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We analyze several aspects of the singular behavior of solutions of a varia-
tional nonlinear wave equation which models orientation waves in a massive
nematic liquid crystal director field. We prove that smooth solutions develop
singularities in finite time. We construct exact travelling wave solutions with cusp
singularities, and use them to illustrate a phenomena of accumulation and annihila-
tion of oscillations in sequences of solutions with bounded energy. We also prove
that constant solutions of the equation are nonlinearly unstable.  © 1996 Academic

Press, Inc.

1. INTRODUCTION

We consider the nonlinear wave equation
uy—c(u)(c(u) u,), =0, (1.1)

where the wave speed ¢ is a given positive function of u. Local existence of
smooth solutions to the Cauchy problem for (1.1) follows by standard
arguments (see [ 13], for example). The purpose of this paper is to prove
that (1.1) does not have global smooth solutions for general smooth initial
data, and that the derivatives u,, u, typically become infinite in finite time.
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The singularity formation of smooth solutions of (1.1) is suggested by
previous results on singularity formation for the following asymptotic
equation [8, 9]

This equation gives a formal description of weakly nonlinear, unidirec-
tional solutions of (1.1). Although smooth solutions of (1.2) break down,
the equation has global continuous weak solutions [9]. This fact suggests
that (1.1) also has global continuous weak solutions. However, this ques-
tion remains open, despite the apparent simplicity of (1.1).

One motivation for studying (1.1) comes from liquid crystals. We give a
brief explanation of how the equation arises in that context, and how the
liquid crystal problem differs from the related problem of harmonic maps
from Minkowski space to the two-sphere. For further details, see [8, 9,
19]. The mean orientation of the molecules in a nematic liquid crystal is
described by a director field of unit vectors, ne S We consider a regime
in which inertia effects dominate viscosity. The propagation of orientation
waves in the director field is then modelled by a constrained variational
principle

5J{n,-n,—W(n,Vn)}dxdt=O, n-n=1,

where W is the Oseen—Franck potential energy density,
W(n,Vn)=a [nx (Vxn)|>+B(V-n)>+p(n-V xn)%

This potential energy is determined (up to a null Lagrangian) by the
requirement that it is invariant under reflections n— —n and under
simultaneous rotations O of the spatial variables and the director field,
x — Ox, n— On. The positive constants «, f, y are elastic constants of the
liquid crystal.

A commonly used special case is the one-constant approximation in
which a = ff=y. The potential energy density then reduces to

W(n, Vn) =« |Vn|>%

The associated variational problem is identical to the variational problem
for harmonic maps from (1 + 3)-dimensional Minkowski space into the two
sphere, see [21] for example. For harmonic maps, the wave speed ¢* =«
is constant, whereas for liquid crystals with distinct values of the elastic
constants, the wave speed depends on n. Thus the problem for harmonic
maps into the two sphere is a degenerate case of the liquid crystal problem.
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The type of singularity we investigate here is subtly different from the type
of singularity which arises in harmonic maps. The mechanism of singularity
formation depends crucially on the fact that the wave speed is a noncons-
tant function of the dependent variable. In particular, the critical dimension
for the liquid crystal wave equation is n = 1, whereas the critical dimension
for harmonic maps is n=2. We give a more detailed discussion of this fact
in Section 7.

The simplest class of solutions for orientation waves in a nematic liquid
crystal consists of planar deformations depending on a single space variable
x. The director field then has the special form

n=cos u(x, t) e, +sinu(x, t) e,.

Here, the dependent variable u e S' measures the angle of the director field
to the x-direction, and e, and e, are the coordinate vectors in the x and
y directions, respectively. In this case, the variational principle for n reduces
to

5J {u? —cA(u)ul} dx dt=0,

with the wave speed ¢ given by
c*(u)=ocos® u+ ffsin’ u. (1.3)

The Euler-Lagrange equation for this variational principle is (1.1). In the
harmonic map case we have a=p, and equation (1.1) reduces to the
standard linear wave equation.

We now state our main singularity formation result. The proof is given
in Section 2.

THEOREM 1. Assume that c(u) e C*(R) satisfies the following conditions:
(a) there exist positive constants 0 <c,<c, < oo such that

co<clu)<c
for all ue R; (b) for some u, € R,
' (uy) #0.

Suppose that u(t,x)e CY([0, T)xR) is a smooth solution of (1.1) in
0<t< T with initial data

(0, x) = ttg + @ (14)

u(0, x) = —sgn(c'(ug)) c(u(0, x)) u(0, x) (1.5)
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where &> 0 is sufficiently small, p € C! (0, 1) with ¢ £0. Then T< o0, so a
global smooth solution does not exist.

To prove this theorem, we show that if u is smooth, then u, and u, must
blow up in finite time. We use the weakest notion of “smooth solution”
compatible with (1.1). That is, we say that u is a smooth solution of (1.1)
if it has continuous first order partial derivatives u, and u,, and satisfies
(1.1) in the sense of distributions in the space W' “(R?). The energy
estimate,

E(u)= JOC ‘ {u? + ¢*(u) u2} dx = constant, (1.6)

— O

implies that smooth solutions are uniformly Hoélder continuous with expo-
nent one half. This fact suggests that solutions remain continuous even
after their first derivatives become infinite —a result which has been proved
rigorously for the asymptotic equation (1.2).

