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Abstract

In 1971 Palamodov proved that in the category of locally convex spaces the derived functors
Ext*(E, X) of Hom(E, -) all vanish if E is a (DF)-space, X is a Fréchet space, and one of them
is nuclear. He conjectured a “dual result”, namely that Ext‘(E, X) = 0 for all keN if E is a
metrizable locally convex space, X is a complete (DF)-space, and one of them is nuclear.
Assuming the continuum hypothesis we give a complete answer to this conjecture: If X is an
infinite-dimensional nuclear (DF)-space, then

(1) There is a normed space E such that Ext!(E, X) #0.
(2) Ext*(KV, X)#0 where KN is a countable product of lines.
(3) Ext*(E,X) =0 for all k>3 and all locally convex spaces E.

© 2003 Elsevier Science (USA). All rights reserved.

1. Introduction

In the fundamental work [7], Palamodov used methods from homological algebra
and in particular derived functors to study a variety of classical analytical problems.
For instance, the derivatives of the projective limit functor are a powerful tool to
unify and simplify methods which construct a global solution from local ones and
the derivatives Ext*(E,-) of Hom(E,-) can be used in many situations to find even
solution operators.
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For a fixed locally convex space (l.c.s.) E the functor L(E, -) assigns to each l.c.s. X
the vector space L(E, X) of continuous linear maps from E to X and to a continuous
linear map 7: X - Y the “composition operator” L(E,T):f+> T of. The category
of locally convex spaces has enough injective objects (supplied by the Hahn—Banach
theorem) to construct the derived functors Ext*(E,-) using injective resolutions.
The following proposition (essentially due to Palamodov [7, Proposition 9.1], see
also [10, Proposition 5.1.3]) covers as well the typical situations for applications as
the properties of Ext* (E,-) which are mainly used in the present article.

Theorem 1.1. (1) For Lc.s. E and X the following are equivalent:
(i) Ext'(E,X)=0.

() Each exact sequence 0— X LYyLESO (i.e. i is a topological embedding onto

the kernel of q which is a quotient map) splits, i.e. q has a right inverse r: E—Y
with g or = idg.

(i) For each exact sequence 0—X —Y 5 Z -0 and TeL(E,Z) there is a lifting
SeL(E,Y) withqoS=T.

(2) For Lc.s. E and X and k=2 we have Ext(E, X) =0 if and only if the class
{Y: Ext*"Y(E, Y) =0} is stable with respect to forming quotients by subspaces
isomorphic to X .

The action of L(E,-) on the subcategory of Fréchet spaces can be investigated
using the derivatives of the projective limit functor. For a countable spectrum % =
(Xu, 01) of vector spaces (i.e. ol : X,, > X, are linear for m>=n with ¢/ = idy, and

ny &m
o, o of = of for n<m<k) we have the canonical complex
0-Proj 2~ [[ %% ] Xa—0, (%)
neN neN

where d((x,),cn) = (€ 1Xnr1 — Xu),en I8 the difference map. Using an abstract
Mittag—Leffler procedure, Palamodov proved that this complex is exact (i.e. d is
surjective) whenever X, are all Fréchet spaces and 7, are continuous with dense
range. Since every Fréchet space can be represented as a projective limit Proj 2 of
Banach spaces the calculation of Ext“(E, X) can be first localized (which requires to
find Ext* (E, X,)) and then one can again use the Proj-functor (or a Mittag—Leffler
procedure) to find Extf (E, X). In this way Palamodov [7, Theorem 9.1] proved:

Theorem 1.2. If E is a (DF)-space, X is a Fréchet space, and one of these spaces is
nuclear then Ext*(E, X) =0 for all k>1.

(This result can also be deduced from Grothendieck’s work about tensor products
(e.g. from [4, Chapter II, Section 3, Proposition 10.3]) since each continuous linear
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operator from a (DF)-space into an metrizable space is bounded, i.e. maps some
0-neighbourhood into a bounded set. In (the English version of) [7] this is
erroneously translated with “continuous’.)

