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SUMMARY

While it is commonly assumed that decisions taken
slowly result in superior outcomes, is it possible
that optimal decisionmaking does not always require
sacrificing speed? For odor categorization deci-
sions, it was previously shown that rats use
<300 ms regardless of difficulty, but these findings
could be interpreted as a tradeoff of accuracy for
speed. Here, by systematically manipulating the
task contingencies, we demonstrate that this is the
maximum time over which sampling time can
improve accuracy. Furthermore, we show that deci-
sion accuracy increases at no temporal cost when
rats can better anticipate either the identity of stimuli
or the required timing of responses. These experi-
ments suggest that uncertainty in odor category
decisions arises from noise sources that fluctuate
slowly from trial-to-trial rather than rapidly within
trials and that category decisions in other species
and modalities might likewise be optimally served
by rapid choices.

INTRODUCTION

Studies of reaction times have helped to constrain theories of

decisionmaking, leading to a prominent class of models in which

performance is limited by a random noise process that is inte-

grated during the presentation of a stimulus to improve the

signal-to-noise ratio (Luce, 1986; Ratcliff and Smith, 2004).

Such integration models can account for several commonly

observed relationships between the time and accuracy of deci-

sions: (1) when problem difficulty is increased, reaction times

increase; (2) when stimulus sampling time is controlled, perfor-

mance increases with increased sampling duration; and (3) for

a given problem subjects can change their ‘‘speed-accuracy

tradeoff’’ (SAT), responding more accurately at a cost of slower

responses or more quickly at a cost of reduced accuracy. Inte-

gration models thus capture and help to explain the intuition
that optimal performance under uncertainty benefits from pro-

longed processing time. In addition to accounting for a range

of human behavioral data, simultaneous recordings of neural

activity in primates have shown neural correlates resembling

the integrator variables posited in the models (Roitman and

Shadlen, 2002; Ratcliff and Smith, 2004).

Studies of odor discrimination in rats have suggested, some-

what counterintuitively, that under some circumstances decision

making shows little benefit from increased sampling beyond

a single sniff (Uchida and Mainen, 2003; Uchida et al., 2006).

These experiments used a two-alternative forced-choice task

in which eight different binary odor mixture stimuli were

randomly interleaved and rewarded according to a categorical

boundary. As mixture ratios approached the category boundary,

choice accuracy dropped to near chance, yet odor sampling

time increased only 30 ms (Uchida and Mainen, 2003).

One possible explanation for the failure of subjects in this

study to slow down their responses in the face of more uncertain

decisions is that they may have always set a relatively low

evidence threshold, leading to consistently rapid responses at

a cost of accuracy (Khan and Sobel, 2004). A key prediction of

this untested ‘‘SAT hypothesis’’ is that, given the right incentives

and training, rats should be able to change their speed-accuracy

tradeoff and respond more slowly and accurately. An alternative

explanation is that the subjects were making optimal decisions

but that integration would not be helpful for improving accuracy

in this task.

Can’t additional information always improve a decision? How

could integration fail to improve accuracy of uncertain deci-

sions? One plausible explanation is that integrator models

assume decision accuracy is limited by stimulus noise that is

temporally white (uncorrelated in time). Temporal correlations

in decision noise can defeat an integrator by limiting the ability

of averaging to improve signal-to-noise ratio, thereby diminish-

ing the benefits of repeated sampling (Uchida et al., 2006). In

the limit, if noise fluctuations are completely correlated within a

trial (i.e., only varying across trials), then the benefits of temporal

integration within a single trial disappear entirely. Thus, if olfac-

tory categorization decisions cannot be improved by extended

sampling time, this result would suggest that there may be an

important source of uncertainty that is missing from standard
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integration-based decision models but may dictate the speed-

accuracy relationships of some classes of decision problems.

Here, we sought to distinguish these two general possibilities

using a series of experiments on the odor categorization task

in which we systematically tested the impact of manipulations

of training and task structure on decision speed and accuracy.

Through manipulations of reward contingencies, we were

able to slow down the subjects’ odor sampling times, but this

failed to increase performance. Conversely, by increasing

the predictability of stimuli and the timing of a response

deadline, we were also able to increase accuracy, but this

increase did not come at a cost of speed. Thus, the results

support the idea that the limiting uncertainty in this class of

decisions is different than the uncorrelated stimulus noise

assumed in standard decision models. These results can also

help to reconcile apparently disparate findings from previous

studies of olfactory decision making (Abraham et al., 2004;

Rinberg et al., 2006).

RESULTS

The Odor Mixture Category Decision Task
We trained and tested male Long-Evans rats on the same two-

alternative choice olfactory categorization task employed previ-

ously (Uchida and Mainen, 2003). Each odor stimulus was

a binary mixture of two odorants and choices were rewarded ac-

cording to the dominant component (Figure 1A). The difficulty of

the problemwas controlled by the difference of the stimulus from

the boundary (50/50), denoted the ‘‘mixture contrast,’’ which

was randomly varied from trial-to-trial. A subject initiated a trial

by a nose poke into the center port where an odor was delivered

(Figure 1B). It then responded by moving to either the left or right

choice port where it received water reward for correct responses

and no reward for incorrect responses. In this task the reaction

time (RT) consists of two components, the odor sampling

duration (OSD) and the movement time (MT) (Figure 1C and

see Figure S1 available online). As reported previously (Uchida

and Mainen, 2003), we observed a strong dependence of

performance accuracy on mixture contrast (Figure 1D; p <

0.005, ANOVA post hoc multiple comparison test at p < 0.01).

In contrast, there was no significant dependence of OSD (Fig-

ure 1E; p = 0.88, ANOVA) or MT on mixture contrast (Figure 1F;

p = 0.9, ANOVA).

