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Dyslipidemia complicates renal function leading to

disturbances of major homeostatic organs in the body. Here

we examined the effect of chronic renal dysfunction induced

by uninephrectomy on fat redistribution and lipid

peroxidation in rats treated with an angiotensin-converting

enzyme (ACE) inhibitor (lisinopril) for up to 10 months.

Uninephrectomized rats developed fat redistribution and

hypercholesterolemia typical of chronic renal failure when

compared with sham-operated rats or lisinopril-treated

uninephrectomized rats. The weight of the peri-renal fat

was significantly less in the untreated compared to the

lisinopril-treated uninephrectomized rats or those rats with

a sham operation. We also found that there was a shift of

heat-protecting unilocular adipocytes to heat-producing

multilocular fat cells in the untreated uninephrectomized

rats. Similarly in these rats we found a shift of subcutaneous

and visceral fat to ectopic fat with excessive lipid

accumulation and lipofuscin pigmentation. Lisinopril

treatment prevented fat redistribution or transformation

and lipid peroxidation. This study shows that ACE inhibition

may prevent the fat anomalies associated with chronic

renal dysfunction.
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The kidney is one of the major organs involved in whole-
body homeostasis with its major functions being excretion of
waste metabolites, regulation of blood pressure and lipid
metabolism, secretion and degradation of hormones, pro-
duction and utilization of systemic glucose.1–3 It is well
understood that chronic renal impairment is further
complicated with high blood pressure,4 deranged carbo-
hydrate metabolism,5 dyslipidemia,6 and altered abdominal
fat distribution,7 but it is unclear whether the kidney is
essential in normal fat function and adipose distribution.

Normally, each whole kidney is surrounded by layers of
peri-renal fat mainly comprising large unilocular adipocytes
(white adipose tissue), whereas the multilocular fat (brown
adipose tissue) occupies the renal sinus.8 The multilocular fat
is specialized in heat production (thermogenesis), whereas
the unilocular fat serves as heat protection and body
cushioning,9–11 Compared with the unilocular fat, the
multilocular adipose tissue normally contains a higher
proportion of fatty acids and phospholipids and a lower
fraction of triglyceride in the form of neural fat.12 Moreover,
the presence of redox systems in microsomes of multilocular
adipose tissue results in high activity of lipid peroxidation,13

and lipid peroxidation of subcellular organelles gives
lipofuscin pigments.14,15 Therefore, lipofuscin pigments are
morphological markers reflecting cellular activity of lipid
peroxidation.

Continuous transformation between the multilocular
adipocyte and the unilocular fat cell occurs throughout
life.11,16 In prolonged malnutrition17 or in the emaciation
associated with chronic illness,11 unilocular adipose tissue
gives up most of its stored lipid and reverts to the highly
thermogenic tissue made up of multilocular cells. In chronic
kidney disease, there is an increased adiponectin production
in association with metabolic abnormalities,18 whereas in
non-diabetic patients with hemodialysis, altered abdominal
fat distribution is associated with altered serum lipid profile.7

In this study, we hypothesize that the kidney is essential in
normal fat function and adipose distribution and that
chronic renal dysfunction, induced by uninephrectomy, leads
to altered adipose distribution and lipid peroxidation in
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association with hypercholesterolemia. Normalization of
renal function by treatment should therefore prevent adipose
dysfunction and ectopic fat accumulation, thus potentially
reduce cardiovascular disease and cerebrovascular disease
risks, which are leading causes of death in patients with renal
disease.

RESULTS
Renal impairment induced by uninephrectomy

First, we assessed the uninephrectomy-induced renal impair-
ment with histological examination at 4, 7, and 10 months post-
operation. Compared with sham rats (Figure 1, dashed line), the
untreated uninephrectomized (UNX) rats (Figure 1, solid line)

had significantly higher serum creatinine (Figure 1a) and urea
(Figure 1b), higher urine total protein/creatinine (Figure 1c),
and lower serum albumin (Figure 1d). The untreated UNX rats
developed uremia at 10 months post-operation (13 months of
age). Treatment with lisinopril prevented the development of
chronic renal failure (Figure 1, light line).