Palamodov conjectured [7, p. 54] “it is natural to expect that the following
proposition ‘dual’ to Theorem 1.2 is valid: Ext'(E, X) = 0, i> 1, if E is metric, X is a
complete dual metric space, and one of them is a nuclear space”. The aim of the
present article is to settle this conjecture.

2. Positive results

Palamodov’s method to prove Theorem 1.2 suggests to represent a complete (DF)-
space X as a projective limit of Banach spaces (every complete l.c.s. has such a
representation which is countable precisely for Fréchet spaces) and to construct a
resolution in analogy to (%) to which one can apply the functor L(E, ).

Let us first consider projective spectra of linear spaces. For a directed set (I, <) an
I-spectrum % = (Xa,g[’;) consists of linear spaces X, for «el and linear spectral
maps ¢f: Xg— X, for a<f§ such that Q;ogg =0} for a<f<y and ¢ =idy,. A
morphism [ = (f2) e/ : (Xx, 0F) = (Ya,0%) is a family of linear maps f,: X,— Y,
commuting with the spectral maps, i.e. aj o fg = f; © ¢ for a<. The assignment of
the projective limit Proj(X,, 0f) = {(x«), € [[,c; Xu: 0fxp = x,} is then a functor on
the category of I-spectra. The derived functors Proj® can be constructed using
injective resolutions (see [10, Chapter 4]) but we will take a more direct way here. For
an [-spectrum 2’ = (X,, 0f) we define differentials

dk: Xdo_’ H Xdo by (x‘%(),»--mf)aogmgak

o) S S0k 0 < e S0t ]
k+1 ]
%o _ .
= rol(xo’«lv---«,akﬂ) Jrz ( lyxao,.”,ocj,...,akﬂ 3
Jj=1 o < e SOy

where the hat indicates that this index is omitted. Since djy o dy = 0 we obtain a
complex of linear spaces

OﬁProj%aHXaﬂ H Xaoﬂ H Xxogm (**)

oael oy <o o <oy <o

and define Projk Z =kerdy/imdy_, for k>1.
In 1972, Mitchell [5] showed that if the cardinality of the index set is less or equal

than the nth infinite cardinality R, then Proj* 2 = 0 for all k>n + 2. We will now
improve this results for spectra consisting of Fréchet spaces and continuous spectral
maps. We call such a spectrum reduced if for all ael there is f>o such that

0;Xp<0* Proj & where the bar denotes the closure in X, and ¢”: Proj 2’ — X is the
canonical map (Xs)sc ;> Xy
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Theorem 2.1. If X is a reduced I-spectrum of Fréchet spaces and continuous spectral
maps then |I| <X, implies Proj* Z = 0 for all k=n+ 1.

Proof. We prove the theorem by induction on ne Ny. Let us first observe that im d
is dense in kerdy,; (where the spaces in (% %) are endowed with the product
topology). To prove this one only needs to solve finitely many of the equations

Vg, .. o :Zk+01(—l)ixx(l ,,,,, 4o (we omitted the spectral map for the Oth

j:
summand to simplify notation) for given (i 4.,) ekerdi; and this

20 <+ <o
can be done explicitly. Moreover, an elementary calculation shows that the
reducedness of 2" implies that dj is open onto its range (see [10, Theorem 4.3.1])
and the same holds for dj and k>1 even without the assumption that Z" is reduced.

If now || <Ny, the spaces Fy =[] X,, are countable products of Fréchet
spaces hence itself Fréchet and since quotients of Fréchet spaces are complete we
obtain that imdj_; is a dense complete subspace of ker d; which yields imd;_; =
ker dy. and thus proves the case n = 0.

We now suppose that the theorem is true for J-spectra with |J|<N,_;. If |I| = R,
we choose a limit ordinal w and I,=l,=I =: 1, for v<p<o such that |[,|<N,_;
and I, =, o Iy for limit ordinals < (this can be done by choosing a bijective
mapping /& : w—1 and setting I, = h(v)).

