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Abstract

In 1971 Palamodov proved that in the category of locally convex spaces the derived functors

ExtkðE;XÞ of HomðE; �Þ all vanish if E is a (DF)-space, X is a Fréchet space, and one of them

is nuclear. He conjectured a ‘‘dual result’’, namely that ExtkðE;X Þ ¼ 0 for all kAN if E is a

metrizable locally convex space, X is a complete (DF)-space, and one of them is nuclear.

Assuming the continuum hypothesis we give a complete answer to this conjecture: If X is an

infinite-dimensional nuclear (DF)-space, then

(1) There is a normed space E such that Ext1ðE;X Þa0:
(2) Ext2ðKN;XÞa0 where KN is a countable product of lines.

(3) ExtkðE;XÞ ¼ 0 for all kX3 and all locally convex spaces E:
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1. Introduction

In the fundamental work [7], Palamodov used methods from homological algebra
and in particular derived functors to study a variety of classical analytical problems.
For instance, the derivatives of the projective limit functor are a powerful tool to
unify and simplify methods which construct a global solution from local ones and

the derivatives ExtkðE; �Þ of HomðE; �Þ can be used in many situations to find even
solution operators.
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For a fixed locally convex space (l.c.s.) E the functor LðE; �Þ assigns to each l.c.s. X

the vector space LðE;X Þ of continuous linear maps from E to X and to a continuous
linear map T :X-Y the ‘‘composition operator’’ LðE;TÞ : f/T 3 f : The category
of locally convex spaces has enough injective objects (supplied by the Hahn–Banach

theorem) to construct the derived functors ExtkðE; �Þ using injective resolutions.
The following proposition (essentially due to Palamodov [7, Proposition 9.1], see
also [10, Proposition 5.1.3]) covers as well the typical situations for applications as

the properties of ExtkðE; �Þ which are mainly used in the present article.

Theorem 1.1. (1) For l.c.s. E and X the following are equivalent:

(i) Ext1ðE;XÞ ¼ 0:
(ii) Each exact sequence 0-X !i

Y !q E-0 (i.e. i is a topological embedding onto

the kernel of q which is a quotient map) splits, i.e. q has a right inverse r :E-Y

with q 3 r ¼ idE :
(iii) For each exact sequence 0-X-Y !q Z-0 and TALðE;ZÞ there is a lifting

SALðE;YÞ with q 3 S ¼ T :

(2) For l.c.s. E and X and kX2 we have ExtkðE;X Þ ¼ 0 if and only if the class

fY : Extk�1ðE;YÞ ¼ 0g is stable with respect to forming quotients by subspaces

isomorphic to X :

The action of LðE; �Þ on the subcategory of Fréchet spaces can be investigated
using the derivatives of the projective limit functor. For a countable spectrum X ¼
ðXn; Rn

mÞ of vector spaces (i.e. Rn
m : Xm-Xn are linear for mXn with Rn

n ¼ idXn
and

Rn
m 3 Rm

k ¼ Rn
k for npmpk) we have the canonical complex

0-ProjX-
Y
nAN

Xn !
d
Y
nAN

Xn-0; ð%Þ

where dððxnÞnANÞ ¼ ðRn
nþ1xnþ1 � xnÞnAN is the difference map. Using an abstract

Mittag–Leffler procedure, Palamodov proved that this complex is exact (i.e. d is
surjective) whenever Xn are all Fréchet spaces and Rn

m are continuous with dense

range. Since every Fréchet space can be represented as a projective limit ProjX of

Banach spaces the calculation of ExtkðE;X Þ can be first localized (which requires to

find ExtkðE;XnÞÞ and then one can again use the Proj-functor (or a Mittag–Leffler

procedure) to find ExtkðE;X Þ: In this way Palamodov [7, Theorem 9.1] proved:

Theorem 1.2. If E is a ðDFÞ-space, X is a Fréchet space, and one of these spaces is

nuclear then ExtkðE;X Þ ¼ 0 for all kX1:

(This result can also be deduced from Grothendieck’s work about tensor products
(e.g. from [4, Chapter II, Section 3, Proposition 10.3]) since each continuous linear
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operator from a (DF)-space into an metrizable space is bounded, i.e. maps some
0-neighbourhood into a bounded set. In (the English version of) [7] this is
erroneously translated with ‘‘continuous’’.)
Palamodov conjectured [7, p. 54] ‘‘it is natural to expect that the following

proposition ‘dual’ to Theorem 1.2 is valid: ExtiðE;X Þ ¼ 0; iX1; if E is metric, X is a
complete dual metric space, and one of them is a nuclear space’’. The aim of the
present article is to settle this conjecture.

2. Positive results

Palamodov’s method to prove Theorem 1.2 suggests to represent a complete (DF)-
space X as a projective limit of Banach spaces (every complete l.c.s. has such a
representation which is countable precisely for Fréchet spaces) and to construct a
resolution in analogy to (%) to which one can apply the functor LðE; �Þ:
Let us first consider projective spectra of linear spaces. For a directed set ðI ;pÞ an

I-spectrum X ¼ ðXa; RabÞ consists of linear spaces Xa for aAI and linear spectral

maps Rab : Xb-Xa for apb such that Rab 3 R
b
g ¼ Rag for apbpg and Raa ¼ idXa : A

morphism f ¼ ðfaÞaAI : ðXa; RabÞ-ðYa; sabÞ is a family of linear maps fa : Xa-Ya

commuting with the spectral maps, i.e. sab 3 fb ¼ fa 3 Rab for apb: The assignment of
the projective limit ProjðXa; RabÞ ¼ fðxaÞaA

Q
aAI Xa : Rabxb ¼ xag is then a functor on

the category of I-spectra. The derived functors Projk can be constructed using
injective resolutions (see [10, Chapter 4]) but we will take a more direct way here. For
an I-spectrum X ¼ ðXa; RabÞ we define differentials

dk :
Y

a0p?pak

Xa0-
Y

a0p?pakþ1

Xa0 by ðxa0;y;ak
Þa0p?pak

/ Ra0a1ðxa1;y;akþ1Þ þ
Xkþ1
j¼1

ð�1Þj
xa0;y;#aj ;y;akþ1

 !
a0p?pakþ1

;

where the hat indicates that this index is omitted. Since dkþ1 3 dk ¼ 0 we obtain a
complex of linear spaces

0-ProjX-
Y
aAI

Xa !
d0

Y
a0pa1

Xa0 !
d1

Y
a0pa1pa2

Xa0 !
d2 ? ð%%Þ

and define Projk X ¼ ker dk=im dk�1 for kX1:
In 1972, Mitchell [5] showed that if the cardinality of the index set is less or equal

than the nth infinite cardinality @n then Projk X ¼ 0 for all kXn þ 2: We will now
improve this results for spectra consisting of Fréchet spaces and continuous spectral
maps. We call such a spectrum reduced if for all aAI there is bXa such that

RabXbDRa ProjX where the bar denotes the closure in Xa and Ra : ProjX-Xa is the

canonical map ðxdÞdAI/xa:
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Theorem 2.1. If X is a reduced I-spectrum of Fréchet spaces and continuous spectral

maps then jI jp@n implies Projk X ¼ 0 for all kXn þ 1:

Proof. We prove the theorem by induction on nAN0: Let us first observe that im dk

is dense in ker dkþ1 (where the spaces in (%%) are endowed with the product
topology). To prove this one only needs to solve finitely many of the equations

ya0;y;akþ1 ¼
Pkþ1

j¼0 ð�1Þ
j
xa0;y;#aj ;y;akþ1 (we omitted the spectral map for the 0th

summand to simplify notation) for given ðya;y;akþ1Þa0p?pakþ1
Aker dkþ1 and this

can be done explicitly. Moreover, an elementary calculation shows that the
reducedness of X implies that d0 is open onto its range (see [10, Theorem 4.3.1])
and the same holds for dk and kX1 even without the assumption that X is reduced.
If now jI jp@0; the spaces Fk ¼