To remove any incentives for rapid responding, we trained

a different set of naive rats under ‘‘low urgency’’ conditions

with a fixed minimum interval between the beginning of odor

sampling and the delivery of reward between the start of consec-

utive trials (Figure 1C). These rats indeed showed significantly

longer OSD and MT (Table 1; Figures 1E, 1F, S1B, and S1C)

but, interestingly, showed neither an improvement in accuracy

(Figure 1D; Table 1) nor any dependence of OSD or MT on task

difficulty (Figures 1E and 1F; Table 1).

Manipulations of Motivation
Since removing incentives for rapid responding was effective in

slowing rats but did not yield an increase in accuracy, we next

tried increasing the cost of errors by introducing a punishment

for incorrect trials in the form of an air puff delivered to the snout
340 Neuron 78, 339–351, April 24, 2013 ª2013 Elsevier Inc.
(Paton et al., 2006). Thismanipulation increased theOSD andMT

(Figure 2Aiii; Table 1) but again failed to induce an increase in

accuracy (Figure 2Aii; Table 1). Therefore, we next tested the

effects of increasing the incentive to obtain correct responses

by eliminating water outside the task, increasing task difficulty

and decreasing the number of available trials (see Experimental

Procedures for details). Although this manipulation produced

a drop in body weight of test subjects compared to controls (Fig-

ure 2Bi) demonstrating its effectiveness, there was no difference

in accuracy, OSD or MT between test and control groups

(Figures 2Bii and 2Biii; Table 1).

To directly assess the impact of differential reward expecta-

tion on measures of response time, we trained another set of

rats on a one-direction-rewarded (1DR) version of the two-alter-

native choice task. In this task version, only responses to one

choice direction were rewarded (when correct) and this re-

warded direction changed across blocks within a session. As

expected, animals were biased to choose the rewarded side

(Figure 2Ci) and performance increased for the rewarded side

for the difficult odor mixtures (Figure 2Cii). We found that OSD

for nonrewarded choices was slower than for the rewarded

ones (Figure 2Ciii). Moreover the effect of stimulus difficulty on

OSD was diminished for the nonrewarded choices (Figure 2Ciii),

those choices whose difficulty no longer predicted the likelihood

of reward availability. These results suggest that the effect of

difficulty on OSD arises not only from varying perceptual uncer-

tainty but also reflects the effect of difficulty on reward expecta-

tion and hence response speed.

Manipulation of Sampling Time using a Response
Deadline (Go Signal)
Having seen that response times are sensitive to reward and

punishment but that changes in OSD did not produce significant

changes in accuracy, we next sought to test the possible effect

of larger changes in stimulus sampling time by manipulating the

OSDmore directly. To do so, following a previous study (Rinberg

et al., 2006), we introduced an auditory go signal to cue the

timing of the response while the odor stimulus continued to

cue the correct choice direction (Figure 3A). Responses initiated

prior to the go signal were not rewarded regardless of choice.

We first trained subjects to wait for the go signal (see Experi-

mental Procedures). After training, we used fixed go-signal

delays of 0, 0.2, 0.4, and 0.8 s, each repeated for 3–6 sessions

before switching (Figure 3B). Within each session odor mixtures

of the same difficulties as the RT task were randomly interleaved

from trial-to-trial. Subjects obeyed the go signal, resulting in

much longer OSDs than those seen in the original RT task (Fig-

ure 3C; Table 1). However, despite the substantial increase in

odor sampling durations, we observed no change in accuracy

(Figure 3D; Table 1; Figure S3). Indeed, accuracy of the rats

trained in the original RT task (Figure 1) was nearly identical to

the performance of the rats in the go-signal task. (Figure 3D,

open circles versus filled circles, and Figure S4).

The failure to observe an increase in performance accuracy

with longer go signals was surprising, given that Rinberg et al.

(2006) did find such an increase using apparently similar condi-

tions. Therefore, we next turned to examine whether overlooked

differences in task structure might account for this discrepancy.



Figure 1. Two Alternative Odor Mixture Categorization Task

(A) Stimulus design. Two odorants (the stereoisomers S-(+)-2-octanol and R-(�)-2-octanol) were mixed in different ratios and rewarded according to the majority

component. Odor mixture contrasts determine the difficulty of the stimulus, with lower contrasts being harder.

(B) Sequence of events in a behavioral trial, illustrated using a schematic of the ports and the position of the snout of the rat.

(C) Illustration of the timing of events in a typical trial in both the original task and low urgency conditions task. Nose port photodiode and valve command signals

are shown (thick lines). Measurements of odor sampling duration (OSD) and movement time (MT), as well as imposed delays (dodor, dwater, and dintertrial) are

indicated by arrows for two conditions. In the original conditions, dodor and dwater were drawn from uniform distributions with ranges of [0.3, 0.6] and [0.1, 0.3],

respectively, and dintertrial had a minimum of 4 s. In the low urgency conditions, dodor was drawn from an exponential distribution with mean of 0.5 s clipped

between 0.1 and 2.0 s, dwater had a minimum of 2 s, and dintertrial had a minimum of 10 s. See Experimental Procedures for details. Note that the intervals between

events varied from trial to trial because of the variability in the timing of port entries and exits, and the random delays between port entries and odor or water valve

openings. Dashed lines indicated omitted time.

(D–F) Comparison of performance in low urgency conditions designed to minimize incentives for rapid responding compared to the ‘‘original’’ task conditions of

Uchida and Mainen (2003). Population data for the comparison of task performance under low-urgency conditions (filled symbols) and original task (open

symbols). Mean accuracy (D), mean of the median OSD (E), and mean of the median MT (F) are plotted as a function of stimulus difficulty (mixture contrast). Error

bars are mean ± SEM (n = 4 rats). Accuracy data was fitted to a Weibull function.

See also Figure S1.
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We first noted that while we had tested subjects on a given

go-signal delay for hundreds of trials in a row, Rinberg et al.

randomly interleaved go signals of different delays in a single

session. Previous studies have shown that the ability to antici-

pate the time at which a brief stimulus will be presented can

affect reaction time and accuracy of performance (Griffin et al.,

2001; Nobre, 2001; Correa et al., 2006; Katzner et al., 2012).