Next, we will replace I, by directed subsets J, satisfying the same conditions. Since
Z is reduced there is a mapping f': I x I -1 with f(a, f)=a, f(«, ) =p, and such
that 07 X, =¢” Proj 2" and Qf’X cof Proj & for y=f(a, B). If now M <1 is any subset
we define M® = M, M/ = MI=' O {f (a, ) : 0, fe M;_1}, and M = {J; ., M. Then M
is directed with respect to the order of 7 and it is either countable or has the same
cardinality as M.

We set J, = I, and obtain reduced J,-spectra 2* = (X,, Q%)ae 7,- The corresponding
differentials as in (% %) are denoted by dj.

Let now k=n+1 and y = (Vs )y <... <o EKET dic be given. We construct a
solution X = (Xu,, 2 )< ... <o, OF di—1(x) =y by transfinite induction. Let u<w
and assume that for all v<u we have x;m” [ EXy, for o, ...,o_1€J, with
oo < -+ <oy—1 such that

oS e SOk

30—

k i v
O (1N} iy = Vao i fOT 20 < - <oy, and

v — A
Q) X} =X, for A<vand ap, ... 0 €T

If wis a limit ordinal we have J, =(J,_,J, and can thus define x/ =

v<p yeee s Ok—1
Xy if og,...,0r_1€J,. Let now u=A4+1 be a successor ordinal. Since
| kg _ . .
| /.| <N,_1 we have Proj* Z* = 0 and can thus find z = (2, ., “k—l)aos---@kqeﬁl with
i )
Zj:O (*1)/29!0-,“-,7?;'“--,0% = Voo, ..o for all ap<-- <ak*1€']ll' Now, Ug,... oy =

X

A
0y s Oh—1

| /] <N,_; we can apply Projk_] Z*=0 to find v= (Vag.... o4s)

— Zyg,... e, fOT 09 < - Koy €J) defines an element ueker d,ﬂ;l and since

o< - <oga€J) with
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U= d,ﬁ_z(v). For ap< -+ <ox_n€J, we set

~ US((),...,O(/\»,Q lf 0((), "-)ak72€J;L7
Ustg, ... ok—a =

0 else
and x* =z + di_, (7). Then x* satisfies (1) and (2). Finally, xy, ., , = x4 . if
o, ..., a1 €J, defines a solution of di_;(x) =y. O

To apply this result to calculate Ext“(E,X) for a complete lcs. X we
represent X = Proj %, where % :(X“,Q%) is a reduced projective spectrum
of Banach spaces. For instance, we can take a fundamental system (||-]],),c;
of continuous seminorms and define Banach spaces X, as the completion of

(X1 1) ke [] - |l

Theorem 2.2. Let E and X be locally convex spaces such that one of them is nuclear. If

X has a 0-neighbourhood basis of cardinality less or equal than X,, then Ext“(E, X) =0
for all k=n+2.

Proof. Let Z be any l.c.s., Z its completion and r>2. Since
0>Z—>2Z— Z/Z~—> 0

is exact and Z/Z is an injective object in the category of l.c.s. (it carries the coarsest
topology since Z is dense in Z) we obtain Ext'(E, Z) = Ext'(E, Z).

Therefore, we may assume that X is complete and can represent X = Proj &
with a reduced /-spectrum 2 = (X,,0}) consisting of Banach spaces and [I|<N,.
If X is nuclear we can assume X,=~/, and then have Extk(E, X,) =0 for all
keN since /., 1is an injective object in the category of lcs. If E is
nuclear Ext‘(E,X,) =0 holds too, e.g. by results of Grothendieck quoted
above.

Let us consider complex (% % ). As noted in the proof of Theorem 2.1 im dj_; is a
dense topological subspace of kerd) for all keN. Let now k>=n+ 2. To prove
Ext*(E, X) = 0 we have to show Ext‘"!(E,im dp) = 0.

As ker d; is the completion of im dy we have

Ext“"!(E,im dy) = Ext"""(E,kerd)) if k—1>2.