This result should be contrasted with a result of Lindblad [17], who
established the global existence of smooth solutions of the equation

u,, —c*(u) Au=0 (1.7)

with smooth, small, and spherically symmetric initial data in R The multi-
dimensional generalization of equation (1.1),

u,—c(u)V-(c(u) Vu) =0, (1.8)

contains a lower order term proportional to cc’ |Vu|? which (1.7) lacks.
This lower order term is responsible for the blow-up in the derivatives
of u.

Equation (1.1) also looks very similar to the perturbed wave equation

u,, — Au+f(u, Du, D*u) =0, (1.9)

where f(u, Du, D?u) satisfies an appropriate convexity condition (for
example, f=u” or f=au?+b |Du|?). Blow-up for (1.9) has been studied
extensively by Levine [16], John [10], Glassey [5], Sideris [24, 257,
Schaeffer [20], Kato [12], Hanouzet and Joly [7], Balabane [1], and
others, using integral methods (see Strauss [26] for detailed references). It
is therefore tempting to apply these methods to equation (1.1). However,
the possibility of sign changes in ¢’(«#) makes equation (1.1) truly different.
The growth of singularities in solutions of (1.1) occurs on a much smaller
spatial scale than for (1.9). As a result, the methods developed for (1.9) do
not seem to be fine enough to catch the singularities of (1.1).
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We therefore use a different approach to prove singularity formation,
based on the method of characteristics. (Unlike integral methods, this
approach only works in the case of one space dimension.) We first write
(1.1) as a system of first order equations, introducing new dependent
variables

R=u,+c(u)u,,
(1.10)

S=u,—c(u) u,.

Then, for smooth solutions, equation (1.1) is equivalent to the following
system for (R, u, S),

!

R,—cR, = (R*— §?)

T 4c
1
u=5 (R+S) (111)

’

S, ¢S, = (S2— R,
4c

Any smooth solution of (1.11) satisfying the constraint

R-S
= 1.12
=", (112)

gives a smooth solution of (1.1), and conversely. The constraint (1.12) is
preserved by the first order system, since (1.11) implies that

’

(R—S—2cu,), = ; (R+S)(R—S—2cu,).

c
Equation (1.11) is similar to a system of hyperbolic conservation laws with
a nonlinear source term and three linearly degenerate characteristics (see
[11, 14, 15, 18] for various results on singularity formation for systems of
conservation laws in one space dimension). However, (1.11) cannot be
written in conservative form.

In systems of conservation laws, the formation of singularities is usually
caused by the crossing of characteristics. This crossing does not occur when
the characteristics are linearly degenerate, as is the case for (1.11). Instead,
it is the nonlinear source terms which drive the singularities in solutions
of (1.11). The resulting singularities are indeed different from those of
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conservation laws: the cusp singularities of solutions of equation (1.1) con-
trast with the W “-regularity of solutions of the conservation law

u,—(p(uy)),=0 (1.13)

considered by Lax [15]. It is interesting to note that solutions of
(1.13)—with a “stronger” u,-dependent nonlinearity—are more regular
than solutions of (1.1)—with an apparently “weaker” u-dependent non-
linearity. (This kind of behavior is well-known for nonlinear parabolic par-
tial differential equations.) In each case it appears that singularities develop
to the maximum extent permitted by the existence of global weak solutions.
Thus, u, remains bounded for (1.13), but is merely in L? for (1.1)

The equations for (R, S) in (1.11) closely resemble the Carleman system,
which can be written in the form

R,—R,=R>—8§?

L (1.14)
S,+8.=8>—R>

Balbane [2, 3] has studied blow—up for systems like (1.14). The key
difference between (1.11) and (1.14) is that in (1.11), the coefficient ¢'/4c of
the quadratically nonlinear term driving the singularity can change sign. If
this happens, blow-up may be delayed or even completely prevented.

The reason for introducing a small parameter ¢>0 in the initial data
(1.4) is to ensure that ¢'(u) does not have time to change sign before
singularities in u, or u, form. The initial data for u, in (1.5) is chosen to
enhance the growth of S and suppress the growth of R. (If the initial data
for u, had the opposite sign, then R would become infinite instead of S.)
The energy estimate (1.6) implies that it takes an O(1/¢)-time for u to grow
an O(l)-distance away from u,. Therefore, ¢’(u#) does not change sign in
O(1) time. We then use another energy estimate over a characteristic cone
to show that u, and u, become infinite in O(1) time.

For general small initial data, solutions of (1.1) typically do grow large
enough that ¢’ changes sign (although they may well lose smoothness
before this happens). This fact was shown in [8] by a formal asymptotic
argument. In Section 3, we use an averaged integral method to prove
rigorously that arbitrarily small smooth disturbances around a constant
state u, can grow so that ¢'(z) must change sign—see Theorem 2.

In Section 4, we present some explicit travelling wave solutions of (1.1)
which illustrate typical singularities (see Figure 1.1).

This travelling wave has a cusp singularity at its crest of the form

u(t, x) —u(t, x*) ~ A(x — x*)*? as x— x*

for some constant A.
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u(l, z)

x* z

FiG. 1.1. A cusp solution at t=1.

