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Abstract

We present a new proof of the Liouville formula fodadimensional linear dynamic systerd =
A(t)x on atime scal&, whereT is in a sense small. Our proof demonstrates that Liouville’s formula
on small time scales is a direct consequence of its well-known counterpart for ordinary differential
equations.
0 2004 Elsevier Inc. All rights reserved.
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1. Introduction

The development of the theory of time scales was initiated by Hilger in his PhD thesis in
1988 as a theory capable to contain both difference and differential calculus in a consistent
way. Since then we have been witnesses of great efforts in the field of time scales, espe-
cially in unifying the theory of differential equations and the theory of difference equations
(see monographs [3,4]), where many results important in the theory of ordinary differen-
tial equations have been already proved in the time scale setting. One of these results is the
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Liouville formula concerning the time development of the phase space under the flow of a
linear differential system
. d
=
Both monographs [3,4] contain only proofs fde= 2, the general Liouville’s formula for
a (generalized) time scale was proved by Cormani [5].

In this article we give another proof of the general Liouville’s formula for linear dy-
namic system on a time scales which are in a sense small. Therefore the result itself is
hardly surprising. More interesting is the idea of the proof—we use the idea of embed-
ding or more explicitly the idea that solutions of dynamic systems on small time scales are
nothing but restrictions of solutions of suitable ordinary differential equations.

X =A(@)x,

2. Hypotheses and auxiliary results

Throughout this paper we shall use the standard notation widely used in the theory of
ordinary differential equations (e.g., [6]). A time scdlés a nonempty closed subsetl®f
The most prominent examples dafe= R andT = Z, but of course time scales can be much
more complicated objects, e.qg., the well-known middle third Cantor set is a time scale.
For any time scal& we define theyraininessfunctionu : T — [0, co) by

w@):=inf{s e T: s >t} —1t,

soif T =R, thenu(r) =0 andifT = Z, thenu(r) = 1, a time scale could have nonconstant
graininess.

We say that a functiorf : T — R is delta differentiableats € T, if there exists a real
number, denoted ag” (1), called thedelta derivativeof f att, such that for alk > 0 in a
neighbourhood? (¢) of ¢,

[t +1®) = f() = FAO( +n) —s)| et +p@) =
for everys € £2(¢). Let f be differentiable at;

’

(1) if () =0, thenf2(t) = lims_; ser[ £ () — F()1/(t —s),
(2) if u(r) #0, thenf4@) = [f(t + @) — f(O/ @),
) f+pu®) = f)+u@) fA0).

Any interval in T will be denoted by the subscrifit, e.g.,[a,blr = {t € T: a <t < b}.
If S is the system of all left closed and right open intervalsh)r (we putla, a)T = ),
then the set functiof : S — [0, oo], £([a, b)T) := b — a is a countably additive measure
on S. The standard Carathéodory extensiol§ gields theLebesgue delta measuoa T,
so it is possible to work with theebesgue delta integraif f on a setA € T which is
usually denoted aﬁA f () At. Many theorems of the abstract Lebesgue integration theory
holds [4].

For a time scald|T||, we define itsnhormas || T|| := sup{u(t): ¢ € T}. Clearly | T||
[0, +o¢], €.9., IR =0, |Z|| =1, if a, b > 0, then|| | ;21 [k(a + b), k(a + b) + al|| = b,
and||{n?: n e N}| = +o0.
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Moreover, we shall use Mat x n) for the set of all (realyz x n matrices,I,, for the
n-dimensional identity matrix, an@lA|| for the spectral norm of matrid. That is| A||
is the square root of the largest eigenvalueAdfd, where A* is the conjugate transpose
of A. To emphasize that (¢) is a matrix function depending an we shall writeA(-) in
expressions like 4. (¢, s). Eigenvalues oA will be denoted ag.(A), respectively; (A),
SO All = y/max—1,__.{*i(A*A)}.

Throughout this paper we shall work with analytic functiofs and H (see the
proof of our main Theorem 3.1) which are derived from the following functiarR x
Mat(d x d) — Mat(d x d),

2 n

t t t
h(t,A):=A— =A%+ —A3+... 4 (-1)" AL 1
(t, 4) ZATH FATH -+ (Y + @

This means, we need to ensure that the infinite series (1) is convergent. Since we shall
consider effectively only the case wherd® < ||T|, the easiest way to achieve the con-
vergence of (1) is via the following hypothesis:

(H) The time scal& is sufficiently small in the sense thgE| < [|A|| L.

Clearly if A = 0, then the hypothesis (H) holds trivially. Because the standard existence
and uniqueness theorem for the initial value problem

x4 = A(D)x, x(to) =x0€R?, t,10€eT,
onT [3, Theorem 5.8] requireggressivityof the matrixA(z), that is the invertibility of

Iq + (@) A),
for all # € T, the hypothesis (H) is very natural in the setting of dynamic equations on time
scales as we can see from the following lemma.

Lemma2.1l. LetT be atime scale, and (¢) be ad x d matrix function oril' such that(H)
holds. ThemA(z) is regressive off.

Proof. Since|T| < [|A()|~t onT, the spectral radius of (1) A(r) satisfies
o(nAM) < |nAD | =pn®O|A®)| <ITI- Al <1,
and any eigenvalug of 1; + u(t) A(z) satisfies
RA(La + m(OAD) =1+ R (kO AD) = 1—o(n) A1) > 0.
ThereforeA(r) is regressive on the time scdle O

Moreover, for such small time scales

log(l; +tA)/t forO<t < |T|,
A

h(t’A):{ fort =0

so, the other way round, we may suppose that the funetienlog(l; +tA)/t is well-
defined forr > 0 (in the sense of continuous extension) and write direktly A) =
log(ly +tA)/t fort >0 (soh(0, A) = A).
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In our proof of Liouville’s formula we shall use the concept of a normal patrtition of a

time scale interval. LeT be atime scale. By a partition of an interyal b1 we understand
any finite ordered sek := {1o, 11, ..., t,} C [a, b, Wherea =g <t1 < --- <t, =b. Itis
possible to prove ([1] or [4]) the following lemma.