Q
a0p?pak

Xa0 are countable products of Fréchet

spaces hence itself Fréchet and since quotients of Fréchet spaces are complete we
obtain that im dk�1 is a dense complete subspace of ker dk which yields im dk�1 ¼
ker dk and thus proves the case n ¼ 0:
We now suppose that the theorem is true for J-spectra with jJjp@n�1: If jI j ¼ @n

we choose a limit ordinal o and InCImDI ¼ : Io for npmoo such that jInjp@n�1
and Im ¼

S
nom In for limit ordinals mpo (this can be done by choosing a bijective

mapping h :o-I and setting In ¼ hðnÞÞ:
Next, we will replace In by directed subsets Jn satisfying the same conditions. Since

X is reduced there is a mapping f : I � I-I with f ða; bÞXa; f ða; bÞXb; and such

that RagXgDRa ProjX and RbgXgDRb ProjX for gXf ða; bÞ: If now MDI is any subset

we define M0 ¼ M; Mj ¼ Mj�1,ff ða;bÞ : a; bAMj�1g; and M̃ ¼
S

jAN0
Mj: Then M̃

is directed with respect to the order of I and it is either countable or has the same
cardinality as M:

We set Jn ¼ Ĩn and obtain reduced Jn-spectraX
n ¼ ðXa; RabÞaAJn

: The corresponding

differentials as in (%%) are denoted by dn
k:

Let now kXn þ 1 and y ¼ ðya0;y;ak
Þa0p?pak

Aker dk be given. We construct a

solution x ¼ ðxa0;y;ak�1Þa0p?pak�1
of dk�1ðxÞ ¼ y by transfinite induction. Let moo

and assume that for all nom we have xn
a0;y;ak�1

AXa0 for a0;y; ak�1AJn with

a0p?pak�1 such that

(1)
Pk

j¼0 ð�1Þj
xn
a0;y;#aj ;y;ak

¼ ya0;y;ak
for a0p?pakAJn and

(2) xn
a0;y;ak�1

¼ xl
a0;y;ak�1

for lon and a0;y; ak�1AJl:

If m is a limit ordinal we have Jm ¼
S

nom Jn and can thus define xm
a0;y;ak�1

¼
xn
a0;y;ak�1

if a0;y; ak�1AJn: Let now m ¼ lþ 1 be a successor ordinal. Since

jJmjp@n�1 we have Proj
k Xm ¼ 0 and can thus find z ¼ ðza0;y;ak�1Þa0p?pak�1AJm

withPk
j¼0 ð�1Þj

za0;y;#aj ;y;ak
¼ ya0;y;ak

for all a0p?pak�1AJm: Now, ua0;y;ak�1 ¼
xl
a0;y;ak�1

� za0;y;ak�1 for a0p?pak�1AJl defines an element uAker dl
k�1 and since

jJljp@n�1 we can apply Projk�1 Xl ¼ 0 to find v ¼ ðva0;y;ak�2Þa0p?pak�2AJl
with
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u ¼ dl
k�2ðvÞ: For a0p?pak�2AJm we set

ṽa0;y;ak�2 ¼
va0;y;ak�2 if a0;y; ak�2AJl;

0 else

(

and xm ¼ z þ d
m
k�2ðṽÞ: Then xm satisfies (1) and (2). Finally, xa0;y;ak�1 ¼ xm

a0;y;ak�1
if

a0;y; ak�1AJm defines a solution of dk�1ðxÞ ¼ y: &

To apply this result to calculate ExtkðE;X Þ for a complete l.c.s. X we
represent X ¼ ProjX; where X ¼ ðXa; RabÞ is a reduced projective spectrum

of Banach spaces. For instance, we can take a fundamental system ðjj � jjaÞaAI

of continuous seminorms and define Banach spaces Xa as the completion of
ðX ; jj � jjaÞ=ker jj � jja:

Theorem 2.2. Let E and X be locally convex spaces such that one of them is nuclear. If