The weight of the remnant kidney (4.5±1.2 g) and the ratio
of the remnant kidney weight to total body weight (0.87±
0.23%) in UNX rats were more than twofold greater of those of
the corresponding right kidney in sham rats (weight 2.1±0.2 g;
ratio 0.35±0.06%; all Po0.001) at 10 months post-operation,
whereas treatment with lisinopril significantly reduced the
remnant kidney hypertrophy (weight 3.64±0.4 g; ratio 0.58±
0.06%; all Po0.001). The increase in weight of the remnant
kidney strongly correlated with increased blood urea (r¼
0.8812, Po0.001) and creatinine (r¼ 0.781, Po0.001). Histo-
pathological examination revealed normal kidney structures in
sham rats (Figure 2a–c) but progressive glomerulosclerosis,
tubular atrophy, arteriolar hyalinosis, fibrosis, and chronic
inflammatory infiltrates in the remnant kidneys (Figure 2d–f).
The untreated UNX rats showed end-stage renal disease at 10
months post-operation, whereas treatment with lisinopril
largely attenuated these renal structural damages (Figure 2g–i).

Hypercholesterolemia associated with chronic renal
dysfunction

We then examined the uninephrectomy-induced hypercholes-
terolemia at 4, 7, and 10 months post-operation and the
association of dyslipidemia with chronic renal dysfunction
(Figure 3). Compared with sham rats, UNX rats had signi-
ficantly higher serum total cholesterol (Figure 3a), triglycerides
(Figure 3b), low-density lipoprotein (LDL) cholesterol
(Figure 3c), and high-density lipoprotein (HDL) cholesterol
(Figure 3d). The untreated UNX rats developed hypercholes-
terolemia at 10 months post-operation (13 months of age),
whereas treatment with lisinopril substantially prevented the
development of persistent hypercholesterolemia (Figure 3).

An analysis using Pearson’s correlation coefficient indi-
cated strong associations between serum creatinine and total
cholesterol (r¼ 0.660, Po0.001), triglyceride (r¼ 0.563,
Po0.001), LDL (r¼ 0.881, Po0.001) and HDL cholesterol
(r¼ 0.638, Po0.001), and between serum urea and total
cholesterol (r¼ 0.724, Po0.001), triglyceride (r¼ 0.640,
Po0.001), LDL (r¼ 0.558, Po0.001) and HDL cholesterol
(r¼ 0.670, Po0.001). These data indicate a close relationship
between renal function and blood lipids.

Body weight and daily food consumption were similar
among the three groups of rats (Figure 4a and b). Daily water
intake (Figure 4c) and urine volume (Figure 4d) at 7 and 10
months after operation were significantly higher in UNX rats
than in sham rats and in UNX rats treated with lisinopril (all
Po0.05).

Adipose distribution and lipofuscin accumulation

We performed histological examination of fat deposits to
investigate the uninephrectomy-induced adipose distribution
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Figure 1 | Chronic renal failure after uninephrectomy. Serum
creatinine (a), urea (b), and albumin (d), and urine total
protein/creatinine (c) were measured in sham rats (square,
dashed), uninephrectomized rats (UNX, circle, dark solid), and
UNX rats treated with the ACEI lisinopril (ACEI, diamond, light
solid) at 4, 7, and 10 months after operation. The untreated
UNX rats developed chronic renal failure, whereas ACEI treatment
prevented the development of chronic renal failure. Data are
mean±s.d., #Po0.05, *Po0.01.
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(Figures 5–7) and lipofuscin accumulation (Figure 8). By 4, 7,
and 10 months post-operation, fat deposits in the peri-renal
capsule, omentum, mesenteries, and abdominal walls were
significantly diminished in the UNX rats than in sham rats,
whereas treatment with lisinopril mainly prevented the
adipose loss in these areas. The weight of the peri-renal fat
was 2.1±1.0 g in the untreated UNX rats, 3.2±0.3 g in the
angiotensin-converting enzyme (ACEI)-treated UNX rats,
and 3.2±0.2 g in sham rats (analysis of variance P¼ 0.028).
Light microscopy demonstrated that the peri-renal adipose
tissues mainly contained large unilocular cells in sham rats
(Figure 5a–c), polygonal multilocular cells in UNX rats
(Figure 5d–f), and mixed unilocular and multilocular cells in
the treated UNX rats (Figure 5g–i). These findings suggest
that the loss of the large unilocular adipocytes and the
transformation of the large unilocular adipocytes into the
multilocular cells may be associated with the diminished
peri-renal adipose mass induced by uninephrectomy.