In Section 5, we study the weak convergence of a sequence of exact
solutions {u"(z, x)} with uniformly bounded energy. These solutions are
constructed by patching together n cusp solutions of the type shown in
Fig. 1.1. The interesting fact is that there is persistence of oscillations in the
term (u")? yet annihilation of oscillations in ¢'(u")(u")>

In Section 6, we consider a wavefront expansion for (1.1). This expan-
sion illustrates some effects of sign changes in ¢’ on the development of
singularities.

In the final section (Section 7), we give a heuristic argument for
singularity formation in solutions of equation (1.1), and compare the
results with singularity formation in harmonic wave maps.

2. SINGULARITY FORMATION

We prove Theorem 1 in this section. From equations (1.11) and (1.12),
we derive the identity

(R*+S?),+ (c(u)(S*— R?)),.=0. (2.1)
Integrating (2.1) with respect to x over R, we obtain the energy estimate

(1.6). We can integrate (2.1) over a backward characteristic cone to obtain
another useful energy estimate. Given any point (¢,, x,) in the upper half



56 GLASSEY, HUNTER, AND ZHENG

plane >0, let ¢ ,(x) denote the plus and minus characteristics through
(2o, Xo), extended backward in time:

dt 1

)y L )= 0<i<t,

dx c(u) =
(See Fig. 2.1). Let x; and x, denote the intersection points of ¢, with the
x—axis. Integrating the identity (2.1) over the region bounded by ¢, #_
and the segment [x,, x,], then using the divergence theorem, we obtain

X2

[x" Rt (x), x) dx + sz S7(1_(x), x)dx =1 [ (R0, x) +S7(0, x)) dx.

X1 X0 X1
(2.2)
For the data (1.4) and (1.5), we estimate the total energy
E(u) = f (2 + 2u?) dx
& 2
=f 2c%p’ <x> dx
0 &
<2ect |@'lI72
= Me¢ (2.3)

for some constant M, where ¢, is an upper bound for c(u).
For smooth solutions, equation (1.1), and therefore the system (1.11),
have finite propagation speed. We thus obtain that u =u, in the regions

(zo,%0)

] i) () xr

F1G. 2.1. A characteristic region.
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x< —c t and x>¢&+ ¢, t. Using the energy estimate (2.3), we can estimate
the deviation of u from u, as follows:

|u(t, x) u0|—“ L(t, x) dx

e+cyt
<[ e 0l dx

—c1t

<ugllp2/2eit+¢
1
<—(Me)'? Jf2c,t+e

Co
2c,te+¢&? (2.4)

for some constant K.

We need to fix the sign of ¢'(ug). If ¢’(uy) >0, we choose a point
Po €(0,1) such that ¢'(py) <0. If ¢'(u,) <0, we choose p, (0, 1) with
@'(po) > 0. The proofs for the two cases are similar, so we treat only the
first case. Thus we assume that ¢’(u,) >0 and ¢'(p,) <0. We choose ¢ >0
small enough that ¢'(x) does not change sign in the interval [u,—,
uy+0]. Then

O<co<c'(u)<c) for wue(uy—0,uy+9) (2.5)

for some positive constants ¢; and ¢;. We also choose sufficiently small
numbers &,, g >0 so that the term on the right hand side of (2.4) satisfies

2c,te+e><d, for 0<e<e,, 0<t<ale

Thus, for each fixed ¢ € (0, ¢,], the function ¢'(u) evaluated along the solu-
tion u has the upper and lower bounds given in (2.5) for a time interval
0<t<ale

Next, we show that R is bounded. More exactly, we show that there is
a constant K> 0 such that

—Ke<R(t,x)<0 for O<e<e,, 0<t<ale. (2.6)

The initial data for R is zero. From (1.11), the derivative of R along a
minus characteristic dx/dt = —c(u) satisfies

dR ¢ c
o RZ _ SZ < 71 R2
dt  4c ( ) 4c,
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for 0 <e<egy, 0<t<og/e It follows by a standard comparison theorem that
R <0 in the region, since the only solution of the initial value problem
dR ¢}
"L R.  R0)=0
dt  4c, ©)

is the zero solution.
Estimating dR/dt from below gives
dR_< p_sys_Sig
4c,

5240

Therefore, integrating along the minus characteristics we get

Rito. xo) 2 — L [ 200y
o SHt_(x), x)
Lo cti ooy

xo €

__rco

c
>_Sp
4c? ()

=—Ke

which proves (2.6).
Now we show that S becomes infinite at an O(1)-time. We integrate the
equation for S in (1.11) along the plus characteristic dx/dt = c(u) passing

through the point x =¢p, at t =0. Using (2.6), this gives
as ¢ c
—=—(S?—R*)>-—>S*— K% 2.7
dt 4c( ) 4c, ¢ (2.7)
for some constant K in the region 0 <e<eg, and 0<7<oe '. Now, we

note that
S(0, epg) = —2¢(u(0, epy)) @'(po)