We therefore hypothesized that expectation of (or readiness to

respond to) the timing of the go signal would also affect perfor-

mance in this task. Specifically, we reasoned that when go-

signal delays vary randomly from trial-to-trial, the subject may
not respond as accurately as when responses are self-paced

or instructed by a go signal delivered at a constant delay.

Manipulation of the Predictability of the Response
Deadline (Go Signal)
The predictability of randomgo-signal times has been formalized

by the notion of ‘‘hazard rate,’’ defined as the probability that

a signal will occur given that it has not already occurred (Luce,

1986). The ‘‘subjective hazard rate’’ (Janssen and Shadlen,

2005) is an extension of this concept that takes into account

the finding that the variance of subjective time estimation
Neuron 78, 339–351, April 24, 2013 ª2013 Elsevier Inc. 341



Table 1. Summary of Statistical Tests

A Contrast

Original Task Low Urgency

Mean ± SEM Mean ± SEM

Accuracy (%) 90 95 ± 0.8 93 ± 0.8

60 91 ± 0.8 87 ± 0.8

36 82 ± 2.3 79 ± 2.3

12 58 ± 1.9 59 ± 1.9

OSD (ms) 90 240 ± 22 279 ± 22

60 238 ± 24 286 ± 24

36 244 ± 23 296 ± 23

12 246 ± 23 305 ± 23

Avg 242 ± 23 291 ± 23

MT (ms) 90 287 ± 10 565 ± 10

60 280 ± 10 556 ± 10

36 279 ± 10 558 ± 10

12 290 ± 13 551 ± 13

Avg 284 ± 3 557 ± 3

B Test Task

Original Task Low Urgency

Low Urgency Punished Errors Task Water Only Task Water Plus Fixed Go Signal Blocked Stimuli

Baseline task Original task Original task Control group Control group Original task Interleaved stimuli

Figure 1D and 1E 2Aii and 2Aiii 2B 2B 3C and 3D 5A–5C

Accuracy Difficulty +++ +++ +++ +++ +++ +++

Task 0.4 0.0153 0.16 0.017 0.0688 +++**

Both 0.8 0.28 0.81 0.98 0.0095 00115

OSD Difficulty 0.83/+++* 1 0.71 0.53 0.0145 0.57

Task +++ +++ 0.35 0.27 +++ 0.58

Both 0.98 0.95 1 0.99 0.9 0.51

MT Difficulty 0.9998 0.93 0.9 0.87 0.99 0.42

Task +++ +++ 0.2276 0.0584 0.79 0.65

Both 0.9996 0.96 0.9962 0.98 1 0.6

(A) Mean accuracy, mean of median OSD andMT values of individual rats (±SEM) across sessions in original and low-urgency tasks. Averages across

rats shown here are plotted in Figure 1.

(B) For six different task manipulations (rows), we analyzed three dependent variables—(1) performance accuracy (Accuracy), (2) median odor

sampling duration (OSD), and (3) median movement time (MT)—in two different conditions (Test Task and Baseline Task). The figure associated

with each comparison is indicated (row ‘‘Figure’’). For each case, we performed a two-way ANOVA with mixture contrast (Difficulty) as one inde-

pendent variable and the task condition (Task) as the other. Significance values are reported for the dependence of each dependent variable on

each independent variable with values of p < 0.001 indicated as ‘‘+++.’’ For each comparison a different set of rats (n = 4) was tested in each the

two conditions, except for the Blocked Stimuli comparison, in which the same rats (n = 6 rats) were tested with blocked and interleaved stimuli.

Significant difference is indicated by (*) for p < 0.001 Friedman test for paired samples and (**) for p = 0.0086 Wilcoxon rank test (12% and

36% mixture contrast).
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increases proportionally to the interval duration (Gibbon, 1977;

Gallistel and Gibbon, 2000). By calculating the subjective hazard

rate for the experimental distribution of go-signal times, a quan-

titative prediction of performance as a function of go-signal delay

can be obtained. To test the idea that hazard rate impacts go

signal performance, we compared performance of subjects on

two different distributions of go signals, formed using uniform

and exponential probability densities, which have very different

hazard rates. These distributions, their hazard rates and sub-

jective hazard rates are depicted in Figure S4. The subjective

hazard rate for go signals in the uniform condition rises with

time toward the end of the distribution interval; therefore perfor-
342 Neuron 78, 339–351, April 24, 2013 ª2013 Elsevier Inc.
mance in this condition is expected to increase relatively slowly

over the distribution interval. In contrast, the exponential distri-

bution has a much flatter subjective hazard rate; therefore,

performance in this condition is expected to rise relatively

more quickly resulting in relatively better performance at short

delays.

Rats were tested first on the uniform distribution for several

consecutive sessions (phase I), then on the exponential distri-

bution (phase II) and then again on the uniform distribution

(phase III) (Figure 4A). A single difficult odor mixture pair

(12% mixture contrast) was used throughout. As predicted,

the performance advantage for long go-signal delays was



Figure 2. Impact of Manipulations of Motivation (Reward, Punishment) on Speed and Accuracy of Discrimination

(A) Effect of air puff punishment. Comparison of the original task conditions (filled circles) to the low-urgency task with air puff punishment for error choices (open

circles). (Ai) Schematic showing delivery of air puff to the snout of an animal from the water delivery port. (Aii) Accuracy as a function of stimulus difficulty (mixture

contrast). (Aiii) Median OSD as a function of stimulus difficulty (mixture contrast). Error bars are mean ± SEM (n = 4 rats).

(B) Water restriction experiments. Control group (open symbols): 50 min session duration, no time out for errors, and a fixed amount of water (Wfree) was given

outside the task (see Experimental Procedures). Test group (open symbols): 30 min session duration, 10 s time out for errors, and no water given outside task. (Bi)

Mean body weight as fraction of ad libitum weight. See also Figure S2. (Bii) and (Biii) are as for (Aii) and (Aiii).