Increased ectopic fat deposits were found in the remnant
kidneys (Figure 6) and other solid organs (Figure 7), while
in sham rats, fat deposits were confined within the renal
sinus (Figure 6a, inset). Neither the renal cortex nor the
renal medulla in sham kidneys contained adipose tissue

(Figure 6a–c), but in contrast, UNX rats showed fat
infiltration in the inner cortex (Figure 6d–f, insets). The fat
infiltration was also frequently surrounded by patches
of chronic inflammatory infiltrates. By 10 months post-
uninephrectomy, infiltrated adipose tissues comprising
of small adipocytes were found in 3–9 of 20 fields randomly
examined at magnification � 200, but treatment with
lisinopril generally attenuated the fat infiltration in the
remnant kidney (Figure 6g–i). These results provide evi-
dence that renal cortex contains adipose tissue in rats with
uninephrectomy-induced chronic renal insufficiency.

Uninephrectomy-induced ectopic fat deposits were also
often found in other solid organs (Figure 7). In sham rats,
lipid accumulation in hepatocytes (Figure 7a), pancreatic
islets (Figure 7b), and in adrenal glands (Figure 7c) were
rarely identified, but the untreated UNX rats frequently
showed hepatosteatosis (Figure 7d), pancreatic lipomatosis
(Figure 7e), and fatty changes in the zona fasciculate of the
adrenal glands (Figure 7f). However, little ectopic lipid
accumulation was observed in the UNX rats treated with
lisinopril (Figure 7g–i), suggesting an association of ectopic
fat accumulation with chronic renal failure in rats with
uninephrectomy.
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Figure 2 | Renal structural damages after uninephrectomy. Periodic acid Schiff (PAS) stain was performed on kidney tissue sections of
sham rats (a–c), untreated uninephrectomized rats (UNX, d–f), and the ACEI lisinopril-treated UNX rats (ACEI, g–i) at 4 (a, d, g), 7 (b, e, h), and
10 (c, f, i) months after operation. The UNX rats (d–f) demonstrated severe glomerulosclerosis, chronic interstitial inflammatory infiltration,
tubular atrophy, and casts. These renal lesions were largely attenuated with the ACEI treatment (g–i). Original magnification, � 100.
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Lipofuscin, characterized by fine brown pigment granules,
was identified to reflect the peroxidation of unsaturated fatty
acids (Figure 8). In sham rats, cells with lipofuscin were rarely
found, but at 4, 7, and 10 months post-uninephrectomy,
UNX rats showed frequent lipofuscin-laden cells accompa-
nied by chronic inflammation and fibrosis in the kidney
(Figure 8a), liver (Figure 8b), and pancreas (Figure 8c).
Treatment with lisinopril prevented the generalized accumu-
lation of the lipofuscin-containing cells, again providing
morphological evidence for increased lipid peroxidation
associated with uninephrectomy-induced chronic renal
dysfunction.

Elevation of fasting blood glucose and insulin concentrations

Fasting plasma glucose (Figure 9a) and serum insulin
(Figure 9b) were measured, and homeostasis model

assessment-estimated insulin resistance (HOMA-IR) (Figure 9c)
was calculated to assess metabolic risk factors (Figure 9).
Compared with sham- and ACEI-treated UNX rats, un-
treated UNX rats showed elevated fasting plasma glucose
levels at 7 and 10 months after uninephrectomy. At 4 months
post-operation, fasting serum insulin levels in UNX rats
were elevated. Surprisingly, HOMA-IR was not significantly
different among the three groups of animals. The conse-
quence of adipose redistribution and adipocyte transforma-
tion in chronic renal dysfunction warrants future studies.
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Data are mean±s.d., #Po0.05, *Po0.01.
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mean±s.d., #Po0.05, *Po0.01.
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Expression of local HMG-CoA reductase