Iterating this argument we see that we have to prove Ext<" (E,kerd,) = 0. Theorem
2.1 implies that

dy dyi1
0—kerd,— I | Xy — | | XNy — =+
< - <oty

o0 < - Slnp
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is an exact E-acyclic resolution of ker d, (this means that all objects but ker d, satisfy
Ext'(E,-) = 0 for all ieN) which yields

Ext"(E,kerd,) =ker L(E,dy,)/im L(E, dy 1)

=Proj"""(L(E, X,), L(E, 03)) =0

for r>=2 by Mitchell’s result mentioned before Theorem 2.1. Since k — n>2 this gives
the conclusion. [

Let now X =ind X, be a (non-normable) (LB)-space. A basis of the
0-neighbourhood filter is given by

{F(LEJN Wll”Bn> :(mn)neNN},

where B, is the unit ball of the Banach space X,. An application of the preceding
theorem thus requires knowledge about the cardinality |[NV| = |R|.

Corollary 2.3. Let E be a lc.s. and X an (LB)-space such that one of them is nuclear.
Then the continuum hypothesis implies Ext“(E, X) = 0 for all k>3.

The next result was obtained jointly with Leonhard Frerick (unpublished). A
proof (under weaker assumptions on X)) is contained in [10, Proposition 5.8].

Theorem 2.4. Let E be a topological subspace of KN containing the unit vectors and X
a nuclear (LB)-space. Then Ext!'(E,X) = 0.

3. Negative results

To obtain further results in the situation of Corollary 2.3 we need more
information about complex (% ) if 2" is a spectrum representing a nuclear (LB)-
space.

Proposition 3.1. Let X be an infinite-dimensional nuclear (LB)-space with the
resolution

0—)X—>HX¢0@> H Xa0_>...

ael o oy

as above. Assuming the continuum hypothesis there is a bounded sequence in im d

which is not contained in the image of a bounded subset of [],.; Xu.
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Proof. Let us first observe that the lifting property in the proposition does not
depend on the particular resolution as long as all spaces X, are quasinormable
Fréchet spaces (a Fréchet space F is quasinormable if and only if for each exact
sequence

0>F>GLG/F-0

g lifts bounded sets, see e.g. [6, Theorem 26.17] if G is a Fréchet space or
[10, Theorem 7.5]). One can prove this e.g. by considering the functor /., assigning
to a l.c.s. X the space of bounded sequences in X.

We will first construct a particular resolution of X. Let w; be the first uncountable
ordinal and % = {U, :a<w; } a basis of the 0-neighbourhood filter with cardinality
N, (since X is infinite dimensional % cannot be countable). We denote by Xy the
local Banach space associated to U, i.e. the completion of X endowed with the
Minkowski functional of U as a norm (as nuclear (LB)-spaces have continuous
norms we may assume that these are indeed norms rather than merely seminorms).
We take an arbitrary U e% and set Xy = Xy. If for some < w; all X, with o< f§ are
constructed and ff =y + 1 is a successor ordinal we choose V' e% such that V' < Up
and the canonical map X — X, is compact for all & < (which is possible since X has
the countable neighbourhood condition and is a Schwartz space). We then set Xp =
Xy. If B is a limit ordinal we set X = Proj, .z X,. With the obvious spectral maps
(the continuous extensions of the identical maps) we obtain an w;-spectrum Z =

(X2, 0f) consisting of either Banach or else Fréchet-Schwartz spaces with Proj 2" =
X, 0*X dense in X, Xj = Proj(X,, ¢}),. for limit ordinals f, and QﬁH compact for
all f<wy.

By transfinite induction we will now construct a sequence X" = (x}),_,,
[L,<o, X such that dy(x") is bounded in im(dp) (which is a topological subspace of
[, <z Xz asnoted in the proof of Theorem 2.1) but cannot be written as dy(x") =
do(y") for a bounded sequence ("), . in [, .., Xa

in

Since X can be embedded into a separable Banach space the cardinality of XN is

|RN| = R}, hence we can choose a surjective map f: w; — XN,
Assume that for y<w; we have already x] € X, for «<y and neN such that

(1) for all a<p<y the sequence (¢}xj — X}),cn is bounded in X, and
(2) if p+ 1<y there is a<y such that (x]),.y —f(f) is unbounded in X,
(more precisely, this means that (x} —0"()")),cn is unbounded where

e =S (B eX™).

