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We show that there exist supersymmetric Minkowski vacua on Type IIB toroidal orientifold with general
flux compactifications where the RR tadpole cancellation conditions can be relaxed elegantly. Then we
present a realistic Pati–Salam like model. At the string scale, the gauge symmetry can be broken down to
the Standard Model (SM) gauge symmetry, the gauge coupling unification can be achieved naturally,
and all the extra chiral exotic particles can be decoupled so that we have the supersymmetric SMs
with/without SM singlet(s) below the string scale. The observed SM fermion masses and mixings can also
be obtained. In addition, the unified gauge coupling, the dilaton, the complex structure moduli, the real
parts of the Kähler moduli and the sum of the imaginary parts of the Kähler moduli can be determined
as functions of the four-dimensional dilaton and fluxes, and can be estimated as well.

© 2008 Elsevier B.V. Open access under CC BY license.
1. Introduction

One of the great challenging and essential problems in string
phenomenology is the construction of the realistic string vacua,
which can give us the low energy supersymmetric Standard Mod-
els (SMs) without exotic particles, and can stabilize the moduli
fields. With renormalization group equation running, we can con-
nect such constructions to the low energy realistic particle physics
which will be tested at the upcoming Large Hadron Collider (LHC).
During the last a few years, the intersecting D-brane models on
Type II orientifolds [1], where the chiral fermions arise from the
intersections of D-branes in the internal space [2] and the T-dual
description in terms of magnetized D-branes [3], have been partic-
ularly interesting [4].

On Type IIA orientifolds with intersecting D6-branes, many
non-supersymmetric three-family Standard-like models and Grand
Unified Theories (GUTs) were constructed in the beginning [5].
However, there generically existed uncancelled Neveu–Schwarz–
Neveu–Schwarz (NSNS) tadpoles and the gauge hierarchy problem.
To solve these problems, semi-realistic supersymmetric Standard-
like and GUT models have been constructed in Type IIA theory
on the T6/(Z2 × Z2) orientifold [6,7] and other backgrounds [8].
Interestingly, only the Pati–Salam like models can give all the
Yukawa couplings. Without the flux background, Pati–Salam like
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models have been constructed systematically in Type IIA theory
on the T6/(Z2 × Z2) orientifold [7]. Although we may explain the
SM fermion masses and mixings in one model [9], the moduli
fields have not been stabilized, and it is very difficult to decouple
the chiral exotic particles. To stabilize the moduli via supergravity
fluxes, the flux models on Type II orientifolds have also been con-
structed [10–14]. Especially, for the supersymmetric AdS vacua on
Type IIA orientifolds with flux compactifications, the RR tadpole
cancellation conditions can be relaxed [13,14]. And then we can
construct the flux models that can explain the SM fermion masses
and mixings [14]. However, those models are in the AdS vacua and
have quite a few chiral exotic particles that are difficult to be de-
coupled.

In this Letter, we consider the Type IIB toroidal orientifold
with the Ramond–Ramond (RR), NSNS, non-geometric and S-dual
flux compactifications [15]. We find that the RR tadpole cancel-
lation conditions can be relaxed elegantly in the supersymmetric
Minkowski vacua, and then we may construct the realistic Pati–
Salam like models [16]. In this Letter, we present a concrete simple
model which is very interesting from the phenomenological point
of view and might describe Nature. We emphasize that we do not
fix the four-dimensional dilaton via flux potential, and our model
is a solution to the equations of motion for all the Type IIB fields.

2. Type IIB flux compactifications

We consider the Type IIB string theory compactified on a T6

orientifold where T6 is a six-torus factorized as T6 = T2 × T2 × T2

whose complex coordinates are zi , i = 1,2,3 for the ith two-torus,
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Table 1
General spectrum for magnetized D-branes on the Type IIB T6 orientifold

Sector Representation

aa U (Na) vector multiplet
3 adjoint multiplets

ab + ba Iab (Na, N̄b) multiplets
ab′ + b′a Iab′ (Na, Nb) multiplets
aa′ + a′a 1

2 (Iaa′ − IaO3) symmetric multiplets
1
2 (Iaa′ + IaO3) anti-symmetric multiplets

respectively. The orientifold projection is implemented by gauging
the symmetry ΩR , where Ω is world-sheet parity, and R is given
by

R : (z1, z2, z3) → (−z1,−z2,−z3). (1)

