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Abstract—In this paper, we establish a generalisation of the Ostrowski inequality for monotonic
functions that also includes various recent results and apply it for quadrature formulae in numerical
integration. © 2006 Elsevier Ltd. All rights reserved.
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1. INTRODUCTION

In (1], Dragomir pointed out the following inequality for mappings of bounded variation general-
ising an Ostrowski type inequality first established in [2].

THEOREM 1. Let Iy : a = 2o < 1 < -+ < ZTk—1 < Tk = b be a division of the interval [a,b]
and a; (i = 0,...,k+1) be “k + 2” points such that ag = a, a; € [T;-1,z:] (i = 1,...,k) and
a1 =b. If f : [a,b] — R is of bounded variation, then we have the inequality,

b k
[ f@ds=3 (@ - a0 f (@)
@ i=0
b
SEV(h)-l-max{aHl—E—%ﬂ ,i=0,...,k~1}]\/(f) (1.1)

b
<v)\ ),

where v(h) := max{h; | i =0,...,k -1}, hy ;= 2441 —2; (i =0,...,k — 1), and VZ(f) is the
total variation of f on the interval [a, b].
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It is obvious that if we consider that f : {a,b] — R is a monotonic mapping, then Vg( f) =
|f(b) — f(a)| and (1.1) becomes

b k
[ 1@ dz =Y (o - ) £ @)
a =0

T;+ Tit1

Qi41 — 2

< [%V(h) +max{
v(R)|f (0) = f(a)].

In the same paper [1], the author observed that the best inequality that could be obtained
from (1.1) is that one for which a;+1 = (x; + z441)/2,i =0,...,k — 1, i.e, the following.

, i=0,...,k—1}] |f (b) — f{a)}

COROLLARY 1. Let f and I, be as in Theorem 1. Then, we have the inequality,

/ fz) dz — - {(11 —a)f(a) + Z($z+l ~zi-1)f(zi) + (b — zn- 1)f(b)H

<LwmVo.

In this case, if f is monotonic, obviously we can state that

(1.3)

b k-1
/a f(z) dz —';' [(11 —a)f(a)+ ;(-’xi —zic1) f(z) + (b_l'n—-l)f(b):|

(1.4)

—

Sy (A1 (b) — f (a)].

™o

If we consider the practical case where I} is equidistant, i.e., let
i
Ik:xi=a+(b—a)z (i=0,---,k),

then, with f is as in Theorem 1, we have the inequality

1 f(a)+f(b) b—a (k—i)a+ib”
f(=) ——————b a)+ f
[rwe-|; GRS ¥

1 b
<z -aV).

(1.5)

If in this inequality, we assume that f is monotonic, then we can state that

1 a b b a k—1a+1b
[rera [0y e S [tnesn]

—(b-a)If (5) - £ (@)]-

(1.6)
=%

For a comprehensive list of results related to, or generalising the above, see [3,4] where further
references are given.

The main aim of this paper is to point out an improvement of the inequality (1.2) for monotonic
mappings and, subsequently, for the particular cases (1.4) and (1.6). Applications for quadrature
formulae will be given as well.
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2. SOME INTEGRAL INEQUALITIES

We start with the following result.

THEOREM 2. Let Iy ta =29 <z} < --- < )1 < T = b be a division of the interval [a,b], a,
(t=0,...,k+1) be “%k + 2" points such that ag = @, ; € [Ts-1,25} (1 =1,...,k), and gy = b.
If f : [a,b] — R is monotonic nondecreasing on [a, b], then we have the inequality,

b k
/ £(@) dz =3 (oar — ) £ ()
k-1

<Y [(@ert — 0ig) F (@an1) = (@ — 23) f (@3)]

=0

k=1 g
+ [0 %3 -t t) dt
=/ sgn (cisr — 1) £ ()
k-1
<) (Tivr — i) [f (2i1) = f i) (2.1)
1=0
k-1
+ 3 (i1 — ) [ (0an1) - F (24)]
=0
< max [Ihot oon - 222410 - s @)

L5 + Titl

1
< |:§I/ (h) + max 041 — 5

i=0,k~1

<v(h)[f () - f(a)],

] F(b) - (@)

where h; = ;41 —x; (i = 0,...,k — 1) and v(h) = max,_gz—7 h:-

ProoF. Consider the mapping K : [a,b] — R given by (see also [1])

[t -~ a, t € la,z1),
t— oy, t € [z1,22),
K{t) = J
t—ag_1, tE€|[Tr-2,Tk-1)
(t—ak,  tE€[zk-1,b].