X has a 0-neighbourhood basis of cardinality less or equal than @n then ExtkðE;XÞ ¼ 0
for all kXn þ 2:

Proof. Let Z be any l.c.s., Z̃ its completion and rX2: Since

0-Z-Z̃-Z=Z̃-0

is exact and Z=Z̃ is an injective object in the category of l.c.s. (it carries the coarsest

topology since Z is dense in Z̃) we obtain ExtrðE;ZÞ ¼ ExtrðE; Z̃Þ:
Therefore, we may assume that X is complete and can represent X ¼ ProjX

with a reduced I-spectrum X ¼ ðXa; RabÞ consisting of Banach spaces and jI jp@n:

If X is nuclear we can assume XaDcN and then have ExtkðE;XaÞ ¼ 0 for all
kAN since cN is an injective object in the category of l.c.s. If E is

nuclear ExtkðE;XaÞ ¼ 0 holds too, e.g. by results of Grothendieck quoted
above.
Let us consider complex (%%). As noted in the proof of Theorem 2.1 im dk�1 is a

dense topological subspace of ker dk for all kAN: Let now kXn þ 2: To prove

ExtkðE;XÞ ¼ 0 we have to show Extk�1ðE; im d0Þ ¼ 0:
As ker d1 is the completion of im d0 we have

Extk�1ðE; im d0Þ ¼ Extk�1ðE; ker d1Þ if k � 1X2:

Iterating this argument we see that we have to prove Extk�nðE; ker dnÞ ¼ 0: Theorem
2.1 implies that

0-ker dn-
Y

a0p?pan

Xa0 !
dn

Y
a0p?panþ1

Xa0 	!dnþ1 ?
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is an exact E-acyclic resolution of ker dn (this means that all objects but ker dn satisfy

ExtiðE; �Þ ¼ 0 for all iAN) which yields

ExtrðE; ker dnÞ ¼ ker LðE; dnþrÞ=imLðE; dnþr�1Þ

¼ProjnþrðLðE;XaÞ;LðE; RabÞÞ ¼ 0

for rX2 by Mitchell’s result mentioned before Theorem 2.1. Since k � nX2 this gives
the conclusion. &

Let now X ¼ ind Xn be a (non-normable) (LB)-space. A basis of the
0-neighbourhood filter is given by

G
[

nAN

1

mn

Bn

 !
: ðmnÞnANN

( )
;

where Bn is the unit ball of the Banach space Xn: An application of the preceding

theorem thus requires knowledge about the cardinality jNNj ¼ jRj:

Corollary 2.3. Let E be a l.c.s. and X an (LB)-space such that one of them is nuclear.

Then the continuum hypothesis implies ExtkðE;X Þ ¼ 0 for all kX3:

The next result was obtained jointly with Leonhard Frerick (unpublished). A
proof (under weaker assumptions on X ) is contained in [10, Proposition 5.8].

Theorem 2.4. Let E be a topological subspace of KN containing the unit vectors and X

a nuclear (LB)-space. Then Ext1ðE;XÞ ¼ 0:

3. Negative results

To obtain further results in the situation of Corollary 2.3 we need more
information about complex (%%) if X is a spectrum representing a nuclear (LB)-
space.

Proposition 3.1. Let X be an infinite-dimensional nuclear (LB)-space with the

resolution

0-X-
Y
aAI

Xa0 !
d0

Y
a0pa1

Xa0-?

as above. Assuming the continuum hypothesis there is a bounded sequence in im d0
which is not contained in the image of a bounded subset of

Q
aAI Xa:
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Proof. Let us first observe that the lifting property in the proposition does not
depend on the particular resolution as long as all spaces Xa are quasinormable
Fréchet spaces (a Fréchet space F is quasinormable if and only if for each exact
sequence