If 7 is a limit ordinal the sequence ((0} X} — ¥}),<p<,),en is bounded in im dj
(where d again denotes the differential according to the spectrum 27 = (X, 0h)s<;)
because of (1) and the kernel of d is the quasinormable Fréchet space X, = Proj Z7.

Hence there is a bounded sequence ()"),.n = ((V)),<,)pen 0 L, Xo with
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Y — q7
dy(y") = dy((x7) <) We set
n __ .n n y . v
Xy =" —(x;),.,€kerdy =Proj 27 = X,.

Then (1) holds for o< <y + 1 since ("), . is bounded and condition (2) is trivially
satisfied since f+ 1<y + 1 implies § + 1<y as y is a limit ordinal.

If y = p+ 1 is a successor ordinal we distinguish two cases. If there is o <y such
that (x7),cn — /() is unbounded we choose a sequence (X)), .y in X; such that
(fxt — X§)en 18 bounded in Xj (this can easily be done using the metrizability of Xj
and the density of im ¢f =im ¢f). Then (1) and (2) hold for y + 1.

If on the other hand (x}),.n —f(B) is bounded in X, for all x<y we choose an
unbounded sequence ("), in X, such that (Qgr”)neN is bounded in Xjp. This is
possible since otherwise Q{f would be an isomorphism onto its range. We set

(xn)neN = (rn)neN +f(ﬁ) For <<y

2
/

(Qfx;l - xﬁ)neN = (QZ’ OQ{f(r”))neN - ((XZ)neN _f(ﬂ))

is then bounded in X,, hence (1) holds for y+ 1 and (2) holds since ("), .p is
unbounded in X;,.

This completes the induction. Now, (1) implies that (dp(x")),.n With X" =
(x}),<w, is a bounded sequence in imd,. If y"=(y}),., is any sequence in
[Lico, Xx with do(x") = do(y") then there is f<w; with (x"—)"),.n =S (B)
Choosing a<w; according to (2) we conclude that (1), .n = (X3),cn —S(B) is
unbounded in X, and thus, ("), is unbounded. [J

Theorem 3.2. There is a normed space E such that under the assumption of the

continuum hypothesis Ext'(E,X)#0 for each infinite-dimensional nuclear (LB)-
space X.

Proof. Let E be the subspace of /; spanned by the unit vectors e,. If ("),
is a bounded sequence in im dy, which cannot be lifted we define T: E—imd, by
T(ey,) = y" and linear extension. Then 7 is continuous and

0-X— [ %% imdy—0

ael

is an exact sequence such that 7': E —im dj does not factorize as a continuous linear
map over [[,. X,. Theorem 1.1 gives Ext'(E, X)#0. O

Remark 3.3. In the situation of Proposition 3.1, we can assume that all spaces X, are
reflexive. If (y"),.n 1s bounded in imdy without lifting then there is not even a

bounded set Bin [],., X, with {y" :neN}<=dy(B) (since [[,., X, is reflexive we can

oael
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assume that B is weakly compact and then dj(B) is weakly compact hence closed
in im dp).

As a consequence, the transposed map d, : (im dy)' > ([],; Xx)" is not open onto
its range if the dual spaces are both endowed with their strong topologies. If D!
denotes the derivative of the duality functor (see [7, Section 8] or [10, Chapter 7]) this
means that under the continuum hypothesis D'(X)#0 holds for each infinite-
dimensional nuclear (LB)-space X. In particular, this answers Palamodov’s unsolved
problem [7, Section 12.5].

A similar proof as for Proposition 3.1 (see [10, Theorem 4.3.9]) yields

Theorem 3.4. If X is an infinite-dimensional nuclear (LB)-space and X = Proj 2 where
Z is a reduced projective spectrum of Fréchet spaces then the continuum hypothesis

implies Proj' I #0.

This result has a consequence for the completeness of quotients. The special case
X = ¢, the space of finite sequences endowed with the strongest locally convex
topology, is due to Schmerbeck [8].

Corollary 3.5. Let X be an infinite-dimensional nuclear (LB)-space and X, Fréchet
spaces such that X is a topological subspace of 1],.; X, Assuming the continuum
hypothesis, the quotient space [],.; X,/X is incomplete.