HMG-CoA reductase (HMGCR) is the rate-controlling
enzyme for cholesterol synthesis. Western blotting of local
HMGCR was thus performed to explore potential links
between the abnormal fat deposition and hyperlipidemia
after uninephrectomy (Figure 10). Interestingly, HMGCR
expression of the liver (Figure 10b) was similar among the
three groups of animals. In contrast, renal HMGCR
expression (Figure 10a) was increased in the untreated
UNX rats but not in sham or ACEI animals. These results
strongly support the notion that the kidney is an essential
organ in maintaining lipid homeostasis, and chronic
renal insufficiency may enhance renal HMGCR expression
associated with hyperlipidemia and fat dysfunction (adiposo-
pathy).

Chronic inflammatory infiltration and fibrosis

Double immunofluorescent microscopy showed inflamma-
tory infiltration and fibrosis in association with uninephrect-
omy-induced abnormal fat deposition (Figure 11). Peri-renal
fat of the untreated UNX rats (Figure 11b) mainly composed
of multilocular cells reactive for the proinflammatory,

profibrotic cytokine transforming growth factor-b (TGF-b),
whereas the unilocular adipocytes of peri-renal fat in sham
rats were negative for TGF-b (Figure 11a). Increased TGF-b
immunoreactivity was also found in the renal adipocytes
(Figure 11c), which were negative for Glut4 glucose
transporters or a macrophage-specific marker CD68 (Figure
11d). CD68-stained macrophages were frequently present at
the peripheral region of renal adipocytes. Renal adipocytes
were usually intermixed with a-smooth muscle actin-labeled
cells (Figure 11c), an activated cell type capable of producing
extracellular matrix. Increased TGF-b expression was also
shown in lipofuscin-laden cells of the liver (Figure 11e).
These results suggest potential associations between ectopic
fat deposition, lipid peroxidation, chronic inflammation and
fibrosis.

DISCUSSION

This study demonstrates the adipose redistribution, adipo-
cyte transformation, and cellular lipid peroxidation in male
adult UNX Sprague–Dawley rats and provides evidence that
treatment with an ACEI, such as lisinopril, can prevent the
development of chronic renal impairments associated with
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Figure 5 | Multilocular adipocytes of the peri-renal adipose tissues after uninephrectomy. Periodic acid Schiff (PAS) stain was
performed on peri-renal adipose tissue sections of sham rats (a–c), untreated uninephrectomized rats (UNX, d–f), and the ACEI
lisinopril-treated UNX rats (ACEI, g–i) at 4 (a, d, g), 7 (b, e, h), and 10 (c, f, i) months after operation. The UNX rats demonstrated
remarkable transformation of the heat-protecting unilocular adipocytes into the heat-generating multilocular cells. The adipose
transformation was largely attenuated with the ACEI treatment (g–i). Original magnification, � 100.
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hypercholesterolemia in the rats with uninephrectomy.
Adipose distribution and adipocyte transformation in UNX
rats might possibly be related to the following molecular,
metabolic, and cellular abnormalities: (1) increased expres-
sion of renal HMGCR, (2) hyperlipidemia characterized by
high total cholesterol, LDL cholesterol, HDL cholesterol, and
triglyceride, (3) elevated fasting blood glucose and insulin,
(4) chronic inflammatory infiltration and fibrosis, and (5)
increased cellular lipid peroxidation.

The initial cause of the adipose distribution and adipocyte
transformation appears to be due to uninephrectomy-
induced chronic renal dysfunction. The nephrectomized rat
model has long been used as an animal model to study
nephropathy. However, most studies involved models set up
by 5/6 or 7/8 nephrectomy,19,20 hence the renal failure was
relatively acute and severe and observation periods were
shorter (o4 months). In our experiments, we selected a
uninephrectomy rat model and went through a 10-month
observation, which reflects a chronic model that is closer to
the real reactions of fat redistribution and lipid dysmetabo-
lism in human kidney donors and subjects with chronic renal
dysfunction. Moreover, nephrectomy is a severe procedure

that produces a myriad of effects on many systems including
the renin–angiotensin–aldosterone systems and the endocrine
organs,21,22 demonstrating that the kidney is one of the most
important homeostasis organs.