Thus, the model contains 64 O3-planes. In order to cancel the
negative RR charges from these O3-planes, we introduce the mag-
netized D(3 + 2n)-branes which are filling up the four-dimensional
Minkowski space–time and wrapping 2n-cycles on the compact
manifold. Concretely, for one stack of Na D-branes wrapped mi

a
times on the ith two-torus T2

i , we turn on ni
a units of magnetic

fluxes F i
a for the center of mass U (1)a gauge factor on T2

i , such
that

mi
a

1

2π

∫
T 2

i

F i
a = ni

a, (2)

where mi
a can be half integer for tilted two-torus. Then, the D9-,

D7-, D5- and D3-branes contain 0, 1, 2 and 3 vanishing mi
as, re-

spectively. Introducing for the ith two-torus the even homology
classes [0i] and [T2

i ] for the point and two-torus, respectively, the
vectors of the RR charges of the ath stack of D-branes and its im-
age are

[Πa] =
3∏

i=1

(
ni

a[0i] + mi
a

[
T2

i

])
,

[Π ′
a] =

3∏
i=1

(
ni

a[0i] − mi
a

[
T2

i

])
, (3)

respectively. The “intersection numbers” in Type IIA language,
which determine the chiral massless spectrum, are

Iab = [Πa] · [Πb] =
3∏

i=1

(
ni

ami
b − ni

bmi
a

)
. (4)

Moreover, for a stack of N D(2n + 3)-branes whose homology
classes on T6 is (not) invariant under ΩR , we obtain a U Sp(2N)

(U (N)) gauge symmetry with three anti-symmetric (adjoint) chiral
superfields due to the orbifold projection. The physical spectrum is
presented in Table 1.

The flux models on Type IIB orientifolds with four-dimensional
N = 1 supersymmetry are primarily constrained by the RR tad-
pole cancellation conditions that will be given later, the four-
dimensional N = 1 supersymmetric D-brane configurations, and
the K-theory anomaly free conditions. For the D-branes with
world-volume magnetic field F i

a = ni
a/(m

i
aχi) where χi is the area

of T2
i in string units, the condition for the four-dimensional N = 1

supersymmetric D-brane configurations is∑
i

(
tan−1(F i

a

)−1 + θ
(
ni

a

)
π

) = 0 mod 2π, (5)

where θ(ni
a) = 1 for ni

a < 0 and θ(ni
a) = 0 for ni

a � 0. The K-theory
anomaly free conditions are [17]
∑
a

Nam1
am2

am3
a =

∑
a

Nam1
an2

an3
a =

∑
a

Nan1
am2

an3
a

=
∑

a

Nan1
an2

am3
a = 0 mod 2. (6)

And the holomorphic gauge kinetic function for a generic stack of
D(2n + 3)-branes is given by [16,18,19]

fa = 1

κa

(
n1

an2
an3

a s − n1
am2

am3
at1

− n2
am1

am3
at2 − n3

am1
am2

at3
)
, (7)

where κa is equal to 1 and 2 for U (n) and U Sp(2n), respectively.
We turn on the NSNS flux h0, RR flux ei , non-geometric fluxes

bii and b̄ii , and the S-dual fluxes f i , gij and gii [15]. To avoid the
subtleties, these fluxes should be even integers due to the Dirac
quantization. For simplicity, we assume

ei = e, bii = β, b̄ii = β̄,

f i = f , gij = −gii = g, (8)

where i �= j. Then the constraint on fluxes from Bianchi identities
is

f β̄ = gβ. (9)

The RR tadpole cancellation conditions are∑
a

Nan1
an2

an3
a = 16,

∑
a

Nani
am j

amk
a = −1

2
eβ̄,

NNS7i = 0, NI7i = 0, (10)

where i �= j �= k �= i, and the NNS7i and NI7i denote the NS7 brane
charge and the other 7-brane charge, respectively [15]. Thus, if
eβ̄ < 0, the RR tadpole cancellation conditions are relaxed ele-
gantly because −eβ̄/2 only needs to be even integer. Moreover, we
have 7 moduli fields in the supergravity theory basis, the dilaton s,
three Kähler moduli ti , and three complex structure moduli ui .
With the above fluxes, we can assume

t ≡ t1 + t2 + t3, u1 = u2 = u3 ≡ u. (11)

Then the superpotential becomes

W = 3ieu + ih0s − t
(
βu − iβ̄u2) − st( f − igu). (12)