Integrating by parts in the Riemann-Stieltjes integral, we deduce {1]

b k-1 b
[10@=3 @m-erfe- [ KO 7O, (2.2

=0

It is well known that if p : [¢,d] — R, m : [c,d] — R are such that m is monotonic decreasing
and p is continuous on [c,d], then p is Riemann-Stieltjes integrable with respect to m on [c,d]
and

d d
/ p(z) dm(z)| < / Ip (@) dm (z) (2.3)
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Therefore, applying this property on each subinterval [z;, z;+1], we can state that

k=1 rzie1 k-1
2/ K@) df 1)<
i=0 v %i

=0

k- Titl k-1 Titl
SZL mwwm=§L It — apa] df (2)

1
0

b
/mew

[rwao)

o
1l

k-1 Qi1 Tita
= (i1 — t) df (t) + (wm)#ﬂ
5[ 0w [ e-on
k-1 541
- [mﬁl~ﬂfmﬁ?h+/ £ dt
i=0 i
+(t=ap) f )T - / 0 dt} (2.4)
k-1
= [(@is1 = 3)f (23) + (Tis1 = @ig1) f (Zig1)
=0
+/mmmm4wmﬂ
k-1
= Z (Zi+1 — 0ig1) f (Zig1) — (i1 — zi) £ (x4)]
Tt
+3 [emnlan -0 7@ d
i=0 Y Ti

and the first inequality in (2.1) is proved.
To prove the second inequality in (2.1), we observe that since f is monotonic decreasing on
{a, b], hence, we can state that

ity
/ f(t) dt5(01+1—.’ri)f(ai+1), 1:=0,...,TL—1, (25)
x;
and
Tigl
/ f(t) dtZ(I¢+1—ai+1)f(a¢+1), i=0,...,n—1.
Qiq1
That is,
Titp
[0 dt < - i - an) £ (@) (26)
it

and then, by (2.5) and (2.6), we have

k—1 Qiql Tisl
> [‘- (cip1 — i) £ (zi) + (Tir1 — 0ig1) £ (Tig) +/ f(t) dt —/ f () dt}
=0 a

Zi il

k-1
< S [ (augn = 20) £ (@) + (@ig1 — ain1) F (i)
=0

+ (i1 = 2i) f(@i41) = (Tig1 — i) f (@ir1)]

k=1 k—1
= Z (Tit1 — 0igr) [ (Tig1) — f(aig1)] + Z (@iv1 — i) [f (0ug1) — f (z4))]
=0 i=0

and the second inequality in (2.1) is proved.
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For the last inequality, we observe that

(Tir1 — aH—l) (f (l’i+1) - f(ai+1)) + (i1 — ) (f (1) = f (z:))

S max {Tit1 — X1, i1 — T} [f (@ir1) = f(@is1) + f (@) — f (33)]

= [%hi + | Qi1 ~ I"—"_1 T 2t } (f (Zi41) = £ (z4))
and then
k-1
Z (Zir1 = air1) (f (iv1) — f (@ig1)) + (@igr — 20) (f (@ir1) — £ (23))]
=0
o e e PR
=max[h+a1+1 w—l][fb) (a)]
[ﬂ,(h) v o - 22 () @)

v(h)[f (b) - f(a)]-

The theorem is completely proved.

Now, if we assume that the points of the division I} are given, then the best inequality we can
get from Theorem 2 is embodied in the following corollary.

COROLLARY 2. Let f, I be as above. Then, we have the inequality,
/ fz)dz ~ - [(wl - a) a)+2(1‘1+1 = Ti—1) f (@) + (b — Tn- 1)f(b)H

< —-Zh Af(x1)+2/x’“ (x’”’“ _t> f ) dt (2.7)

i=0

I/\

—Zh Af(z:) < —u(h)[f(b)—f(a)],

=0

where h; := z,41 — x; and Af(x;) = f(Ti1) — f(x:),1=0,...,k - 1.
PROOF. We choose in Theorem 2, a1 = (x; + Zi41)/2, i =0,...,k — 1, to obtain

Z(%H —a) i@ = (2 -a) r@+ (252 -0 fe)

+...+(zk_l+b_xk_2+xk_l>f(frk_1)+ ( M)f(b)

2 2

k-1
[(ml -a)f(a)+ Z(zﬁ-l —zi-1) f (@) + (b—xn—l)f(b)J :

Now, (2.7) follows immediately from (2.1) and we omit the details.