Our results demonstrated that compared with sham rats,
the UNX rats had a lower proportion of body fat due to
severe renal insufficiency. Rats with uninephrectomy deve-
loped chronic proteinuria in association with massive
deposits of lipids, which were shown to consist mainly of
free and esterified cholesterol,23 as have prior studies in
subtotally nephrectomized animals demonstrated a signifi-
cant correlation between glomerular filtration rate and body
fat content.24 Consistent with the present study, the renal
impairments and lipid deposition were generally prevented
by ACEI treatments in Nagase analbuminemic rats, after 5/6
nephrectomy, which usually exhibit severe glomerulosclero-
sis, persistent hypercholesterolemia, and massive lipid
deposition.25 Additionally, clinical studies using computed
tomography have previously demonstrated a significant
decrease in body fat area and subcutaneous adipose tissue
in parallel to an increase in visceral fat mass associated with
disturbance of the serum lipid profile in non-diabetic
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Figure 6 | Adipose deposits in the remnant kidney. Hematoxylin-eosin (HE) stain was performed on kidney tissue sections of sham rats
(a–c), uninephrectomized rats (UNX, d–f), and the ACEI lisinopril-treated UNX rats (ACEI, g–i) at 4 (a, d, g), 7 (b, e, h), and 10 (c, f, i) months
after operation. Sham rats (a–c) showed adipose distribution in the renal sinus (a, inset), but not the renal cortex. In contrast, UNX rats
(d–f) demonstrated remarkable fat infiltration (d–f, insets) in renal cortex in association with glomerulosclerosis. The fat infiltration was
largely attenuated with the ACEI treatment (g–i). Original magnification, � 100.
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hemodialysis patients.7 Abnormal fat partition and excessive
ectopic fat deposition are also known to have potentially
pathogenic adverse effects on metabolism, immune, hor-
mone, and circulation responses, which may lead to
disturbance of whole-body homeostasis.

We also reported shifts of the heat-producing multilocular
fat cells from the heat-protecting unilocular adipocytes and
of the ectopic fat from both the subcutaneous and visceral

fats, suggesting a relationship between chronic renal
dysfunction and persistent hypercholesterolemia. Accumula-
tion of triglyceride-rich lipoproteins in renal insufficiency
may be related to an increased expression of lipogenic
enzyme26 and fatty acid synthase,27 a functional impairment
in lipoprotein lipase,28 a decrease in the total concentration
of glucose transporters,29 as well as downregulation of leptin
mRNA,30 lipoprotein lipase,31,32 and very LDL receptor.33 In
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Figure 7 | Ectopic lipid accumulation after uninephrectomy. Periodic acid Schiff (PAS) stain was performed on tissue sections of livers
(a, d, g), pancreata (b, e, h), and adrenal glands (c, f, i) from sham rats (a–c), untreated uninephrectomized rats (UNX, d–f), and the
ACEI lisinopril-treated UNX rats (ACEI, g–i) at 10 months after operation. The UNX rats demonstrated ectopic fat deposits characterized
by hepatic steatosis (d), pancreatic lipomatosis (e), and adrenal fatty change (f). The ectopic lipid accumulation was largely attenuated
with the ACEI treatment (g–i). Original magnification, � 100.