The Kähler potential for these moduli is

K = − ln(s + s̄) −
3∑

i=1

ln(ti + t̄i) −
3∑

i=1

ln(ui + ūi). (13)

In addition, the supergravity scalar potential is

V = eK
(
Ki j̄ DiWD j̄W − 3|W|2), (14)

where Ki j̄ is the inverse metric of Ki j̄ ≡ ∂i∂ j̄K, DiW = ∂iW +
(∂iK)W , and ∂i = ∂φi where φi can be s, ti , and ui . Thus, for the
supersymmetric Minkowski vacua, we have

W = ∂sW = ∂tW = ∂uW = 0. (15)

From ∂sW = ∂tW = 0, we obtain

t = ih0

f − igu
, s = −β

f
u, (16)

then the superpotential turns out

W =
(

3e − h0β

f

)
iu. (17)

Therefore, to satisfy W = ∂uW = 0, we obtain

3ef = βh0. (18)
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Because Re s > 0, Re ti > 0 and Re ui > 0, we require

h0

g
< 0,

β

f
< 0. (19)

In general, this kind of D-brane models might have the Freed–
Witten anomalies [10,20]. Interestingly, the Freed–Witten anoma-
lies can be cancelled by introducing additional D-branes [10]. In
particular, the additional D-branes will not affect the main prop-
erties of the D-brane models, for example, the four-dimensional
N = 1 supersymmetry and the chiral spectra, etc. [10]. Therefore,
we can construct this kind of D-brane models by ignoring the sub-
tlety of the Freed–Witten anomalies.

3. Model

Choosing eβ̄ = −12, we present the D-brane configurations
and intersection numbers in Table 2, and the resulting spectrum
in Table 3. The anomalies from three global U (1)s of U (4)C ,
U (2)L and U (2)R are cancelled by the Green–Schwarz mecha-
nism, and the gauge fields of these U (1)s obtain masses via
the linear B ∧ F couplings. So, the effective gauge symmetry is
SU(4)C × SU(2)L × SU(2)R . In order to break the gauge symme-
try, on the first two-torus, we split the a stack of D-branes into
a1 and a2 stacks with 3 and 1 D-branes, respectively, and split
the c stack of D-branes into c1 and c2 stacks with 1 D-brane for
each one. Then, the gauge symmetry is further broken down to
SU(3)C × SU(2)L × U (1)I3R × U (1)B–L . We can break the U (1)I3R ×
U (1)B–L gauge symmetry down to the U (1)Y gauge symmetry by
giving vacuum expectation values (VEVs) to the vector-like par-
ticles with quantum numbers (1,1,1/2,−1) and (1,1,−1/2,1)

under SU(3)C × SU(2)L × U (1)I3R × U (1)B–L from a2c′
1 D-brane in-

tersections. Similar to the discussions in Ref. [9], we can explain
the SM fermion masses and mixings via the Higgs fields Hi

u , H ′
u ,

Hi
d and H ′

d because all the SM fermions and Higgs fields arise from
the intersections on the first torus. To decouple the chiral exotic
particles, we assume that the T i

R and Si
R obtain VEVs at about the

string scale, and their VEVs satisfy the D-flatness U (1)R . The chiral
exotic particles can obtain masses via the following superpotential

W ⊃ 1

MSt
Si

R S j
R T k

R T l
R + T i

R X j Xk, (20)

where MSt is the string scale, and we neglect the O(1) coefficients
in this Letter. In addition, the vector-like particles Si

L and S̄ i
L in

the anti-symmetric representation of SU(2)L can obtain the VEVs
close to the string scale while keeping the D-flatness U (1)L . Thus,
we can decouple all the Higgs bidoublets close to the string scale
except one pair of the linear combinations of the Higgs doublets
for the electroweak symmetry breaking at the low energy by fine-
tuning the following superpotential

W ⊃ Φi
(

S̄ j
LΦ

′ + S j
RΦ̄ ′) + Φ̄i

(
T j

RΦ ′ + S j
LΦ̄

′)
+ 1

MSt

(
S̄ i

L S j
RΦkΦl + Si

L T j
RΦ̄kΦ̄l

+ S̄ i
L T j

RΦ ′Φ ′ + Si
L S j

RΦ̄ ′Φ̄ ′). (21)

In short, below the string scale, we have the supersymmetric SMs
which may have zero, one or a few SM singlets from Si

L , S̄ i
L , and/or

Si
R . And then the low bound on the lightest CP-even Higgs boson

mass in the minimal supersymmetric SM can be relaxed if we have
the SM singlet(s) at low energy [21].