(C) One-direction reward (1DR) experiment. (Ci) Choice performance was biased in blocks where correct choices were rewarded only on one side (open triangles

and solid lines) compared to when correct choices were rewarded on both side (filled square dashed line). The direction of bias was always toward the rewarded

port. Error bars are mean ± SEM (n = 3 rats). (Cii) and (Ciii) are as for (Aii) and (Aiii).
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smaller when the exponential distribution was used (phase II;

Figure 4A). Plotting performance as a function of odor sampling

duration also revealed, as predicted, a longer rise time in the

uniform distribution (rising-hazard rate) condition compared to

the exponential distribution (flat-hazard rate) (Figures 4B and

4C). Fitting the theoretical subjective anticipation functions to

the observed performance accuracy functions (Janssen and

Shadlen, 2005) showed the predicted dependence on the

experimental hazard rate (Figures 4D and 4E). Finally, we also

observed corresponding changes in latency to respond to the
go signal (Figure 4F); again as predicted by the hypothesis

that temporal anticipation affects the readiness to respond to

the go signal. Latency differences were particularly apparent

when comparing the response time to early go signals under

the two distributions. Changes in performance induced by

switching go-signal distributions were reversible but took 1-2

sessions (>500 trials) to develop (Figure 4A; note first session

after switch from phase I to phase II).

Could temporal anticipation and integration coexist in this

task? Rinberg et al. (2006) observed that the time to reach
Neuron 78, 339–351, April 24, 2013 ª2013 Elsevier Inc. 343



Figure 3. Prolonged OSDs Instructed using

a Go Signal Fail to Improve Performance

Accuracy

(A) Schematic of the go-signal task. An auditory

go signal was played after a delay dgo from odor

onset and subjects were required to remain in

the odor port until after dgo (see Experimental

Procedures).

(B) Time line of go-signal delays across sessions.

(C) Mean of the median OSD as a function of

mixture contrast and the length of go-signal delay

(n = 4 rats). Shades of gray represent different

go-signal delays. Open circles and dashed line

indicate the results from a different set of subjects

in the original RT task (Figure 2).

(D) Mean performance accuracy with different

go-signal delays.

See also Figure S3.
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maximal accuracy increased with difficulty using uniform distri-

bution of go signals. We analyzed accuracy conditional on

odor sampling duration for the uniform go-signal distribution as

well as for the exponential distribution and the reaction time

task. In each case, we observed no relationship between time

to peak (‘‘T95’’) and difficulty (Figure S5).

Manipulation of Stimulus Predictability: Blocked versus
Interleaved Context
Interestingly, we noted that performance accuracy in this

task version was not only better than the RT performance but

also substantially better than in the preceding go-signal task

(compare Figure 4B and Figure 3D). The major factor that might

account for this difference was that in the first go-signal task (as

well as the RT tasks), odor stimuli of various difficulties were

pseudo-randomly interleaved within a session (‘‘interleaved’’),

whereas in the latter task, a single difficult pair of stimuli (12%

mixture contrast) was presented in a block during an entire

session (‘‘noninterleaved’’ or ‘‘blocked’’). We therefore inquired

whether blocking stimuli increased discrimination accuracy,

perhaps by increasing stimulus predictability.

To test this idea, we made a direct comparison of accuracy on

interleaved versus blocked stimuli in the RT paradigm. First,

a new set of rats was trained to asymptotic performance on

interleaved stimuli in low-urgency conditions. Subsequently,

they were then tested sequentially on blocks of the three most

difficult odor mixture pairs (Figure 5A). Switching to the blocked,

noninterleaved condition produced a significant increase in

accuracy for a given stimulus pair, especially for the two most

difficult stimulus conditions (Figure 5B; Table 1). Performance

levels on the 12% mixture contrast pair was similar to that

observed in the blocked stimulus version of the go-signal task.

However, despite the increase in accuracy compared to the

interleaved condition, odor sampling durations remained iden-

tical between the two conditions (Figure 5C; Table 1). The

improvement in accuracy on blocked stimuli developed rapidly
344 Neuron 78, 339–351, April 24, 2013 ª2013 Elsevier Inc.
(within 20 trials; data not shown) and

consisted of both a transient component

that disappeared when returning to inter-
leaved conditions (about 2/3 of the total) and a long-lasting

component that persisted (about 1/3) (Figure 5A; compare first

and last sets of interleaved sessions).

Asymptotic Performance inOdorMixtureDiscrimination
within 300 ms
This experiment implies that the performance accuracy benefits

observed in previous go-signal tasks compared to RT tasks are

simply due to testing with blocked stimuli. To test this directly,

the same four subjects that were tested on the go-signal task

with blocked odor pairs (Figure 4) were subsequently trained to

asymptotic performance in the RT paradigm also using blocked

odor pairs (Figures 6A and 6B, phase IV). The stimulus difficulty

was increased over consecutive days. Accuracy on the most

difficult stimulus pair (12% mixture contrast) improved remark-

ably, from <70% on the interleaved condition to 91% ± 1% in

the blocked condition (Figures 6A and 6C). We therefore intro-

duced two successively more difficult problems: 4% and 2%

mixture contrast, both obtained by using liquid dilutions of the

12% mixture stimuli (see Experimental Procedures for details).