0-F-G !q G=F-0

q lifts bounded sets, see e.g. [6, Theorem 26.17] if G is a Fréchet space or
[10, Theorem 7.5]). One can prove this e.g. by considering the functor cN assigning
to a l.c.s. X the space of bounded sequences in X :
We will first construct a particular resolution of X : Let o1 be the first uncountable

ordinal and U ¼ fUa : aoo1g a basis of the 0-neighbourhood filter with cardinality
@1 (since X is infinite dimensional U cannot be countable). We denote by XU the
local Banach space associated to U ; i.e. the completion of X endowed with the
Minkowski functional of U as a norm (as nuclear (LB)-spaces have continuous
norms we may assume that these are indeed norms rather than merely seminorms).
We take an arbitrary UAU and set X0 ¼ XU : If for some boo1 all Xa with aob are
constructed and b ¼ gþ 1 is a successor ordinal we choose VAU such that VDUb

and the canonical map XV-Xa is compact for all aob (which is possible since X has
the countable neighbourhood condition and is a Schwartz space). We then set Xb ¼
XV : If b is a limit ordinal we set Xb ¼ Projaob Xa: With the obvious spectral maps

(the continuous extensions of the identical maps) we obtain an o1-spectrum X ¼
ðXa; RabÞ consisting of either Banach or else Fréchet–Schwartz spaces with ProjX ¼
X ; RaX dense in Xa; Xb ¼ ProjðXa; RagÞaob for limit ordinals b; and Rbbþ1 compact for
all boo1:
By transfinite induction we will now construct a sequence xn ¼ ðxn

aÞaoo1
inQ

aoo1
Xa such that d0ðxnÞ is bounded in imðd0Þ (which is a topological subspace ofQ

a0pa1 Xa0 as noted in the proof of Theorem 2.1) but cannot be written as d0ðxnÞ ¼
d0ðynÞ for a bounded sequence ðynÞnAN in

Q
aoo1

Xa:

Since X can be embedded into a separable Banach space the cardinality of XN is

jRNj ¼ @1; hence we can choose a surjective map f :o1-XN:
Assume that for goo1 we have already xn

aAXa for aog and nAN such that

(1) for all aobog the sequence ðRabxn
b � xn

aÞnAN is bounded in Xa and

(2) if bþ 1og there is aog such that ðxn
aÞnAN � f ðbÞ is unbounded in Xa

(more precisely, this means that ðxn
a � RaðynÞÞnAN is unbounded where

ðynÞnAN ¼ f ðbÞAXN).

If g is a limit ordinal the sequence ððRab xn
b � xn

aÞapbogÞnAN is bounded in im d
g
0

(where d
g
0 again denotes the differential according to the spectrum Xg ¼ ðXa; RabÞaogÞ

because of (1) and the kernel of d
g
0 is the quasinormable Fréchet space Xg ¼ ProjXg:

Hence there is a bounded sequence ðynÞnAN ¼ ððyn
aÞaogÞnAN in

Q
aog Xa with
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d
g
0ðynÞ ¼ d

g
0ððxn

aÞaogÞ: We set

xn
g ¼ yn � ðxn

aÞaogAker d
g
0 ¼ ProjXg ¼ Xg:

Then (1) holds for aobogþ 1 since ðynÞnAN is bounded and condition (2) is trivially

satisfied since bþ 1ogþ 1 implies bþ 1og as g is a limit ordinal.

If g ¼ bþ 1 is a successor ordinal we distinguish two cases. If there is aog such
that ðxn

aÞnAN � f ðbÞ is unbounded we choose a sequence ðxn
gÞnAN in Xg such that

ðRbgxn
g � xn

bÞnAN is bounded in Xb (this can easily be done using the metrizability of Xb

and the density of im RbDim Rbg Þ: Then (1) and (2) hold for gþ 1:

If on the other hand ðxn
aÞnAN � f ðbÞ is bounded in Xa for all aog we choose an

unbounded sequence ðrnÞnAN in Xg such that ðRbg rnÞnAN is bounded in Xb: This is

possible since otherwise Rbg would be an isomorphism onto its range. We set

ðxn
gÞnAN ¼ ðrnÞnAN þ f ðbÞ: For aog

ðRagxn
g � xn

aÞnAN ¼ ðRab 3 Rbg ðrnÞÞnAN � ððxn
aÞnAN � f ðbÞÞ

is then bounded in Xa; hence (1) holds for gþ 1 and (2) holds since ðrnÞnAN is

unbounded in Xg:
This completes the induction. Now, (1) implies that ðd0ðxnÞÞnAN with xn ¼