Next, we consider the gauge coupling unification and moduli
stabilization. The real parts of the dilaton and Kähler moduli in
our model are [16]

Re s =
√

6e−φ4

, Re t1 =
√

6e−φ4

,

4π 2π
Table 2
D-brane configurations and intersection numbers

U (4)C × U (2)L × U (2)R × U Sp(10)

N (ni ,mi) nS nA b b′ c c′ O3

a 4 (1,0) × (1,−1/2) × (1,1) 0 0 3 0(3) −3 0(3) 0(1)
b 2 (1,−3) × (1,1/2) × (1,0) 0 0(6) – – 0(6) 0(1) 0(3)
c 2 (1,3) × (1,1/2) × (0,−1) −6 6 – – – – 3
O3 5 (1,0) × (2,0) × (1,0) – – 6χ1 = χ2 = 2χ3 = 2

Table 3
The chiral and vector-like superfields, and their quantum numbers under the gauge
symmetry SU(4)C × SU(2)L × SU(2)R × U Sp(10)

Quantum number Q 4 Q 2L Q 2R Field

ab 3 × (4, 2̄,1,1) 1 −1 0 F L(Q L , LL)

ac 3 × (4̄,1,2,1) −1 0 1 F R (Q R , LR )

cS 6 × (1,1, 3̄,1,1) 0 0 −2 T i
R

c A 6 × (1,1,1,1,1) 0 0 2 Si
R

cO3 3 × (1,1,2,10) 0 0 1 Xi

ac′ 3 × (4,1,2,1) 1 0 1
3 × (4̄,1, 2̄,1) −1 0 −1

bc 6 × (1,2, 2̄,1) 0 1 −1 Φi (Hi
u , Hi

d)
6 × (1, 2̄,2,1) 0 −1 1 Φ̄i

bc′ 1 × (1,2,2,1) 0 1 1 Φ ′(H ′
u , H ′

d)
1 × (1, 2̄, 2̄,1) 0 −1 −1 Φ̄ ′

bb′ 6 × (1,1,1,1) 0 2 0 Si
L

6 × (1, 1̄,1,1) 0 −2 0 S̄ i
L

Re t2 =
√

6e−φ4

12π
, Re t3 =

√
6e−φ4

6π
, (22)

where φ4 is the four-dimensional dilaton. From Eq. (7), we obtain
that the SM gauge couplings are unified at the string scale as fol-
lows

g−2
SU(3)C

= g−2
SU(2)L

= 3

5
g−2

U (1)Y
=

√
6e−φ4

2π
. (23)

Using the unified gauge coupling g2 
 0.513 in supersymmetric
SMs, we get

φ4 
 −1.61. (24)

For moduli stabilization, we first obtain t from Eqs. (16) and
(22)

Re t = 3
√

6e−φ4

4π
, Im t = ±

√
3βh0

f g
− 27e−2φ4

8π2
. (25)

Thus, we have

Im s = −1

3
Im t + β

g
,

Re u = −
√

6 f e−φ4

4πβ
, Im u = f

3β
Im t − f

g
. (26)

Let us present a set of possible solutions to the fluxes

h0 = −18η, e = 6η, β = 2η′,

β̄ = −2η, f = −2η′, g = 2η, (27)

where η = ±1 and η′ = ±1. Choosing φ4 = −1.61, η = η′ = 1, we
obtain the numerical values for the moduli fields

Re s = Re u = 0.975, Re t1 = 1.95,

Re t2 = 0.325, Re t3 = 0.650,

3∑
Im ti = ±4.30, Im s = Im u = ∓1.43 + 1. (28)
i=1
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4. Conclusions

We showed that the RR tadpole cancellation conditions can be
relaxed elegantly in the supersymmetric Minkowski vacua on the
Type IIB toroidal orientifold with general flux compactifications.
And we presented a realistic Pati–Salam like model in details. In
this model, we can break the gauge symmetry down to the SM
gauge symmetry, realize the gauge coupling unification, and decou-
ple all the extra chiral exotic particles around the string scale. We
can also generate the observed SM fermion masses and mixings.
Furthermore, the unified gauge coupling, the dilaton, the complex
structure moduli, the real parts of the Kähler moduli and the sum
of the imaginary parts of the Kähler moduli can be determined as
functions of the four-dimensional dilaton and fluxes, and can also
be estimated.
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