a b c

Kidney Liver Pancreas

Figure 8 | Lipofuscin-laden cells after uninephrectomy. Representative micrographs of uninephrectomized rats 10 months after
operation show abundant lipofuscin-laden cells in the kidney (a), liver (b), and pancreas (c). The lipofuscin pigments were pink
cytoplasmic granules reactive for periodic acid Schiff. Original magnification, � 200.
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uremic animals, adipose tissue triglyceride content but not
the HMGCR activity of liver microsomes was decreased.34 In
this study, HMGCR expression of the liver was consistently
unchanged. Instead, HMGCR expression of the kidney was
increased in the untreated UNX rats, suggesting that renal
HMGCR might contribute to the uninephrectomy-induced
adiposopathy. Adiposopathy is also reflected by increased
secretion of functional adipokines (for example, adiponectin,
leptin) and inflammatory cytokines (for example, tumor
necrosis factor-a, interleukin-6).35,36 Plasma adipokine levels
are related to several metabolic risk factors in patients with
chronic kidney disease36 or end-stage renal disease.37 In the
present study, plasma glucose levels and serum insulin
concentrations but not HOMA-IR was elevated in the
untreated UNX rats. All these data implicate that the kidney
is essential to the whole-body metabolic homeostasis, and
chronic renal insufficiency may cause adiposopathy charac-
terized by hyperlipidemia, adipose redistribution, and
adipocyte transformation.

Our study also showed significant ectopic fat deposition
and lipid peroxidation, with the accumulated fat consisting of
lipid-depleted multilocular cells, which are believed to be
produced after oxidation of fat for heat production
(thermogenesis).38 Interestingly, lipid deposition in the
glomeruli occurred secondary to hyperlipidemia in rats
following subtotal nephrectomy, indicating an association
between hyperlipidemia and ectopic fat accumulation.39,40

Glomerular lipid deposition has been implicated in the
development of glomerulosclerosis in rats after renal
ablation.41 Indeed, experimental glomerulosclerosis is asso-
ciated with hyperlipidemia and the deposition of lipid in
glomeruli, and cholesterol feeding following uninephrectomy
in the rats leads to glomerular hypertrophy.40 In agreement
with our studies, treatments with an ACEI enalapril,25

b-blocking drug carvedilol,20 or dietary vitamin E
(a-tocopherol)42,43 have been shown to prevent renal
impairments and lipid deposition in subtotally nephrecto-
mized rats. Other drugs that could preserve the renal
function in rats with 5/6 nephrectomy include the specific
cholesterol synthesis inhibitor mevinolin44 or the HMGCR
inhibitor lovastatin.45 Taken together, these findings indicate
that the kidney is central to the normal fat function, adipose
distribution, and lipid metabolism.

The high prevalence of chronic renal failure and high
number of living kidney donors, for renal transplantation,
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prompted this study of fat redistribution and lipid metabo-
lism. In all, the findings of this study indicate an important
role of the kidney in maintaining normal fat distribution and
lipid homeostasis independently and through coordination
with other organs, particularly the adrenal gland, the liver,
and the pancreas. Chronic kidney disease is a common public
health problem which affects approximately 12% of adults in
the United States.46 Clinical assessment of long-term risks of
whole-body disturbance in kidney donors and in patients
with chronic renal disease is therefore strongly recommended
so as to reduce cardiovascular risk in these patients.

MATERIALS AND METHODS
Animals
Three-month-old male Sprague–Dawley rats weighing initially
between 300 and 350 g were obtained from the Laboratory Animal
Services Centre at the Chinese University of Hong Kong. The
animals were caged in pairs, housed at 23±11C with a 12-h
dark–light cycle, having free access to water, and fed on a standard
laboratory rat diet (5001 Rodent Diet; LabDiet, St Louis, MO, USA).
The total duration of the studies was 10 months.

Ethical approval for animal studies was according to the Animal
Experimentation Ethics Committee of The Chinese University of
Hong Kong, and in accordance with the Animals (Control of
Experiments) Ordinance of the Department of Health of the Hong
Kong SAR Government.

Unilateral nephrectomy
Rats were anesthetized with a ketamine (75 mg/kg; Alfasan,
Woerden, Holland) and xalyzine (10 mg/kg; Alfasan) and subjected
to a sham operation (n¼ 16), left nephrectomy (UNX, n¼ 16), or
UNX treated with ACEI lisinopril (ACEI, n¼ 16). Lisinopril was
dissolved in sterile distilled water, with once daily dosage of 4 mg per
kg body weight. All the sham and UNX rats were also gavaged with
distilled water (3 ml) as placebo control. The left kidney was exposed
via a flank 1�1.5 cm length incision and was removed, leaving the
adrenal gland intact. Sham-operated rats underwent anesthesia and
ventral laparotomy without removal of the left kidney. At 4, 7, and

10 months post-operation, 3, 5, and 8 rats from each group were
killed for biochemical and histopathological assessments.