Accuracy on these stimuli, more difficult than any used previ-

ously by our group or others, was significantly above chance

(Figures 6A and 6C) but was not associated with an increase in

OSD (Figures 6B and 6D). Finally, we reintroduced a go signal

at a fixed delay of 1 s (Figures 6A and 6B, phase V). The duration

was fixed in order to allow optimal anticipation and subjects

were trained for 5–6 sessions. Despite much longer OSD com-

pared to the RT condition (Figures 6B and 6D) there was no

significant difference in accuracy (p = 0.91, two-way ANOVA

for difficulty and OSD instruction) (Figure 6E). Thus, maximal

odor categorization accuracy was achieved by rats in self-paced

conditions with <300 ms odor sampling time and could not be

further improved by providing additional time for stimulus inte-

gration. The only impact of the go signal was to decrease perfor-

mance when it was not fully anticipated, as can be seen by

comparing accuracy in Figure 4B and Figure 6C (12% contrast).



Figure 4. Performance Accuracy Depends

on the Distribution of Go-Signal Delays

Go-signal delays are chosen from a uniform

distribution (filled symbols) or exponential distri-

bution (open symbols). Note that an exponential

distribution results in a flat hazard rate function

while a uniform distribution result in a rising hazard

rate function. A difficult single mixture pair (12%

mixture contrast) was used throughout.

(A) Mean difference in performance accuracy

between trials with late (0.7–1.0 s) and early (0.1–

0.3 s) go-signal delays (n = 4 rats). Time 0 denotes

the last point before changing from uniform

distribution (rising hazard rate) to exponential

distribution (flat hazard rate). Filled symbols:

uniform distribution (phases I and III); open

symbols: exponential distribution (phase II). Note

that the switch in performance accuracy from

exponential to uniform distribution is expressed

only on the second day after the switch (arrow) but

that there is no such delay switching back to the

uniform distribution.

(B) Mean performance accuracy as a function of

OSD for two different go-signal distributions

pooled across all rats (n = 4 rats). Filled circles:

uniform distribution (phase III); open circles:

exponential distribution (phase II). Star: accuracy

significantly different (for the largest OSD)

between the two conditions (p < 0.01; one tailed z

test for proportion).

(C) Mean T95 (shortest OSD that gave 95% of

maximum accuracy) for two different go-signal

distributions (n = 4 rats; p < 0.05, Friedman paired

test). Individual rats are shown with different

symbols. Filled symbols: uniform distribution

(phase III); open symbols: exponential distribution

(phase II).

(D) Mean performance accuracy as a function of

go-signal delays for the population data. The solid

line is the fitted subjective anticipation function in

the two conditions (black solid line: go signal with a uniform distribution, phase III; dashed line: go signal with an exponential distribution; phase II).

(E) Weights associated with rising and flat theoretical subjective anticipation functions after fitting to the discrimination performance curve of individual rats

(different symbol shapes) in two different conditions (open symbols: go signals with a uniform distribution; closed symbols: go signals with an exponential

distribution). Note that in the uniform condition weights are higher for the rising anticipation and in the exponential condition weights are higher for the flat

anticipation. See also Figure S4.

(F) Comparison of reaction times to short (0.1–0.3 s) go signals in the two conditions. Individual rats shown in different symbols as shown in (C) (n = 5 sessions).
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DISCUSSION

Studying rats performing an odor categorization task, we found

that accuracy improves with stimulus sampling time only up to

about 300 ms, consistent with previous studies showing rapid

olfactory decisions (Karpov, 1980; Laing, 1985, 1986; Uchida

and Mainen, 2003; Wesson et al., 2008). Using reward (and

punishment) manipulations (Figures 1 and 2) and a response

go signal (Figure 3), we were able to increase rats’ sampling

time, but this failed to improve accuracy. We also documented

that reducing the stimulus set size (Figure 4) or the expectancy

of the go signal (Figure 5) increased rats’ accuracy, but with no

temporal cost. Thus we found that speed and accuracy varied

independently in this task (summarized in Figure 7). Taken

together, as we will discuss below, we favor the interpretation

that rapid performance on odor categorization is an adaptive

decision strategy in the face of uncertainty that is not reduced
by prolonged within-trial stimulus sampling and not simply

a tradeoff of accuracy for speed.

Our data also suggest an explanation of the apparent discrep-

ancies between the studies of Uchida and Mainen (2003) and

Abraham et al. (2004) and Rinberg et al. (2006) that is not based

on differences in SAT. The higher accuracy reported in Abraham

et al. (2004) and Rinberg et al. (2006) could be attributed to the

use of blocked rather than interleaved stimulus difficulties (Fig-

ure 5). The greater change in response times with difficulty (addi-

tional 40 ms) reported by Abraham et al. (2004) could be ex-

plained by effects of reward expectation on response speed

(Figure 2C). Finally, the increase in performance with go-signal

delay over 500 ms reported in Rinberg et al. (2006) could be ex-

plained by increasing go-signal anticipation over time (i.e.,

increasing hazard rate) (Figures 3 and 4). Comparing across

studies and across conditions, the best performance overall

was achieved within <300 ms odor sampling, by well-trained
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Figure 5. Reducing the Range of Mixture

Contrasts Results in Increase in Perfor-

mance Accuracy at No Cost of Speed

(A) Mean performance accuracy of 6 rats over the

course of 30 days of training. Filled circles:

sessions with interleaved mixture contrasts; open

circles: sessions with the blocked (noninterleaved)

condition. Color indicates mixture contrast. The

mean accuracy during the last 100 trials in a

session is shown.

(B) Mean performance accuracy (n = 6 rats).

Psychometric curve was fit using a Weibull func-

tion. Filled and open symbols represent inter-

leaved and blocked conditions.

(C) Mean of the median OSD (n = 6 rats).
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rats performing the reaction time task in the present study (Fig-

ure 6). Thus, differences in results across these studies appear

to reflect performance effects arising from differences in predict-

ability of stimuli and responses, together with difference in

reward structure across tasks, rather than differences in SAT.

