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1. INTRODUCTION

There have been many papers dealing with dynamical systems with impulsive effects in recent
years. The dynamic behavior of such systems is more complex than that of the classical dynam-
ical systems. Several works have been presented in the literature [1-5] analyzing the stability
of dynamical systems with impulsive effects. However, the absolute stability analysis of Lurie
systems has been studied for several decades [6-9], and the absolute stability analysis of Lurie
systems with impulsive effects was not considered. In the present paper, we study the absolute
stability of Lurie systems with impulsive effects.

2. PRELIMINARIES

Denote by R the set of real numbers, R, the set of nonnegative real numbers, N the set of
positive integers, and R™ the real n-space. For x € R™, denote by z' = (z1,z2,...,2,) the
transpose of z, ||z|| the Euclidean vector norm, i.e., |z| = vVZTz. Let R**™ denote the set of
real n x n matrices. For A € R™™"™ denote by || 4| the norm of A induced by the Euclidean
vector norm, i.e., [|A|| = v/ Amax(AT A). For B € R™*", denote by BT the transpose of B. For
a symmetric matrix P, we write P > 0 (P < 0) if P is a positive definite (negative definite)
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matrix. Denote by Anin(P), Amax(P), respectively, the smallest and the largest eigenvalues of
the matrix P.
Consider the Lurie system

i(t) = Az(t) + bf(o(t)),  o(t) =c'z(t),
where z(t) € R" is the state variable, A € R"*™, b,c€ R™, A is asyinptotically stable, and
flo) € Fe={f(0) | F(0)=0, 0<0f(0) < ko?, o #0, f(0) e C[R,R]}.

Consider a discrete set {tx} of time instants, where 0 < t; < t3 < -+ < tg < tpy1 < ---,
tx — 00, as k — o0. At time instants ¢, jumps in the state variable z are denoted by Azfi=, =
z(tf) — z(tx), where z(tf) = lim,_.+ z(t), k € N. Let I € C|R", R"| denote the incremental
change of the state at the time tx, and I(0) = 0 for all k € N. Then, we get the following
impulsive Lurie system:

i(t) = An(t) + bf(0(t),  t#t,

a(t) = cTa(t), t# ti, )
A.T:Ik(it), t =1,
z(té"):zo, to >0, ke&N.

It is clear that the impulsive Lurie system (1) has a trivial solution.

DEFINITION 1. The impulsive Lurie system (1) is said to be absolutely stable if for any f in F,
the trivial solution of system (1) is globally asymptotically stable.

To study the absolute stability of the impulsive Lurie system (1), we use the following definition
and lemma [1].

DEFINITION 2. Letting V : R, x R* — Ry, for (¢,z) € (tx—1,tx] X R™, we define

D*V(t,z) = hlirgl+ sup% {V[t+hz+h(Az+bf(c"2))] - V(1)}.

LEMMA. Assume that
(i) m: Ry — Ry is continuous on (t5—1,tx], lim,_,,+ m(t) = m(t}) exists for all k € N, and
satisfies the Inequalities

D*m() <gltm(®),  t#
m () < him(w), ke,
m(to) < ug,

where g : Ry x Ry — Ry is continuous on (tk—1,te] X Ry, lime, ot g(t,v) = g(t},u)
exists, and Ji : Ry — Ry is nondecreasing for each k € N.
(ii) v(¢) is the maximal solution of the following scalar impulsive differential equation:

u=g(t,u), t # g,
u () = Je(u(tx)), k€N,
u(to) = uo 2 0,

existing on [tg, 00).
Then, we have m(t) < ~(t), t > to.
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3. MAIN RESULTS

In this section, we shall establish some sufficient conditions for absolute stability of the impul-
sive Lurie system.

THEOREM 1. Assume that
(i) there exist a matrix P > 0 and two numbers 3 > 0, v > 0 such that

AT (P+ykecT) + (P+vykec) A (PHyrec™ )b+ (B-71)ATc+c
== 0; 2
bT (P+ykec’ ) +(B—7)c" A+’ 2(8—7y)eTb— % < @
(i) for B >0,k € N,
Amin P 1z
)+ o6 < {5 e | et ©)

where Y po; Bk < 0.
Then, the impulsive Lurie system (1) is globally asymptotically stable.
ProoF. Consider the following Lyapunov function:

V(z) :a:TPm—FQﬁ/Oc If(s) ds—§—2'y/0C I(l-cs—f(s)) ds.

