIClln)X, and applying (14) and (16), we get 

Il4t)II L 4hll7 k 1 - e 2(114l+llbll IIclb)X 9 for tk < t 5 tk+l. (17) 

For any solution z(t) = z(t, to, 20) of system (l), let E > 0, to > 0 be given, and from 0 < y < 1 
and (17), we know that there exist 6 = (y&/a)e-2(11All+llblIIl~ll~)x > 0 such that Ilrc(t)II < E for 
]]~a]] < S, t > to, i.e., the trivial solution of system (1) is stable. 

Now, as t + co, k + co, by (17) and 0 < y < 1, we have limt+oo JJz(t)II = 0. There the result 
holds. I 
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COROLLARY 3. Assume that 

(i) sup{tk+l - tk} = X < co; 
(ii) 

II (I+ Bk)e A(tk+~--tk) 
II 

1 5 4 < 
1 + llbjl ~~C~~K~e~311~II+ll~ll IIcllnP ’ k E N. 

Then, the impulsive Lurie system 

i = Arc + bf (c’x) , 

AxIt+ = Bkx, 

t # tk, 

t = tk, k E N, 

is absolutely stable. 

(18). 

COROLLARY 4. Assume that 

(i) sup{tk+l - tk} = X < 00; 
(ii) 

lim sup (I+ Bk)e 
I/ 

A(ttc+l-h) < 
II 

1 
k-+m 1 + llbll ~~C~~K~e~~ll~ll+Il~ll IIcllnV ’ 

Then, the impulsive Lurie system (18) is absolutely stable. 

4. CONCLUSION 

In this paper, we have presented some sufficient conditions that guarantee absolute stability of 
Lurie systems with impulsive effects by using Lyapunov functions and the method of variation of 
parameters. Suitable conditions have to be placed on the impulses in order to maintain absolute 
stability. 
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