The Role of Reward and Motivation in Decision Tasks
The reinforcement structure of a task based on conditioned

responses is likely to affect the strategy of the animal with

respect to speed and accuracy tradeoffs in perceptual deci-

sions. Indeed, the dependence of RT on reward value in a deci-

sion task has been used previously as an index of motivation

(Lauwereyns et al., 2002; Roesch and Olson, 2004). When

mistakes are more costly in lost opportunity, in time or in effort,

then SAT should be biased toward slower and more accurate

responses. To induce such a change, we set the timing of

task events (stimulus onset, minimum reward delay, intertrial

interval) using minimal intervals so that increases in odor

sampling period would not produce reward delays or drops

in average reward rates. We applied these ‘‘low-urgency’’

conditions from the beginning of training to avoid initial learning

of rapid responses. We also performed experiments in which

we increased the cost of mistakes using aversive reinforce-

ment and in which we increased the value of water reward

by requiring animals to perform more trials to obtain the

same amount of water. The low urgency and aversive rein-

forcement experiments had demonstrable effects on behavior,

together slowing odor sampling time by around 100 ms.

However, they did not result in increases in choice accuracy

compared to the baseline condition, failing to support the

SAT hypothesis.

It is worth noting that in a perceptual decision task the ex-

pected reward probability covaries with difficulty, which in turn

might produce co-variations in RT that could be confounded
346 Neuron 78, 339–351, April 24, 2013 ª2013 Elsevier Inc.
with stimulus integration. Based on our

observations, we infer that a substantial

portion of the 30 ms difficulty depen-

dence we observedmight be due tomoti-

vational effects on RT, with more uncer-

tain stimuli prompting slower responses

because of lower predicted reward value

(Figure 2C). One can also infer that the
leaving times for correct ‘‘no-stay’’ responses to unrewarded

odors previously used to index RT (Abraham et al., 2004) may

reflect such motivational effects.

Stimulus Context: Interleaving versus Blocking Stimuli
We observed a strong effect of the number of interleaved stimuli

on odor categorization accuracy. Reducing the stimulus set from

8 to 2 odors produced a substantial increase in accuracy (from

around 60% to 80% correct on the hardest pair). This increase

developed rapidly (over tens of trials) and was largely, but not

entirely, reversed upon return to the blocked condition. Similar

‘‘stimulus context’’ effects have been described previously

(Green, 1961). We can consider several possible interpretations

of this effect. First, the presence of easier trials in the interleaved

condition might decrease the incentive to try for difficult ones.

However, manipulation of motivational conditions failed to boost

performance (Figures 2A and 2B) making this interpretation

unlikely. Second, the increase in performance in the noninter-

leaved condition might reflect the ability to better predict the

stimulus when the size of the stimulus ensemble is limited. Third,

the changes across conditions might reflect a form of adaptation

to the change in the range of mixture contrast, similar to the

phenomenon of contrast adaptation in the visual system (Oh-

zawa et al., 1982). Forth, decreasing the range of stimuli may

decrease the ambiguity of the category boundary (Kepecs

et al., 2008) and hence improve performance (Grinband et al.,

2006). Further work will be needed to distinguish these or other

possibilities.

Temporal Anticipation of a Response Deadline
Modulates Accuracy
In order to control stimulus duration, we manipulated odor

sampling time by requiring the animal to withhold responding

until the occurrence of an auditory go signal that varied



Figure 6. Accuracy in RT Paradigm Is as

High as that Obtained with Prolonged Odor

Sampling

(A) Accuracy of rats in a RT paradigm and in fixed

1.0 s go-signal paradigm (n = 4 rats).

(B) Mean median OSD. Day 9 and 39 are control

sessions using the same odor in all odor channels

keeping all other task and reward parameters

constant. Day 19 is a control session with a 50/50

air mixing of two odorized air streams each of a

55/45 and a 45/55 premixed odors.

(C) Comparison of performance accuracy for rats

trained on 1.0 s go signal (closed circles) and on

RT paradigm (open circles) (n = 4 rats).

(D)Meanmedian OSDs in the two paradigms (n = 4

rats). Note that error bars are smaller than the

symbols.

(E) Comparison of the mean accuracies between

the go-signal and RT paradigms for two mixture

contrasts (2% and 4%) for four individual rats

(different symbols) (n = 5 sessions).

See Figure S5.
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randomly in time. When the probability density function of the

go signal in this paradigm was uniform, accuracy increased

over 500 ms. One possible explanation offered for such an

effect is the accumulation of sensory evidence with time (Rin-

berg et al., 2006). However, we also observed that changing

the probability density function to an exponential distribution

reduced the interval over which performance increased to

around 300 ms. This change clearly cannot be explained by

temporal integration of evidence, but indicates that temporal

anticipation of the occurrence of the go signal modulates deci-

sion accuracy (Hanks et al., 2011). Consistent with this interpre-

tation, increasing accuracy was accompanied by decreasing

response time to the go signal. In addition, it is critical to note

that maximal performance in go-signal tasks never exceeded

performance in the equivalent RT paradigm. Thus, go signals

can reduce accuracy when it is not fully anticipated, but cannot

increase accuracy. Finally, when plotting accuracy conditioned

on odor sampling duration, we observed no relationship

between time to peak and difficulty for individual animals (Fig-

ure S5), as might be expected from integration. In sum, the

effects of go-signal delay on performance accuracy and RT

are parsimoniously explained as effects of go-signal anticipa-

tion but are not easily explained as effects of integration time.

Temporal expectation can be considered an orientation or

allocation of ‘‘attention in time’’ (Griffin et al., 2001; Nobre,

2001; Correa et al., 2006). Most studies of attention in time

involve anticipation of a brief stimulus cue at a random time
Neuron 78, 339–3
interval. Such temporal attention has

been shown to modulate activity in

neocortical neurons (Ghose and Maun-

sell, 2002; Janssen and Shadlen, 2005;

Jaramillo and Zador, 2011). Our protocol

differed from such studies in using a

constant stimulus presentation in con-

junction with a temporally randomized

response signal. Therefore go-signal
anticipation effects might act at the stage of motor preparation

and execution as opposed to sensory processing (McDonald

et al., 2000; Correa et al., 2006).