=2co(—@'(po)) > 0.
Choosing ¢, smaller if necessary, we can assume that

ds Co
— >—[2co(—¢’ 2_K%*>0
|, 461[ col —9'(po))] &>
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for all 0 <e<eg,. Then S is an increasing function of ¢ along the plus
characteristics with positive data, and the quadratic growth in the
inequality (2.7) will drive S to infinity. To obtain an upper-bound for the
singularity formation time, we integrate the ODE (ordinary differential
equation)

% =a’S*—b’¢?,
S(0) =62 > 0.
The solution is
aS—be .., a0>—be
aS+be ac® +be’

This solution develops a singularity at time

1 ac® + be 1
= In 2 )
2abe ac®—be) a‘c
which is O(1) as ¢ —» 0. Therefore .S becomes infinite in time O(1). Since R
remains of order ¢, the derivatives u, and u, become infinite simultancously

in an order one time, provided that a smooth solution for u exists up to
that time.

3. INSTABILITY

In this section, we show that small disturbances around a constant solu-
tion u=u,, where ¢'(u,) #0, can grow until |u(x, t) —u,| is so large that
¢'(u)=0. Since smooth solutions may cease to exist before this time, we
assume that equation (1.1) has global weak solutions with finite, bounded
energy. The existence of finite-energy global weak solutions has been
proved for the asymptotic equation (1.2). It is reasonable to assume that
the same result is true for the wave equation (1.1), although this has not
yet been proved.

Let u(t, x) be a global solution with initial data

u(0, x) =uy+ @o(x),
u (0, x) =@ (x).

Here, ¢o(x) and ¢,(x) are given functions. We assume that they are suf-
ficiently smooth and that their support is contained in (—1, 1). We also
assume that the constant unperturbed state, u, is such that ¢’(u,) #0. For

(3.1)
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definiteness, we suppose that ¢'(uy) <0. If ¢@y(x) is small enough, then
' (u(0, x)) is negative for all x e R. We will prove that there are arbitrarily
small perturbations ¢(x) such that the solution grows so that ¢'(u) is zero
at some point. It follows that the constant state u=u, is unstable. This
instability is a nonlinear instability; the size of the perturbation grows
algebraically, rather than exponentially, in time.

THEOREM 2. Assume that c(u)e CA(R), 0<c,<c(u)<ce,< oo, and
' (uy) <0. If
1

1
j 9odx>0  and f @ ,(x) dx >0, (3.2)
—1 —1

then for any finite-energy weak solution of (1.1) with initial data (3.1), either
there exists a finite term t* such that c'(u(t*, x*))=0 for some x*, or
c'(u(t, x)) is arbitrarily close to zero for large t or x.

Proof. Introduce
Fiy=[" [ult x)—uo] dx. (33)
By the assumption in (3.2), there exists >0 such that
F0) :jw 9o(x) dx >
- (34)
F’(O):j” @,(x) dx > 6.

— 0

Differentiating F(z) twice and using (1.1) in the distributional sense, we find
for almost all >0 that

F'(1) = —jw e(u) ¢ (u) u? dx. (3.5)

— o0

We want to obtain a lower bound for the right-hand side of (3.5) in terms
of F. Using finite speed of propagation for (1.1), we have

u(l,x)—uozr w (1, x) dx

—1—cyt

- 12
< Q u? dx> (2¢,142)"2, (3.6)
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Integrating (3.6) with respect to x over the interval (—1—c¢,¢, 1 4+ ¢,1), we
find that

jw (1, x) — g) dx <<fm uidx>l/2(2c1z+2)3/2. (37)

— o0

Thus

foc u?dx > FA()

x> 3.8
I PPN (38)

Our goal is to prove that ¢’(u) changes sign eventually. Suppose, on the
contrary, that

(u(t,x))< —c) <0, t>0,xeR (3.9)

for all time >0 and for some constant ¢} > 0. From (3.5), (3.7) and (3.8)
we deduce that

F(1)

F'(t) = ¢y m,
1

t=0. (3.10)
The inequality (3.10) together with the data (3.4) enables us to use Sideris’
argument [ 24, p. 313] to show that F becomes infinite in finite time. But
this contradicts (3.7) which shows that for any finite-energy solution, the
growth rate of F(t) is (2¢,t+2)*?% at most. So the assumption in (3.9) is
not correct, and the proof of the theorem is complete.

4. EXACT SOLUTIONS WITH CUSP SINGULARITIES

In this section we construct cusped travelling wave solutions of the wave
equation (1.1) with the specific wave speed c(u) given in (1.3). We look for
solutions of (1.1) of the form

u(t, x)=y(x—st)

where s is a constant. The function (&) satisfies the ODE

s — () (e(P)y') =0. (4.1)
In regions where (5% —c*())y’ # 0, we rewrite equation (4.1) as
l10// Ccllpl

VoS —)
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Simple integration then yields

V' ls? =) =k (4.2)

where k is an integration constant. We can express the solution (&)
implicitly as

[ =l do =k~ (43)

0

where v, and &, are arbitrary constants. Since the integrand in (4.3) is

strictly positive, except possibly at isolated values of ve R such that

c(v) = |s|, equation (4.3) defines monotonic, continuous solutions y: R - R.
There are two cases. If |s| €[ ¢y, ¢, ], where

¢o=min ¢(v), ¢, =max c(v),
veR ve R

then the solution given in (4.3) is smooth because /' is finite from (4.2).
Thus, unlike the Carleman equations (1.14) [2, 3], equation (1.1) has no
bounded travelling wave solutions with speed |s| greater than max ¢(-) or
less than min ¢(-). We will not consider these smooth solutions any further
here.