.
Since P >0, 8> 0,7 >0, [ © f(s)ds >0, and fOCTI(ns — f(s))ds > 0, we see that V(z) is
radially unbounded and

Amin(P)[l2ll* < V() < [Amax(P) + (B+1)slel®] 1], (4)

For any P in LMI (2), we find €1 > 0 and €3 > 0 such that

—*81[ 0
Q<{ 0 _62}<0. ()
From f € F,, we know that
ke'zf (c'a) — f2(c"z) >0. (6)

When ¢ # t;, we have
D*V(z) =2 (ATP4+ PA)z+ (b"Pz+x' Pb) f(c"z) +28f (c'z)c' [Az+bf (cTz)]
+2y(ke"z— f(c"z)) " [Az +bf (cTx)]
B x TrAT (P+~kee’) + (P +ykecT) A (P +vkec’ )b+ (B —7)ATc
IRRAGE) [lﬁw+wmﬂ+w—wJA 2(8 - y)eTb
T
“[1&a)

Using (5) and (6) we get

[ cC T

D+V(x):_% [se™af (cT2) ~ 2 (")) + l:f(zT )]TQ [f(xT )} (7)

< —e13 x — eo f? (ch) < —g1z'z < —aV(z),
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where .
- 5 > 0.
Amax(P) + (8 + 7)xllcll

When ¢ = ti, by Condition (ii) and (4), we have

[0 23—

T (z+T1x (x)) ‘
Viz + Ix(z)) = (:c+Ik(x))TP(x+Ik(:c)) +2ﬁ/{; f(s)ds

¢ (z+Ix(x))
+ 27/ (ks f(s))ds
0

< Panax(P) + (8 + rlel?] lle + ()|
< (14 B Amin(PlJel? < (14 BV (@),
AV(@)lmt, = V(@ + Ii(2)) - V(2) < BV (@). (®)

Let ¢ > 0 and to € Ry be given. Let M = [[zo (1 + B¢). Since V(0) = 0, there exist
§ = 6(to) > 0 such that V(z) < (Amin(P))/M)e?, for ||z| < 6. Let x(t) = z(t,to,zo) be any
solution of system (1) with ||zo]| < 8. We are going to show that ||z(t)|| < € for ¢ > to.

If this is not true, then there exist t* > to such that

@) 2 e and |z(t)ll <e,  t€ [to,t"), ©
then for ¢ € [to,t*], define m(t) = V(x(¢)). Then, by (7) and (8), we get

Dtm(t) < —am(t) <0,  tE€ [to,t*], t#ts,

Am(ty) < Bem(te), to < tp <t",

which implies m(t) < [, ¢, <. (1 + Br)m(to), t € [to, *].

Hence, m(t*) < Mm(to) = MV(zo) < Amn(P)e2, ||zo]| < 6. But, (4) and (9) imply
m(t*) = V(z(t*)) > Amin(P)|Iz(t*)]I? > Amin(P)e?, which is a contradiction. Thus, we must
have [lz(t)|| < € for t > to, and hence, the trivial solution of system (1) is stable. Now, consider
the impulsive system

’l:t = —Qu, t ?é tk;
Ault:t;c = ﬂku(tk)’ ke N, (10)
u(to) = V(:L'o)

For any ¢ > 0 and V(zo) > 0 the solution u(t,to, uo) of system (10) is given by

u(t) = u(t,to,u0) = V(zo) [ (1+Bk)e %) < MV(zo)e %), t2>¢. (1)
to<tr <t )
For any solution z(¢,tp,2o) of system (1), define m(t) = V(z(¢, to, zo)), then by (7) and (8), we
get

D*m(t) < —am(t), t# b,
m(tf) < A+ B)m(ts), keEN,
m(to) = V(xo).

By the lemma, we have m(t) < ¥(2), t > to, where (¢) is the maximal solution of system (10).

Hence, from (11) we know that m(t) < MV (zg)e~a(t=%) ¢ > ¢,

Let € > 0, to € Ry, and zo € R" be given, since MV (zp)e" (%) — 0 as t — co. There
exist T = T, to, z0) > 0, such that m(t) < MV(mo)e_o‘(t‘tO) < Amin(P)e? for t > to + T, then
it follows from (4) that Amin(P)||z(2,to, Zo)[|> < m(t) < Amin(P)e? for t > to + T, which implies
lz(t, to, zo)|| <€ fort > 1o+ T.

Thus, the trivial solution of system (1) is globally attractive. Therefore, the trivial solution of
system (1) is globally asymptotically stable and Theorem 1 is proved. ]
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COROLLARY 1. Assume that
(i) there exist a matrix P > 0 and a number § > 0 such that

ATP+ PA Pb+fATc+e
0.
bTP+BcTA+c"  28¢Th— % =
(ii) for B >0,k € N,
(1+ B Amin(P) "2
ot + et} < [ 20mtP |,

where Y~ | By, < co.

Then, the impulsive Lurie system (1) is absolutely stable.