Proof. The completeness of [],_; X,/X again does not depend on the particular
choice of X, it is thus enough to show that im d is incomplete with d, as above. But
im dy is a dense topological subspace of ker d; and Proj! Z #0 implies im dj #ker d; .
Hence im d is not complete. [

The combination of this negative result with the positive one from Theorem 2.4
enables us to prove:

Theorem 3.6. Let X be an infinite-dimensional nuclear (LB)-space. Assuming the
continuum hypothesis we have Ext*(KN, X) #0.

Proof. By Corollary 3.5 there are Banach spaces X, and an exact sequence

0—>X—>Hxaiz—>0

oael

such that Z is not complete. We do not know whether Z is quasi- or locally
complete. However, Theorem 2.4 yields that Z indeed satisfies a very weak
completeness condition. If 7 denotes the group topology having {kerp:p
continuous seminorm on Z} as a basis of the 0-neighbourhood filter then (Z,7)
is sequentially complete (this ““sequential seminorm kernel completeness’ is shared
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by all complete locally convex spaces as well as, trivially, by all l.c.s. having a
continuous norm). Indeed, if (z,),.n Is a Cauchy sequence in (Z,7) and @ =
[{e,:neN} <K denotes the space of finite sequences endowed with the topology
of pointwise convergence we define 7: ®—Z by T(e,) = z, — z,—1 (where zy = 0)
and linear extension. Then T is continuous (if Z is endowed with its original
topology) and because of Ext!(®,Z) =0 there is a lifting Re L(®,[[,.; X,) with
qoR=T. Since [[,.; X, is complete and @ is dense in K" there is an extension
ReL(KN T],c; X2), ie. Rl = R. It is then easy to check that (z,),., converges to
z=R((1,1,1,...)).

Let us now assume that Ext*(K", X) = 0 holds which, by Theorem 1.1, implies
Ext! (KN, Z) = 0. We choose ze Z\Z and obtain an exact sequence

05257z + 2 20,

where Z + [z] is endowed with the relative topology of Z, I is the inclusion and the
one-dimensional space [z] carries the trivial topology {[z],0} since Z is dense in
Z + [z]. Using e.g. a Hamel basis of K" we find a non-zero linear map 7T : KN - [z]
with 7|, = 0. Ext'(K",Z) = 0 yields a continuous linear lifting 7: KN - Z + [z].
We have Qo Tl|, = T|, =0, hence there is S:®—Z with 1-S = T. Since Z is
sequentially seminorm kernel complete there is an extension S: K¥ - Z of S. Now
I - S and T coincide on the dense subspace @ of K™ and continuity implies 7= 1 - S,
hence the contradiction 7= QoT=Q-I-S=0. O

4. Concluding remarks

We do not know whether our solution to Palamodov’s conjecture logically
depends on the continuum hypothesis—at least our proofs used it at two essential
steps (a spectrum indexed by NV consists of X; spaces and separable Banach spaces
have N; elements).

In [8] Schmerbeck proved that there are Banach spaces X, and a closed subspace
X <= ],.; X: such that the quotient [],.; X,/X fails to be complete under the
continuum hypothesis but it is complete assuming Martin’s axiom and the negation
of the continuum hypothesis. Using similar techniques it is possible to construct
locally convex spaces E and X such that the behaviour of Ext*(E, X') depends on set
theoretic axioms. However, it seems that also the decision whether e.g. X is an (LB)-
space would require those axioms.

Anyway, our results strongly suggest that there in not much hope for a splitting
theory using the functors Ext‘(E, X) in the category of locally convex spaces beyond
the case where X is a Fréchet space (for this case there are powerful results of Vogt
[9] and e.g. in [3,10]). It is therefore reasonable to restrict oneselves to smaller



J. Wengenroth | Journal of Functional Analysis 201 (2003) 561-571 571

categories. The appropriate category for distribution theory is that of PLS-spaces
which had been worked out by Domanski and Vogt [1]. Strong splitting results for
this category were obtained in [1,2,11].
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