The second case is when |s| e[ ¢y, ¢;]. Then there exists u, € [0, 7/2]
such that [s| =c(u,)—see Fig. 4.1. The solution (&) given in (4.3) is
smooth only in the open ¢-intervals in which c(yY(&)) # c(u,) (see Fig. 4.2).
Singularities of the form

k
V(&) = - (44)
EEET

occur at isolated points of ¢ such that ¢(y/(&)) = c¢(u,). These points can be
listed as

E=EF =y Y(nmtu,), n=0, +1, +2, ---. (4.5)

We claim that the function y given by (4.3) is still a weak solution of
(4.1) even when it is not smooth.

To prove this fact, we need to estimate the strength of the singularities
in . We obtain from (4.2) that

Y(OIs* =)l =k /s> = ()] =o(1) (4.6)

as &> &F so that c(Y(&)) — c(uy). However the integrability of ¢' and the
Holder exponent of continuity of ¥ differ depending on whether ¢'(u,) =0
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()

Ug T — Ug ™ T+ U

Fic. 4.1. Wave speed c(y) and the wave speed s of a singular travelling wave.

¥(¢)
T | e ;

o= Ug| :

Uo

0 / & & ¢t ¢

1

FiG. 4.2. Singularity points of a travelling wave (¢&).
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or not. First let us assume c'(uy)#0. We show that y'(&) is locally
integrable in L. We calculate the integral of i)’(¢)]? on a whole interval

formed by two neighboring singularity points ¢ and &; . For definiteness,
we assume k>0 so that & <&, . We then have

<1 ¥z —uo)
[Twera= " T era
<o v 1(140)

Jw*%n—uo) ) k

because ¢'(u,) #0. Furthermore we find from (4.3)

(&) — P&~ AE = E5)
WO ~341E=¢0 77

as ¢ > ¢F for some constant 4 depending on k, ¢ and u,. In the case
c'(uy) =0, corresponding to u,=0 or n/2, we find that

W) =& ~BIE=E |2
WO ~3BlE—& 712

as ¢ > ¢, for some constant B. But /(&) is not in L*(&), &,); that is,
the solution has infinite local energy. However, the following weighted
energy is finite:

(4.8)

(4.9)

[ 1wy de< o, (4.10)

¢
We say y: R—> R, is a weak solution of (4.1) if Yy e C(R), y' e L} (R"),
cW)y*el), (R) and

[ s —wn Y@ e+ dw) ) ol di=0 @11)

for all test functions @ e CX(R). We define weak solutions for (1.1)
similarly. We claim that the nonsmooth functions (&) given in (4.3)
implicitly are weak solutions of (4.1) in the case ¢, < |s| <c¢;.

We show first that

[ s - de+ [ ) W p@ di=0 (412)

& o
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for a function ¥ given in (4.3) for any test function ¢ € C*(R) with no
restrictions on its support. Because the singularities are similar at £, and
&1, it is sufficient to assume that the test function ¢ vanishes near &£, . We
consider a one-parameter family of test functions ¢, (&)e C*[&F, &1,
parametrized by ¢ >0, such that

supp (plsg [éOJrs é(;r +8)a

. (4.13)

max |¢,,| <M and j |@.| dé < M independently of ¢ >0
&

and such that the family of test functions ¢,, = @ — ¢,, has the property

&

&
supp 2, (&5 +5. 6 =5 ). (414)

Since (&) is a smooth solution in (&7, &), we have by (4.14)

[ pnds @ dek [ ) I pudi =0, (415)

&
&

- o=@ de=o [ gil de=ott), (416)

<o <o

[ e ewwro dé‘ <max gy | [ W] ) de

=o(1). (4.17)

Combining (4.15), (4.16) and (4.17), we obtain (4.12). Since the integral
over R in (4.11) is a finite sum of integrals similar to (4.12), we conclude
that (4.11) holds for any ¢ € C*(R). Therefore the proof of the claim is
complete. Summarizing these results we obtain the following theorem.

THEOREM 3. The functions (&) defined implicitly for all £ € R in formula
(4.3) are weak solutions of (4.1) for any se€R. The solutions are always
continuous, monotone, and unbounded as |&| - oo (assuming k#0). If
|s| €[ co, 1], the solutions are smooth. If |s| €[ ¢y, ¢, ] with |s| =c(u,) for
some uy€ [0, 7m/2], the solutions are not smooth. The derivative Y'(&) has
isolated singularities at the points listed in (4.5). Furthermore, if uy € (0, n/2),
so that ¢'(uy) #0, then the solutions have finite local energy and the cusp
singularities have Holder continuity exponents oo =2/3. If uy=0 or uy=rmn/2,
then the solutions have an infinite amount of energy between singularities,
and their Holder exponents are equal to 1/2.
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We remark that weak solutions of (4.1) are weak solutions of (1.1).
We also observe that other travelling wave solutions can be constructed
using (4.12). For each fixed u, and a fixed sign of s with |s| =c(u,), new
travelling wave solutions with the same speed s can be formed by con-
tinuously patching together two or more smooth pieces of the solutions
given in (4.3), including the trivial solutions ¢ =u,. For example, the
following function