Lemma2.2. LetT be a time scaleg, b € T anda < b. Then for every: € N there exists a
partition P, := {to, 11, ..., tum)}, a =10 <11 < --- <ty = b such that

foreachi € {0, ..., w(n) — 1}

. 1 1
either tiy1—t,<— or tiy1—t;>— and o(t) =ti41. (2)
n n

We will call any partitions satisfying (2)ormal partitionsP,. It is clear that if P, is
a normal partition ofla, b]r, then for anyr € [a, b]T the setP, U {¢} is again a normal
partition of[a, b].

Because of this if P,),>1 is a sequence of normal partitions|af, T']t, then we may
suppose that this sequencen@ndecreasingn the sense thab, € P,,1. Of course, be-
causeT N [a, b]T could be a finite set, we cannot exclude the case when for agra&N
this sequence is stationary, thatAg; = P,, fori =0, 1,....

3. Main result

Theorem 3.1 (Liouville’s formula). LetT be a time scaler,r € T, 1o <t < T < oo, and
A(t) be ad x d matrix function continuous ofrg, Tl such that(H) holds. Then the
solutione4 (. (z, o) of an initial matrix time scale problem

A=AMX.  X@o)=1Is. t.1eT,
satisfies

d
det(ea((t. 10)) = 1_[ e:A6) (T, 10) = e(@--@r)(A0) (I 10),
i=1
where); (A()),i =1, ...,d, are the eigenvalues of the mateiz).
Proof. It follows from Lemma 2.1, tha#\(¢) is regressive off, hencee4 (. (¢, to) is well-
defined orfl'. Clearly we may suppose thatT'.

Let (P,),>1 be a nondecreasing sequence of normal partitiBps= {t”}‘“(") of
[0, TlT. Then, according to [1, Theorem 3.1],

eao (T t0) = M exqrn (T 10 -1) - eau (2. 1) - eaw) (11 10)-

Hence
det{ea () (T, to) =det( lim ...eA(tn)(ti"+l,t;’)...>

= lim dEI( €A (;+1’ tzn))

n—)oo

= lim ...det(eA(,ln)(tiH, lln))

n—o00
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On any intervalz, ', ;1T we are working with a time independent linear system with a
matrix A? := A(z]'), hence we can use the explicit representation of its solution developed

in [1]; we have

1
detlea) (T, 10)) = im ... det(exp{ / H(s, A?) As}) o

4

where the functiord : T x Mat(d x d) — Mat(d x d) is defined by
log(Z4 + p(1)A)
w(r)
iq the sense of continuous extension, so if for segneT the graininesgu(zp) = 0, we set
H (1o, A) = A.
If we replace the graininess functigi(r) by a functionm : R — R,

m(t) := p(sup(s € T: s < 1}),
we obtain the functior : R x Mat(d x d) — Mat(d x d), defined by

Ht A) = log(1y + m(t)A)’
m(t)
again in the sense of continuous extension, so if for sagne T, m(fg) = 0, we set
H(tg, A) = A.
It is proved in [1] that for a constant matrik € Mat(d x d) the hypothesis (H) implies
that the equality

H(t, A) :=

)

b b
/ﬁ(s,A)As=/H(s, A)ds

holds for anya, b € T, a < b and thatY () := exp{ftg H(s, A)ds} is the principal funda-
mental matrix of the matrix linear ordinary differential equation

Y=H(, A)Y, teR,

atrg. Therefore

n—o00

li1
detleac) (T, 10)) = lim ...det(exp{ / H(s,A?)ds})...

n
I

t

i+1
= lim_...exp /tr(H(s,A;’))ds}..‘

n
%

n
lit1

= lim ...exp /tr(b?(s,A?))As}...

n—o0

"
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= lim ...exp

n—o0

i1
/ logdet/y + u(s)AY) As
u(s) o

i+1 d
| (1 Ai(A"
= lim ...exp / 091 :(Sl;(s) S As}...

n
I

d tt{l-%—l ) n
=[] lim ...exp{ / 109(L + k()% (A7) As}...
j=ln—>oo w(s)

n
4

d
l_[ ;A (T, 10)

j=1
=eme-aor)Aa0)(T,0). O

Example 3.1. The casél' = R. Straightforward calculation gives

detlea)(t, o)) Hexp{/ (A(9))d }_exp{/ZA A(s))d }

=exp{/tr(A(s))ds},
10

which is the well-known Liouville’s formula.

Example 3.2. The casel = hZ, whereh > 0 is so small, that the hypothesis (H) holds.
Because for any=1, ..., n the solution of the initial time scale problem

A= (AWD)x, x(ro)=1, 19,1€T

(t—t0)/h
e (At to) = 1_[ (1+ h\; (A(lo +(n— 1)h))),
n=1

we get the known result

(t—t0)/h
detlea()(t, t0)) = H det(; + h(A(to + (n — Dh)))

(t—t0)/h

=det ] (la+h(A(to+ (n — Dh))).
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Example 3.3. Let T be the middle third Cantor sey =0, =1, andA € Mat(d x d)

be a constant matrix such thpfi|| < 1/3. In this case computations similar to those in
Example 3.2 (we use here the representation of the solutiar 6% = ax(r), x(0) =1,

a R, t € T from [2]) give

d oo n 0
Li(A) (2 2
deflea(1,0) =[] |(1+ ; )(g) )=det| |<1d+3n+1A>-
n=1

i=1n=1
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