The case of equidistant partitioning is important in practice.
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COROLLARY 3. Let I :z;, =a+i:-(b—a)/k (i =0,...,k) be an equidistant partitioning of
[a.b]. If f is as above, then we have the inequality,

[1 f(a)+f(b)( a)+b—_akz—:1f[(k—i)a+ib]”
k

a+(i+1)-(b—a/k) ; —a
s%-( 2 (£ ) - f <a>1+E/ sn (o 25220 - ) sy e @)

j=0 Ja+i-(b-a/k)

< -0 F®) - f (@),

3. THE CONVERGENCE OF A
GENERAL QUADRATURE FORMULA

Let A, :a = a:( " < :1:(1") . (")1 < z( = b be a sequence of divisions of [a,b] and
consider the sequence of numencal 1ntegratlon formulae

' (f’ Sroen) = Zwﬁ")fug-")) ,

=0

where w§") (j =0,...,n) are the quadrature weights with the property that 3 " =0 W (") =b—
The following theorem contains a sufficient condition for the weights wﬁ-n) such that In( fyAn, wn)

approximates the integral f: f(x) dz with an error expressed in terms of the difference f(b)— f(a)
and the norm of the division A,,.

THEOREM 3. Let f : [a,b] » R be a mapping that is monotonic nondecreasing on [a,b|. If the
quadrature weights w§") (j =0,...,n) satisfy the condition,
™ a<Zw(n) <a:$7_:)1 a, foralli=0,...,n—1; (3.1)

then we have the estimate

b
In(f,An,wn)—/ f(x) dz

n-—1 1
< [( 5:)1 a— z w;m) f (wSZ)l)
‘ =

1=0

— (a+2w(n) (n)) (zgn))J
n—1 .z{t) i (3.2)
Z/() sgn (a+2w§") t] f(t)dt
=0 i j=

Sn [(1'2:-)1 —a—2w§")) f( 51)1) (a+2w§"))}
=0 j= j=0
n—~1 1 i
+2 ( + 2w - xﬁ"’) ila+ Z@"’) - f (xﬁ"’)}
j=0
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1. (n) : (n) (n) +:1:(:)l
< -h ) i ) —
e |G o ) T 25 (£ () - £ (@)
(") (n)
1 ;T
- (n) (") Ty i+1 _
s 2" (h " )ﬂi{}i" G+Zw 5 [f(®)—f(a)] (3.2)(cont.)

IA

v (A™) 1 ) - £ (@),

where v(h(™) := max {hg") 11=0,...,n— 1} and h{™ := z{P —-z{™ i =0,...,n~1. Moreover.

we have

b
lim Iy (f, Amwn) = / f(z) de

u(h("))—~0
uniformly by the influence of the weights w,,.

PRroOOF. Define the sequence of real numbers,

(n)

=a,
ol —a+Zw . i=0,...,n.
Note that
ol —a+Zw(") =a+b-a=b.
7=0
By the assumption (3.1), we have a,_‘_1 € [z(n),zf:’_)l] foralli=0,...,n— 1. Observe that
agn) _ a(()n.) — w(()n)’
i i-1
o oV =a+Y ¥V -a-Yuw¥=w”  (i=1,..,n-1)
j=0 J=1
and
n n-—1
ool =+ 3 u —a- S uf? = uf)
— =
Consequently,

5 (alfh o) 1 (a7) = S5l (a) = 1, )

1=0
Applying the inequality (2.1), we deduce the estimate (3.2). The limit follows by the last in-
equality in (3.2).
The case where the partitioning is equidistant is important in practice. Consider then, the
partitioning,

b~
E,: x(")—a+i~

(1=0,...,n),

and define the sequence of numerical quadrature formulae,

n n
T = Yul (a5 222) . L uf —b-a
i=0 1=0

The following result holds.
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COROLLARY 4. Let f : [a,b] — R be monotonic nondecreasing on [a, b]. If the quadrature weights
satisfy the estimate,

(i=0,...,n—1),

:|~

then we have the inequality,

b
I (f.wn) —/ f(z) da

-1
Z !:( “a) Zw(")) ( +1+_1 (b_a))
i - b— a+l b_a
(Set-s0-0) r(orfo-0)]
S () _
* ; /a+%;(b-a) en (a + ;w ) f(t) dt

n—1 . i . i
SZ I: 1 ‘(b—a)—ZW§n)] [f(a-%———-z:l (b—a)) - f (a+2w§-")>:l
=0 j=0 j=0
Ji [ i w("“i(b—a)} [f <a+iw‘")) -f(a+i(b—a)>]
2 n J n
: J j=0

s{%-”“u max [Yuf) - 221 b—-—][f(b £ (@)

n t=0,n—1 =0

+-—'L (b—a)}

- f(a)].
Moreover, we have the limit
b
lim In(f,wy) = f () da
N0 a

uniformly by the influence of w,,.