W(<) =uo for &<

[ i) Wl do=ki(E—c0)  for Eo<E<y mouy) (418)

uo

W) =m—u, for f>lp71(75_“0)

is a weak travelling wave solution for any u, €[0, n/2], any &, e R, and
any k, >0 (see Fig 4.3). To construct a second example, we define two
functions ¥, and r, as follows

Vi
| V1) = E0)] do= k3 (£ &),

uo

[ 1) = )] do= —k3E— &),

T—ug

Here, u, €[0, n/2], k, #0, k, #0, and &, <&, If Y ' (m—uy) <&, then
the function

Y

T — Up

Ug

€o ¢

Fic. 43. A bounded travelling wave solution.
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T — Up

& & by H(uo) €

Fi1G. 44. A soliton-like travelling wave solution.

U for ¢£<¢&,

P& for & <ESYT (m-up)
Y(&) =< uo for i (m-up) <& <¢,

Ya(&)  for & <& (uy)

Uy for 5>¢§1(”0)

is a weak solution (see Fig 4.4).

We note that the two nonsmooth waves in the second example can travel
away from each other if the left wave has s = —c¢(u,) and the right wave
has s = c(u,). In this case it is an exact solution, but the overall solution is
not a travelling wave. If the travelling directions are reversed, collision of
two travelling waves in opposite families will occur. But there is no over-
taking of travelling waves in the same family, since all the waves travel at
the same speed s = +c(u,) if they can be patched together.

5. PERSISTENCE AND ANNIHILATION OF OSCILLATION.

In this section, we show that striking phenomena can occur in weak
limits of sequences of exact solutions of (1.1) with bounded energy. As in
Section 4, we assume the specific form of ¢(u) given in (1.3). To be definite,
we assume that 0 <oa <pf.
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We consider a fixed positive integer n, and choose small constants ¢,

k>0 such that
/2 +¢ s k
20082 _"
J'n/2fa \/C (u)—-c <2 £>du—2n.

Define (&) on [0, 1/(2n)] by

JM \/cz(u) _ <”— s> du = ké.
72— 2

Define /(&) on [1/(2n), 2/(2n)] by

fil /cz(u) e <g+g> du= —k (é—;n).

Fori=1, .., n—1, define Y(&) on [i/n, (i+ 1)/n] by translation,

(&) =y <é—i>-
n
For £¢[0, 1], we define

W(&) =

—é&.

r
2

The graph of (&) consists of n “huts” (see Fig. 5.1). We choose e =k =1/n
and denote the function (&) constructed above by ¥"(&). Let

u'(t, x) =y "(x —s,1), s, =c <721_1>.

From the previous section, we know that u"(¢, x) is a weak solution of
equation (1.1). The total energy of u”(z, x) is given by

Ew)=[" )+ @wl)?) dx

1
=], st ewrenIwn’ de

1
SEARUARS
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iR

+ ¢

3|

S
—

I

Fi1G. 5.1. A solution with oscillation.

since " — 7/2 as n — co. Furthermore,

1/(2n)
EG)~2p-2n | (27 de

1/(2n)

e R —
0 W) =,

_ Iﬂ/2+l/n du

w21 A (u) —s2

_8ﬁﬂj£ dv
_\/ﬁ—oc 0\/cos2v—cos2é

N 8p Jl dx
VB—ato J1—x?

so E(u") is bounded and has a strictly positive lower bound in the limit
n— 0.

This sequence has the limit u(z, x) = /2 which is a trivial solution with
zero energy. The energy of u"(z, x), which tends to a nonzero constant as
shown in (5.1), therefore disappears in the limit. This is because of the fact
that u” does not converge strongly in L? to u, (which is equal to 0). More
precisely, we have

(5.1)
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u"(t, x) —>g uniformly

u"—0  weaklyin L*

4 U dx )
\/ﬂ—ot'[O «/l—le{(t’X)

(u)(u")>—0 weakly in L'

X

(u")*— weakly in L'

where x(t, x) is the characteristic function of the x-interval [ 5?¢, p1%t + 1]
for each 7> 0. This example shows that oscillations in the derivative u, can
persist in time and accumulate in a sequence of solutions. The lack of
strong convergence of u, in L? can be compensated for by the highly
oscillatory factor ¢’(u), so that ¢'(u) u> has better convergence than u?2.
This phenomena may help in finding a way to establish the existence of a
weak solution for the initial value problem of equation (1.1).

6. WAVEFRONT EXPANSIONS

In this section, we compute explicit expressions for the singularity forma-
tion time of u, at a wavefront propagating into a uniformly rotating direc-
tor field. We assume throughout this section that, before the singularity for-
mation time, (1.1) has a piecewise real analytic solution of the form

uo(t) for x=y(1)
u(t, x) = uo(t) + uy(O[x = Y() ]+ 1/2ux(1) [ x — () ]* + - (6.1)
for x< (1)
In this equation,

uy(t)y=wt+9o (6.2)

is a spatially independent solution of (1.1), which corresponds to a director
field rotating with constant angular velocity w. The wavefront x =y(¢) is
a characteristic curve of (1.1), so that

l// = CO>0>
col(t) = c(uo(1)).