ðxn
aÞaoo1

is a bounded sequence in im dg: If yn ¼ ðyn
aÞaoo1

is any sequence inQ
aoo1

Xa with d0ðxnÞ ¼ d0ðynÞ then there is boo1 with ðxn � ynÞnAN ¼ f ðbÞ:
Choosing aoo1 according to (2) we conclude that ðyn

aÞnAN ¼ ðxn
aÞnAN � f ðbÞ is

unbounded in Xa and thus, ðynÞnAN is unbounded. &

Theorem 3.2. There is a normed space E such that under the assumption of the

continuum hypothesis Ext1ðE;XÞa0 for each infinite-dimensional nuclear (LB)-
space X :

Proof. Let E be the subspace of c1 spanned by the unit vectors en: If ðynÞnAN

is a bounded sequence in im d0 which cannot be lifted we define T : E-im d0 by
TðenÞ ¼ yn and linear extension. Then T is continuous and

0-X-
Y
aAI

Xa !
d0

im d0-0

is an exact sequence such that T : E-im d0 does not factorize as a continuous linear

map over
Q

aAF Xa: Theorem 1.1 gives Ext1ðE;X Þa0: &

Remark 3.3. In the situation of Proposition 3.1, we can assume that all spaces Xa are
reflexive. If ðynÞnAN is bounded in im d0 without lifting then there is not even a

bounded set B in
Q

aAI Xa with fyn : nANgDd0ðBÞ (since
Q

aAI Xa is reflexive we can
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assume that B is weakly compact and then d0ðBÞ is weakly compact hence closed
in im d0).

As a consequence, the transposed map dt
0 : ðim d0Þ0-ð

Q
aAI XaÞ0 is not open onto

its range if the dual spaces are both endowed with their strong topologies. If D1

denotes the derivative of the duality functor (see [7, Section 8] or [10, Chapter 7]) this

means that under the continuum hypothesis D1ðX Þa0 holds for each infinite-
dimensional nuclear (LB)-space X : In particular, this answers Palamodov’s unsolved
problem [7, Section 12.5].
A similar proof as for Proposition 3.1 (see [10, Theorem 4.3.9]) yields

Theorem 3.4. If X is an infinite-dimensional nuclear (LB)-space and X ¼ ProjX where

X is a reduced projective spectrum of Fréchet spaces then the continuum hypothesis

implies Proj1 Xa0:

This result has a consequence for the completeness of quotients. The special case
X ¼ j; the space of finite sequences endowed with the strongest locally convex
topology, is due to Schmerbeck [8].

Corollary 3.5. Let X be an infinite-dimensional nuclear (LB)-space and Xa Fréchet

spaces such that X is a topological subspace of
Q

aAI Xa: Assuming the continuum

hypothesis, the quotient space
Q

aAI Xa=X is incomplete.

Proof. The completeness of
Q

aAI Xa=X again does not depend on the particular

choice of Xa; it is thus enough to show that im d0 is incomplete with d0 as above. But

im d0 is a dense topological subspace of ker d1 and Proj1 Xa0 implies im d0aker d1:
Hence im d0 is not complete. &

The combination of this negative result with the positive one from Theorem 2.4
enables us to prove:

Theorem 3.6. Let X be an infinite-dimensional nuclear (LB)-space. Assuming the

continuum hypothesis we have Ext2ðKN;XÞa0:

Proof. By Corollary 3.5 there are Banach spaces Xa and an exact sequence

0-X-
Y
aAI

Xa !
q

Z-0

such that Z is not complete. We do not know whether Z is quasi- or locally
complete. However, Theorem 2.4 yields that Z indeed satisfies a very weak
completeness condition. If T denotes the group topology having fker p : p

continuous seminorm on Zg as a basis of the 0-neighbourhood filter then ðZ;TÞ
is sequentially complete (this ‘‘sequential seminorm kernel completeness’’ is shared
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by all complete locally convex spaces as well as, trivially, by all l.c.s. having a

continuous norm). Indeed, if ðznÞnAN is a Cauchy sequence in ðZ;TÞ and F ¼
½fen : nANg�DKN denotes the space of finite sequences endowed with the topology
of pointwise convergence we define T :F-Z by TðenÞ ¼ zn � zn�1 (where z0 ¼ 0)
and linear extension. Then T is continuous (if Z is endowed with its original

topology) and because of Ext1ðF;ZÞ ¼ 0 there is a lifting RALðF;
Q

aAI XaÞ with
q 3 R ¼ T : Since

Q
aAI Xa is complete and F is dense in KN there is an extension

R̃ALðKN;
Q

aAI XaÞ; i.e. R̃jF ¼ R: It is then easy to check that ðznÞnAN converges to

z ¼ R̃ðð1; 1; 1;yÞÞ:
Let us now assume that Ext2ðKN;XÞ ¼ 0 holds which, by Theorem 1.1, implies

Ext1ðKN;ZÞ ¼ 0: We choose zAZ̃\Z and obtain an exact sequence

0-Z !I Z þ ½z�!Q ½z�-0;

where Z þ ½z� is endowed with the relative topology of Z̃; I is the inclusion and the

one-dimensional space ½z� carries the trivial topology f½z�; |g since Z is dense in

Z þ ½z�: Using e.g. a Hamel basis of KN we find a non-zero linear map T :KN-½z�
with T jF ¼ 0: Ext1ðKN;ZÞ ¼ 0 yields a continuous linear lifting T̃ :KN-Z þ ½z�:
We have Q 3 T̃jF ¼ T jF ¼ 0; hence there is S :F-Z with I 3 S ¼ T̃: Since Z is

sequentially seminorm kernel complete there is an extension S̃ :KN-Z of S: Now

I 3 S̃ and T̃ coincide on the dense subspace F of KN and continuity implies T̃ ¼ I 3 S̃;

hence the contradiction T ¼ Q 3 T̃ ¼ Q 3 I 3 S̃ ¼ 0: &

4. Concluding remarks

We do not know whether our solution to Palamodov’s conjecture logically
depends on the continuum hypothesis—at least our proofs used it at two essential

steps (a spectrum indexed by NN consists of @1 spaces and separable Banach spaces
have @1 elements).
In [8] Schmerbeck proved that there are Banach spaces Xa and a closed subspace

XD
Q

aAI Xa such that the quotient
Q

aAI Xa=X fails to be complete under the

continuum hypothesis but it is complete assuming Martin’s axiom and the negation
of the continuum hypothesis. Using similar techniques it is possible to construct

locally convex spaces E and X such that the behaviour of ExtkðE;XÞ depends on set
theoretic axioms. However, it seems that also the decision whether e.g. X is an (LB)-
space would require those axioms.
Anyway, our results strongly suggest that there in not much hope for a splitting

theory using the functors ExtkðE;X Þ in the category of locally convex spaces beyond
the case where X is a Fréchet space (for this case there are powerful results of Vogt
[9] and e.g. in [3,10]). It is therefore reasonable to restrict oneselves to smaller
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categories. The appropriate category for distribution theory is that of PLS-spaces
which had been worked out by Domański and Vogt [1]. Strong splitting results for
this category were obtained in [1,2,11].
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[2] P. Domański, D. Vogt, Distributional complexes split for positive dimensions, J. Reine Angew. Math.

522 (2000) 63–79.

[3] L. Frerick, J. Wengenroth, A sufficient condition for the vanishing of the derived projective limit

functor, Arch. Math. (Basel) 67 (1996) 296–301.

[4] A. Grothendieck, Produits Tensoriels Topologiques et Espaces Nucléaires, Mem. Amer. Math. Soc.
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