COROLLARY 2. Assume that

(i} there exists a matrix P > 0 such that

ATP+PA Pb+c
< 0;
BTP+cT —%

(ii) for B >0,k € N,

. 1/2
lalte) + Le(e(t))] < M—"ip—)] et

Amax (P)

where 502 | B < .
Then, the impulsive Lurie system (1) is absolutely stable.

THEOREM 2. Assume that
(i) sup{try1 —tr} = A < oo;
(i) [l=(te) + Le(z ()l < aflz(te)l, @ >0, k € N;
(ii)
1
o (14 [10] [lc] ereCIATE TN Tel8)

“eA(tk+1—tk) g>0, keN.

<g<

Then, the impulsive Lurie system (1) is absolutely stable.
PrOOF. Since for any t € (g, tx41],

x(t) =z (tf) +/ [Az(r) +bf (c"x(r))] dr,

ty
which implies that

le@l < [l ()] + / (AN + bl el )z () dr, ¢ € (b tirn):

By the Gronwall inequality, we obtain

Nz ()| < “1‘ (t:) H ellAl+Iol ello) (t=t0) < “w (t:) ” ellAl+ 1B Hell=)A t € (te,tig1)-

423

(12)
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So, we get

te41
/ eAlr=telp £ (cTa:(r)) dr

ti

T
s[ AN [b] 1] sl ()| dr
k

[ 79}

< / el AN B] ficllx || () | eNAl+ el el g (13)
ti

== (¢)] 18l llcllsAe@IAT+Blellm) ke N.

From (1) and [5] we know that

te+1
:E(tk+1) — eA(tk+1—tk)$ (t;:) +/ eA('r—tk)bf (CT:E(T)) dr,

L
then, by Conditions (ii), (iii), and (13) we obtain that
|z @) | = le(ters) + Tepr(@(tes))ll < allz(ter)]]
Atk —te) (x (6) + e~ Alten =) / " eAC-bf (T a(r) dr)
ik
trt1
(”:v O+ He‘A(tk“'t’“) { / eAr=tbf (cTx(r)) dr
ti

< ag (1+ ] effare®AHIPHIERY) |1z (6)]|, k€ N.

=q

<a “eA(tk+1_tk)

)

Letting v = ag(1 + ||b|| ||c||xAe@IA4l+181Hel®A) "then 0 < v < 1 and the above relation implies

”"c (ttﬁ—l)“ <7 ”x (tl-:)” ) keN. (14)

Letting tg > O be given, without loss of generality, we assume that 0 < ¢y < ¢t;. Then, from (1)
we get

o) =2 () + [ [Asto) +87 (7)) ar,

to

which implies that

Izl < l= (6] + /t:l(HAll + (1Bl llell =)l (r)l dr.
By the Gronwall inequality, we obtain
lz(t)] = ||x(t0)”e(IIAII+IIbII flelim)A (15)
By Condition (ii) and (15), we have
= (1) || = lle(t1) + L))l < allz(t)] < afl|lel 4T+, (16)

For each time point ¢ > ¢y there exists a k such that t;x < ¢ < tgy1, so, from (12) we get
lz@)] < [lz(tf) (e AN+l liel=)A "and applying (14) and (16), we get

z(8)|| < af|zolly®te2llAl+IbllclmA for ty <t <tgqa. (17

For any solution z(t) = z(t,t, zo) of system (1), let € > 0, ¢; > 0 be given, and from 0 <y <1
and (17), we know that there exist § = (ye/a)e2UIAlIHblIcl=A ~ 0 such that ||z(t)|| < € for
llzoll < 6, t > to, i.e., the trivial solution of system (1) is stable.

Now, as t — 00, k — 00, by (17) and 0 < 7 < 1, we have lim;_, [|z(¢)]] = 0. There the result
holds. |



Absolute Stability of Lurie Systems 425

COROLLARY 3. Assume that

(i) sup{ti41 —tk} = A < o0;
(i)
1

S4< T ey FEN

|7+ Biyertons=to

Then, the impulsive Lurie system

t=Az+bf (c'z), t#t,
Azx|i=, = Bz, t=ty, k&N,

is absolutely stable.

COROLLARY 4. Assume that

(i) sup{trs1 —tr} = A <oo;
(if)
1
< T B el reCIAT el e

lim sup “(I+Bk)eA(tk+1—tk)
k—)w

Then, the impulsive Lurie system (18) is absolutely stable.

4. CONCLUSION

In this paper, we have presented some sufficient conditions that guarantee absolute stability of
Lurie systems with impulsive effects by using Lyapunov functions and the method of variation of
parameters. Suitable conditions have to be placed on the impulses in order to maintain absolute
stability.
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