Here and below, dots denote time derivatives. The solution (6.1) describes
a weak discontinuity, carrying a jump in u,, propagating into a steadily
rotating director field.

(6.3)
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We will show that the spatial derivative immediately behind the
wavefront,

uy (1) =u,(z, x)|x:1//(t)ﬂ (6.4)

satisfies a Ricatti equation. The solution of this equation gives explicit con-
ditions for blow-up of the derivative behind the wavefront. For nonzero w,
the initial slope has to exceed a critical value for blow-up to occur.
Wavefront expansions have been used extensively to study derivative blow-
up for quasilinear hyperbolic equations. In that case, derivative blow-up
usually indicates the formation of shocks. For (1.1), we expect that the
solution can be extended past the derivative blow-up time by a Holder con-
tinuous weak solution containing a cusp behind the wavefront (as in Fig.
4.3, for example).
We change variables in (1.1) from (z, x) to (z, ¢), where

p=x—y(2).
Using (6.3), we get
[e?(u) — 5] ugy + 2¢otiy + Couy+ c(u) ¢ (u) ug —ii = 0. (6.5)

Here, ¢’ denotes the derivative of ¢ with respect to u. We assume that
u(t, ¢) has the convergent Taylor expansion behind the wavefront, ¢ <0,

[o0)

wtd)= 3 w0’
im0 (66)
(1) = 3(t, §)] g _o.

Setting ¢ =0 in (6.5), and using (6.2)—(6.3) and (6.6), we see that
2¢otiy + Cotty + cocout =0. (6.7)

Equations for the higher order Taylor coefficients follow on repeatedly
differentiating (6.5) with respect to ¢ and setting ¢ =0. The resulting
equation for u,(¢) has the form

2¢ot, +(Co +4deocouy) u, =1,(1), (6.8)
where f,, depends only on {ug, uy, ..., u,_,}.
We consider two cases separately. First, suppose «w =0, so that the state

ahead of the wavefront u =u, is constant. Then (6.7) gives

Uy + Schut=0. (6.9)
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The solution of (6.9) is

1

OO T

Hence, assuming that c;=c'(u,) #0 and assuming that real analyticity
does not break down before blow-up occurs, we conclude that the
derivative blows up at time

o 2
o CB”](O).

The blow-up time is positive if the initial slope u,(0) has opposite sign
to cyp.

The second and more interesting case is when w # 0. In this case, the
wavefront is propagating into a state where ¢’ is changing sign (if ¢ is given
by (1.3), for example). We can therefore observe the competition between
the local nonlinear steepening of a wave, whose slope has the opposite sign
to ¢’, and the global effect of sign changes of ¢’. If the initial slope is
opposite in sign to ¢’, then this effect tends to oppose blow—up. However,
if the initial slope has the same sign as ¢’, then the change in the sign of
¢’ can enhance blow up.

If 4y=0w #0, then differentiation of the second equation in (6.3) with
respect to ¢ implies that

’ Co
Co=—.
W
The use of this result in (6.7) gives
S | S
2coul+cou,+5coc0u1=0. (6.10)

The solution of this equation is

w 1
lt) = {am} ola(0) 1,(0)] " + alt) —al0)’ (6.11)

where we define
a(t) = cy/*(1).
Now, we suppose that ¢ is bounded,

0<m?><clu)< M?,
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and attains its maximum and minimum wave speeds M? and m?® For
instance, if ¢ is given by (1.3) with a < f3, then

m=al M=ﬁ1/4.

Equation (6.11) shows that the derivative blows up if the initial slope u,(0)
satisfies

a0 u(0) 1 o
1) M —a(0)’ (6.12)

a(0) u,(0) 1 '
1) a(0)—m’

where
a(0) = c(uy(0))'2.

It is interesting to note that either sign of u,(0) leads to blow up in the
forward time direction. If the initial slope is large and has the opposite sign
to ¢y, then blow up occurs immediately. However, if u,(0) is large and
initially has the same sign as ¢;, then blow up only occurs later on, after
¢p has switched sign.

If (6.12) is not satisfied, so that

1 a(0)u,(0) 1
M—a0)" o a0)—m’

then the slope at the wavefront remains finite globally in time. The critical
initial slope for blow up increases linearly in w. This is consistent with the
heuristic expectation that the Ricatti-type blow up, which has a time-scale
inversely proportional to the initial slope, has to occur before ¢’ changes
sign, which has a time scale inversely proportional to w.

7. HEURISTICS

Shatah [22] has given a heuristic argument which correctly predicts the
fact that n=2 space dimensions is the critical dimension for singularity
formation in harmonic maps on (1 + n)-dimensional Minkowski spaces
[4, 6, 23]. This argument is based on the scaling of the energy under space-
time dilations. In this final section we explain why the wave equation for
harmonic maps and the nonlinear wave equation (1.8) have different criti-
cal dimensions, even though their energies have the same dilational scaling.
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The main point is that equation (1.8) can have non-dilationally invariant
singularities.