Speed-Accuracy Tradeoff and the Origin of Decision
Noise
These data have some potential implications with respect to

possible sensory integration processes operating during olfac-

tory categorization decisions. First, it is important to note that

an odor sampling duration of 300 ms does not imply 300 ms of

integration. RTs also include ‘‘nondecision time’’ representing

delays from sensory and motor processes that do not contribute

to integration. It is typical in RT models to include delays of

200–300ms ormore (Luce, 1986;Mazurek et al., 2003). Although

the length of nondecision times are not easy to estimate inde-

pendently, molecular manipulations of olfactory bulb circuitry

can lead to increases or decreases in sensory neural responses

on the order of 100 ms (Abraham et al., 2010). Assuming 100–

150 ms motor delays, only 50–100 ms would remain for integra-

tion processes within the 300 ms OSD.

A measurement more directly related to integration time is the

change in RT from the easiest to most difficult stimulus. The

small difference we observed, 30 ms, is consistent with

the conclusion that nondecision delays make up the bulk of

a 300ms RT and that the incoming signal strength is high relative

to the ‘‘bound’’ or threshold of evidence so that a decision is

reached relatively quickly. As discussed above, part of this
51, April 24, 2013 ª2013 Elsevier Inc. 347



Figure 7. Dissociation of Accuracy and Speed

(A) Summary of experiments in which OSD was affected.

(B) Summary of experiments in which accuracy was affected. Each pair of

connected dots compares population performance accuracy and OSD for the

difficult mixture contrast (12%) for a given manipulation (different manipula-

tions shown with different symbols and control groups are shown with filled

symbols and experimental groups with open symbols; see legend).

Error bars indicate SEM. For all experiments n = 4 rats except blocked versus

interleaved (n = 6 rats).
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30 ms difference might also result from motivational differences

between easy and difficult stimuli. These in turn are consistent

with lack of improvement with longer enforced sampling dura-

tions. At the same time, these observations do not strongly imply

integration. Models with little or no integration, e.g., ‘‘sequential

sampling’’ models (Watson, 1979), can also produce depen-

dence of RT on stimulus duration, increase in RT with difficulty

(Ditterich, 2006) and the speed-accuracy tradeoffs with

changing evidence threshold.

Two of our observations are not readily reconciled with stan-

dard integration models. First is the fact that manipulations of

urgency slowed subjects’ odor sampling times substantially,

around 100 ms or around 30%, but did not increase accuracy.

A ‘‘collapsing bound’’ (i.e., evidence threshold decreasing with

time) is considered a mechanism for urgency in the integration

model (Bowman et al., 2012; Drugowitsch et al., 2012). A reduc-

tion in the collapse rate could explain the increases in reaction

time we observed in low urgency conditions, but would entail

an increase in accuracy, which was not found. The second

observation not readily explained is the increase in performance

with reduction in the number of interleaved stimuli (Figure 5). This

effect could be explained by an increase in the subject’s decision

bound, but this would imply a concomitant increase in RTs,

which did not occur.
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What can account for the failure of rats to show expected

speed-accuracy tradeoffs? First, it remains possible that our

training regime was somehow faulty or that rats are incapable

of optimal task performance. However, due to the arguments

we have laid out above, we believe that the answer is more

likely that rats are indeed performing their best, but that

some of the inherent assumptions of integration models

are not met by the odor categorization task. A second possi-

bility is that the information on which the decision is based

decreases with time, as for example might occur with sensory

adaptation. However, Uchida and Mainen (2003) found no

increase in RT with 100-fold stimulus dilutions that would be

expected to reduce the effects of adaptation, making this

explanation unlikely. A final possible class of explanation, that

we believe is worthy of careful consideration, is that the noise

that limits performance in the categorization of odor mixtures

is not of the type postulated by integration models. Any

scenario in which noise is highly correlated from sample to

sample within a trial would violate the key assumption that noise

is temporally uncorrelated and would curtail the benefits of

integration.

As a specific hypothesis for a source of trial-by-trial noise

could arise in odor mixture categorization decisions, consider

that in this task the category boundary between left and right

odor classes is set by the experimenter and must be learned

by the subject through trial-by-trial reinforcement. Any trial-

to-trial variability in the category boundary due to reinforce-

ment learning would produce a source of noise that is

completely correlated within individual trials. Therefore, if

uncertainty about the precise category boundary dominates

over stimulus uncertainty, the benefits of integration within a

single trial would be curtailed, tilting the optimal speed-accu-

racy tradeoff toward shorter sampling times for even an optimal

subject. Further experiments will be needed to test this

hypothesis.

Under this interpretation, the present results are likely to

reflect features of the task rather than the modality or species.

This has several implications. First, rodents performing tasks

that are dominated by uncorrelated sensory noise may indeed

show the expected benefits of extended temporal integration

(B.W. Brunton and C. Brody, 2009, Soc. Neurosci., abstract;

P. Reinagel et al., 2012; Sanders and Kepecs, 2012). Second,

decisions that favor short sampling time are likely not to be

limited to rodents or olfaction (Uchida et al., 2006; Kahneman,

2011; Stanford et al., 2010). Indeed, it has long been appreci-

ated that performance on psychophysical tasks may saturate

with as little as 100–200 ms of stimulus exposure (Barlow,

1958; Watson, 1979). For example, in random dot motion

discrimination by humans, if difficulty is manipulated by

lowering coherence, accuracy increases up to 3 s of stimulus

exposure, but if it is manipulated by lowering contrast, only

up to 0.3 s (Burr and Santoro, 2001). Finally, the present results

are likely not applicable to all olfactory decisions but specific to

olfactory categorization decisions. Different tasks such as odor

detection, odor mixture segmentation or odor source tracking

will each make different demands, tapping into different under-

lying neural mechanisms to overcome different sources of

uncertainty.
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EXPERIMENTAL PROCEDURES

Animal Subjects

Thirty-seven male Long-Evans rats (250 g at the start of training) were trained

and tested using procedures approved by the Cold Spring Harbor Laboratory,

Institutional Animal Care and Use Committee. Rats were trained and tested on

a two-alternative choice odor mixture categorization task where water was

used as a reward as described previously (Uchida and Mainen, 2003). The

animals were pair-housed (except where noted) and maintained on a reverse

12 hr light/dark cycle and tested during their dark period. Each rat performed

one session of 45–60 min per day (250–400 trials), 5 days per week for a period

of 8–20 weeks. Rats were allowed free access to food but were restricted to

water available during the behavioral session and for 30 min after the session

and during non training days; water amounts were adjusted to ensure animals

maintained no less than 85% of ad libitum weight at any time. A different set of

naive rats were used for each experimental condition unless otherwise noted.