4. SOME PARTICULAR INEQUALITIES

In the section we point out some particular inequalities which generate classical results such
as: the rectangle inequality, trapezoid inequality, Ostrowski's inequality, midpoint inequality,
Simpson’s inequality, and others for monotonic nondecreasing mappings.

PROPOSITION 1. Let f : [a,b] — R be monotonic nondecreasing on [a,b]. Then, we have the
inequality [5],

b
1/ f(rc)dx—[(a—a)f(a)+(b—a)f<b)]l

b
<G-a)fB)-@-ai@+ [ sma-070d (1)
<b-a)f4) - f@)]+(@-a)f (@) - f (@)
<[ze-a+f- 252y o - @

for all o € [a, b].
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Proor. Follows from Theorem 2 by choosing 2 = a, z; = b, a0 = a, 01 = € [a,b] and az = b.

REMARK 1. If, in (4.1), we put & = (b + a)/2, then we get the “trapezoid inequality” as noted
in [5],

b a —a b a
[ s@ar- - L0 Dot 1) g o)+ [Csen (45

<5 (b-a)[f(b) - f(a)l.

- t) £(t) dt
(4.2)

[SRN]

Another particular integral inequality with many applications is the following one.

PROPOSITION 2. Let f : [a,b] — R be as above. Then, we have the inequality established in [6].

b
/ f(z) dz — [(a1 - a) f (a) + (@2 — 1) f (z1) + (b—az)f(b)]’

a) + aa

<-en 0 +2 (5 - 2E2) fa) - (@ - 0) 0

+/xz sgn (a1 — t) f (t) dt+/bsgn(a2—t)f(t) dt

< (z1— o) [f (z1) = flaa)] + (b~ a2) [f (b) — f(a2)]
+ (01 — a) [f (a1) — f(a)] + (o2 — z1) [f (02) — f (z1)]

Smax{—;-(xl—a)+ a1+a2x1 ,-;—(b—x1)+ az+zl+b‘}><[f(b)—f(a)]
5%[max{:cl—a,b—zl}+max{a1+a+xl ) lag Il+b‘}] x[f(b)—f(a)],

provided that a < oy < z1 < as <b.

PRrooOF. Follows by Theorem 2 on choosing the division a = zo < z1 € 2 = b and the numbers
ap = a, oq € [a,21], ag € [21,b], a3 = b.

REMARK 2.

(a) If, in (4.3), we choose oy = b, a; = a, then we get the inequality obtained in (7]

b
/f(x) dz — (b—a) f (z1)

L b
§2<xl—%—b>+/a sgn (a —t) f (t) dt+/x sgn(b—t) f(t) dt (4.4)

3

<(zy—a)[f(z1) = f(a)] + (b—z1) [f (b) — £ (21)]
[(b—a)+ at H[f(b) £ (@)

I —

for all z; € [a, b].
(b) If, in (4.3), we choose oz = a3 = a (= 1) € [a,b], then we get (4 1).
(c) If we choose =1 = (a + b)/2 in (4.3), then we obtain, fora <o <(a+b)/2<ax <b

a+b

)+(b—a2)f(b>]

/ f(2) dz - [(al —a) f(a) + (o2 —al)f+<b (45)
a

2

5(b—ag)f(b)+(a+b—a1—a2)f( )—(al—a)f(a)
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(a+b)/2 b
+/ sgn (a1 —t) f(t) dt+/ o2 sgn (o —t) f(t) dt

< (“ ; b_ a;) [f (a+ b) flar) 1 +(b—ag) [f (b) - f (a2)] (4.5)(cont.)
+(e1-a)[f () - F ()] + (az - “;b) [f(az) - f (a;b)}
<3[6-0)+ max Hiro - s @

It is obvious that the best inequality we can obtain from (4.5) is the one for which a; =
(3a +b)/4 and a2 = (a + 3b)/4, getting

[rom-3[m03m ()

_ _ (a+b)/2 a
B a)(fib) f(a))+/a Sgn(32+b—t)f(t)dt

da+b a+ 3b

(27 St

yjQ —

b (4.6)
a+3b
+ /(a+b)/2 sgn ( ya t) f(t) dt
<2 21w - £ ().
If in (4.5) we choose ay = (5a +b)/6, a2 = (a + 5b)/6, then we get Simpson’s inequality
(see also [6]),
/f(z)dx__[f();f()+2f(a;b)”
~ _ (a+b)/2
G a)(féb) f (a)) +/a sgn (5“;” —t> (8 dt
b a4+ 5b (4.7)
" /(a+b)/2 &8 ( 6 t> Foa
a a+5b Sa+b
161 a+1(*52) - (22)]
< %l(b—a)[f(b) - f(a)].
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