First, we give a fairly detailed discussion of the heuristic argument as it
applies to (1.8). Equation (1.8) is invariant under the dilations

ol

u(f, X) = u(t, x), f=t/L, =x/L. (7.1)
That is, if u(¢, x) is a solution of (1.8), then (7, X) is a solution of
it;; — (1) V- (c(i1) Vi) =0,

where V is the gradient with respect to %. Conservation of energy for (1.8)
implies that

ETu(t,-)] EJR” {u? + c*(u) |Vu|*} dx = constant.

From (7.1), the energy of u and u are related by
E[u(t,-)]=L"2E[u(t/L,-)]. (7.2)

More generally, if

Elu(t,)]=[  {u?+cw)|Vul*} dx

x| <R
is the energy in a spatial ball of radius R about the origin, then
Eglu(t,)]1=L"2Eg, [u(t/L,-)]. (7.3)

Now suppose that when =0 there is a singularity in the solution u(¢, x)
at x=0. If the singularity is locally self-similar under the dilations (7.1),
then

u(t, x) ~ul(t, x) as t,x—0.

Using this condition in (7.3), with L =R/R, and t=0, we find that the
asymptotic behavior of the local energy is given by

E 0, - R\"2

R[u(’)]~<> as R, R,—0.

ER(][”(()) .)] RO

If the exponent (n—2) of L in the energy scaling law (7.2) is negative, it
follows that a dilationally invariant singularity has a locally infinite amount
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of energy. Consequently, such singularities cannot form from finite energy
initial data. If the exponent of L is positive, then the singularity carries no
energy and it is therefore possible for such singularities to form. The critical
case is when the exponent of L is zero. This means that the singularity
carries a nonzero, but finite, amount of energy, and singularities may or
may not form. (Below, we give an example of singularity formation in a
critical case.)

The two basic ideas in this argument are that: (a) singularities are locally
self-similar; (b) singularities with infinite energy cannot occur. In applying
the argument it is important to note that singularities may scale according
to any local self-similarity of the underlying partial differential equation
(including singularities with non-power law similarities). Thus, the argu-
ment above prohibits singularities of (1.1) which are locally invariant under
the dilations (7.1), but it does not prohibit singularities which have different
scaling properties. Moreover, if there are other positive conserved quan-
tities in addition to the energy, these may prohibit singularities which are
allowed energetically. Globally smooth solutions should only be expected if
all relevant local self-similarities lead to a negative exponent when scaling
some positive conserved quantity.

An example of a dilationally invariant equation with non-dilationally
invariant singularities is provided by the asymptotic equation (1.2). We
discuss its relation to the wave equation (1.1) below. Equation (1.2) is
invariant under the one-parameter family of scalings

i(f, )= L "u(t, x), X=L"0+Dx, i=L"', (74)

A positive conserved quantity for (1.2) is
Elu]l= I u? dx.

This quantity scales under (7.4) according to
E[u]l=L"""E[u].

Thus, we conclude that smooth solutions can develop singularities in finite
time, since we have a positive exponent for r> 1. However, dilationally
invariant singularities, with » =0, have a negative exponent, so they cannot
occur.

The existence of singularities with » >1 can be verified using the simple
explicit solutions constructed in [8, 9]. For example,

u= x|,
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is a time-independent weak solution of (1.2) which has a singularity at
x =0. This solution is invariant under the scalings (7.4) with r=2. Equa-
tion (1.2) also has singular solutions in the critical case r = 1. For example,
the following piecewise linear solution,

0, x<0,
u=-<2x/t, 0<x<t? (7.5)
2t, x>t

concentrates finite, non-zero energy at a single point x =0 and is invariant
under the scalings (7.4) with r=1.

Finally, we give a scaling argument which suggests that the asymptotic
equation (1.2) describes the local structure of singularities for the wave
equation (1.1). We consider the scaling transformation (z, x, u)+ (f, X, i)
given by

u(f, x) =L "u(t, x),
X—cof =L~ D(x —cyt) (7.6)
i=L 't
where r>0. As L — 0, this scaling is appropriate for a singularity located

at t=0, x =0 propagating with instantaneous velocity c¢,=c(0), and with
the local asymptotic behavior

X —cyt

u(l,x)~t’U< e > as 1, x—0.

Using (7.6) in (1.1) we get
{[A(La)— 31 L™+ 2c5— 3L} g
+2¢o(1 = L") ti;— L+ (L") ¢' (L) i =0.

Expanding c(u) = ¢, + cyu + O(u?) and dividing the result by 2¢,, we find
the equation

g+ (co+ coil) Uee+3¢ouz=0(L"),  as L—0. (7.7)

This argument suggests that the leading order terms on the left hand side
of (7.7) are the dominant terms in (1.1) near a singularity which is locally
invariant under the scaling in (7.6). These leading order terms are equiv-
alent to the asymptotic equation (1.2) after a Galilean transformation and
a rescaling (assuming that ¢y #0). Therefore, the exact self-similarities of
the asymptotic equation in (7.4) correspond to local self-similarities of the
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original wave equation. The fact that the wave equation has these local self-
similarities in addition to its dilational self-similarity allows singularities
with finite energy even in one space dimension.
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