Biochemical studies
Body weight and average 24-h intake of water and food were
monitored monthly. At 4, 7, and 10 months post-operation, 24-h
urine samples were collected using metabolic cages (Iluang Qiao Yin
Xing Animal Cage & Equipments Factory, Suzhou, China). Fasting
blood samples were taken for the measurement of glucose, insulin,
total cholesterol, triglyceride, LDL cholesterol, HDL cholesterol,
total protein, albumin, and renal functions. The rat serum
measurements were performed on a UniCel DxC600 System
(Beckman Coulter, Fullerton, CA, USA). Total cholesterol was
measured by an enzymatic method and triglycerides were measured
by an enzymatic method without glycerol blanking. HDL cholesterol
was measured by an indirect method in which phosphotungstic acid
reagent was used to precipitate the LDL and very LDL cholesterol
and the remaining HDL cholesterol was measured by the total
cholesterol method. The HDL-precipitating reagent was purchased
from Thermo Electron (Noble Park, Victoria, Australia). LDL
cholesterol concentration was calculated with the use of Friedewald’s
formula.47 Fasting serum insulin concentrations were measured
using enzyme immunoassay and rat insulin ELISA kit (Mercodia,
Uppsala, Sweden). HOMA-IR was calculated with the formula
HOMA-IR¼ fasting insulin (mU/l)� fasting blood glucose (mmol/l)/
22.5.

Fasting serum urea (enzymatic method) and serum/
urine creatinine (Jaffe kinetic method) were measured using a
Modular Analytics analyzer (Roche Diagnostics GmbH, Mannheim,
Germany), and reagent kits were supplied by the manufacturer.
All reagents were used according to the manufacturer’s instruction
and the analytical performance of these methods was within the
manufacturer’s specifications.

Histopathological examination
Rats were killed at 4, 7, and 10 months post-operation. Gross
examination of subcutaneous adipose tissues in abdominal wall and
of visceral fats in peri-renal capsule, omentum, and mesenteries
were performed to assess fat distribution. Kidneys, peri-renal

Sham peri-renal fat UNX peri-renal fat UNX kidney

UNX kidney UNX liver

TGF-β SMATGF-β SMA

TGF-β SMA

TGF-β SMA

Glut4 CD68

a b

d e

c

Figure 11 | Immunofluorescent microscopy of chronic inflammation and fibrosis. Tissue sections were obtained from the peri-renal
fat (a, b), remnant kidney (c, d) and liver (e) at 10 months after operation and double stained for (a–c, e) transforming growth factor-b
(TGF-b, red) and a-smooth muscle actin (SMA, green) as well as for (d) Glut4 glucose transporters (red) and macrophage-specific
marker CD68 (green). Uninephrectomy led to increased expression of TGF-b in multilocular fat cells (b), renal adipocytes (c), and hepatic
lipofuscin-laden cells that were frequently intermixed with SMA-positive cells. Renal adipocytes were negative for Glut4 or CD68, whereas
CD68-reactive macrophages were usually found at the peripheral region of renal adipose deposition. Original magnification, � 200.
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adipose tissue, adrenal glands, spleens, pancreata, and livers were
removed, weighed, and processed for light microscopy. Specimens,
including peri-renal adipose tissues, were fixed in 10% neutral
formaldehyde and embedded in paraffin. Serial cross sections (4 mm)
were cut perpendicular to the longest axis of the solid organs.
Sections were stained with hematoxylin-eosin and periodic acid
Schiff. Stained slides were examined with a Zeiss Axioplan 2 imaging
microscope (Carl Zeiss, Hamburg, Germany), and slide reviewers
were blinded to treatment group. Representative images were
automatically captured using a digital spot camera.

Western blot
Tissue proteins from kidney and liver were isolated. Briefly, tissue
was homogenized in a buffer containing 50 mmol/l Tris-HCl (pH
7.4), 150 mmol/l NaCl, 1 mmol/l phenylmethylsulfonyl fluoride,
1 mmol/l EDTA, 1% sodium deoxycholate, 1% Triton X-100, 1%
sodium dodecyl sulfate, and 5% protein enzyme inhibitor cocktail
(cat no. P2714; Sigma, St Louis, MO, USA). The homogenate was
centrifuged at 13 000 rpm for 10 min at 41C. The resulting super-
natant was removed, and protein concentrations in the supernatant
were determined by the BCA Protein Assay Kit (cat no. 23225;
ThermoFisher Scientific, Waltham, MA, USA) using bovine serum
albumin as the standard. Tissue lysates (100 mg) and prestained
molecular weight markers (Bio-Rad, Hercules, CA, USA) were
loaded onto SDS-polyacrylamide electrophoresis gels (PAGE) (4%
acrylamide stacking gel and 8% running gel). The resolved proteins
were then transferred onto nitrocellulose membranes. The mem-
branes were blocked for 1 h at room temperature with 5% skimmed
milk, incubated with a rabbit anti-rat polyclonal HMGCR antibody
(cat no. 07-457; Upstate, Temecula, MA, USA) diluted 1:1000 in
Tris-buffered saline containing 0.05% Tween 20 (Tris-buffered
saline-T) with 5% skimmed milk overnight at 41C. After washing
with Tris-buffered saline-T, membranes were incubated with anti-
rabbit secondary antibody conjugated to horseradish peroxidase
(cat no. 12-348; Upstate) with a dilution of 1:2000. Proteins were
detected by enhanced chemiluminescence (Amersham, Piscataway,
NJ) on hyperfilm. A major protein band with approximately 90 kDa
was detected for the HMGCR. To ensure equal loading of proteins,
membranes were incubated and probed with a polyclonal anti-b-
actin antibody (cat no. ab8227; Abcam, Cambridge, MA, USA) with
a dilution of 1:10 000, which recognizes the b-actin protein at
approximately 43 kDa. Signals were quantitated by densitometry
and corrected for the b-actin signal, using the Kodak Digital Image
station 440CF and the ID Image Analysis software program.

Immunofluorescent microscopy
Tissue sections (4mm) from the peri-renal fat, kidney, and liver were
double stained for (1) polyclonal TGF-b (cat no. SC-146, dilution
1:200; Santa Cruz Biotechnology, Santa Cruz, CA, USA) and
monoclonal a-smooth muscle actin (cat no. N1584, dilution 1:10;
Dako, Carpinteria, CA, USA) and (2) polyclonal Glut4 (cat no.
SC-7938, dilution 1:100; Santa Cruz) and monoclonal CD68 (cat no.
M0876, dilution 1:100; Dako). Tissue slides were blocked with 1%
bovine serum albumin for 30 min before the treatment with the
primary antibodies for 1 h at room temperature. Goat, rabbit, and
mouse serum were used as negative controls to replace the primary
antibodies. Immunofluorescence was detected with appropriate
secondary antibodies (dilution 1:200) conjugated with Alexa 488
(green) or Alexa 568 (red), and cell nuclei were counterstained with
DAPI (1:200; Invitrogen Corp., Carlsbad, CA, USA). Slides were
mounted with an anti-fading reagent, ProLong (Molecular Probes,

Eugene, OR, USA), stored in the dark at 41C, and examined within
1�3 days. Stained slides were examined with a Zeiss Axioplan 2
imaging microscope, and representative images were automatically
taken using a digital spot camera. The original magnifications were
� 200.

Statistical analysis
Data are mean±s.d. unless specified. The statistical significance of
differences noted in the biochemical parameters was evaluated using
one-way analysis of variance. Pearson’s correlation coefficient was
used to evaluate the associations between renal function tests and
blood lipid levels. A P-value of less than 0.05 was taken as a criterion
for a statistically significant difference.
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