Testing Apparatus and Odor Stimuli

The behavioral setup consisted of a box of 203 20 cm with a panel containing

three conical ports (2.5 cm diameter, 1 cm depth) (Uchida and Mainen, 2003).

Each port was equipped with infrared photodiode/phototransistor pair that

registered a digital signal when a rat’s snout was introduced into the port

(‘‘nose poke’’), allowing us to determine the position of the animal during the

task with high temporal precision. Odors were delivered from the center

port and water from the left and right ports. Port signals were recorded and

valves controlled by a computer running custom software written in Matlab

(Mathworks, Natick, MA) equipped with multipurpose data acquisition cards

(E-series, National Instruments, Austin, TX).

Odor delivery was controlled by a custom made olfactometer (Uchida and

Mainen, 2003). The test odors were S-(+) and R-(�) stereoisomers of 2-octanol

(Figure 1A), chosen because they have identical vapor pressures and similar

intensities. We used relatively low concentration of odorants by diluting

50 ml/min odorized air in a total of 1,000 ml/min clean air stream and 1:10 in

mineral oil (total dilution factor: 0.005). Mixture ratios of 5/95, 20/80, 32/68,

and 44/56 and their complements (95/5, etc.) were generated using pure odor-

ants and adjusting the flow rates of two independent mass flow controllers

(Aalborg, Orangeburg, NY) in appropriate ratios to sum to 50 ml/min (e.g., at

20/80 one flow controller delivers 10 ml/min and the other 40 ml/min). Ratios

of 48/52 and 49/51 were generated by substituting liquid mixtures in 45/55

and 55/45 ratios for the pure odorants and further diluting with air. In control

sessions, the same odorant was used in both air streams or two odors were

delivered at 50/50 ratio. Performance in these sessions was no different than

chance (50%) over R100 trials (see Figure 6A).

Reaction Time Paradigm

Rats initiated a trial by entering the central odor-sampling port, which triggered

the delivery of an odor. To prevent rats from developing a ballistic ‘‘odor poke’’

movement into and out of the odor sampling port (Friedrich, 2006), the odor

onset was subject to delay (dodor) drawn from a random distribution (original

paradigm: uniform random distribution with a range of [0.3,0.6 s]; low urgency

paradigm: exponential, mean 0.5 s, offset at 0.1 and clipped at 2.0 s) (Figures

1C and S1). The odor was available for up to 1 s. In the reaction time task

(Uchida and Mainen, 2003), rats could exit from the odor port at any time after

odor valve opening and make a movement to either of the two reward ports.

Trials inwhich the subject left the odor sampling port before odor valve opening

were considered invalid (see Figure S1). Odor delivery was terminated as soon

as the rat exited the odor port. Stimuli were presented in pseudorandom order

resulting in 50% chance performance. Reward was available for correct

choices for up to 4 s after the rat left the odor sampling port in the original

task; in the low urgency condition it was available for 8 s (5 s in water manipu-

lation task phase III; Figure 2B) after odor valve onset. Trials in which the

subject failed to respond to one of the two choice ports within the reward

availability period were also considered invalid. Invalid trials comprised

19.9 ± 6.6% (mean ± SEM, n = 4 rats). Invalid trials were not included in the

calculation of performance accuracy or reaction times (OSD, MT).

For correct trials, water was delivered from gravity-fed reservoirs regulated

by solenoid valves after the subject entered the choice port (original paradigm:
dwater [0.1–0.3 s] from water port entry; low-urgency paradigm: minimum

delay, dwater = 2 s from odor valve onset; Figure 1C). Reward amount (wrew),

determined by valve opening duration, was set to 0.03 ml and calibrated regu-

larly. Error choices resulted in water omission but were otherwise unsignaled,

except in the ‘‘air puff’’ paradigm (Figure 2) in which an air puff was delivered to

the snout of the rat through a tube inserted adjacent to the water delivery tube

in the two choice ports. In the reaction time tasks, invalid trials were not

signaled. A new trial was initiated when the rat entered odor port, as long as

a minimum interval (dintertrial) had elapsed (original paradigm: 4 s from water

delivery; low urgency paradigm: 10 s from odor valve onset; see Figure 1C).

A ‘‘time out’’ penalty of 10 s was added to dintertrial for incorrect choices in

the water manipulation task phase III (Figure 2B). The experienced interval

between consecutive trial onsets was 7.3 ± 0.3 in the original paradigm and

11.5 ± 0.1 s in the low urgency conditions (n = 4 rats).

Water Manipulation

For the water manipulation task (Figures 2B and S2), eight naive rats, individ-

ually housed, were first trained on the low-urgency RT task (with 6 s dintertrial) to

asymptotic performance under normal water restriction. Approved animal care

and use procedures were strictly observed during the water restriction regime.

Training was ceased and rats were given ad libitum food and water until stabi-

lization of weight and water consumption (Wadlibitum, range of 50 ± 20 ml/day).

Water restriction was then resumed with the available water, Wfree, set at

0.5$Wadlibitum, delivered using a syringe fitted with a Lixit valve (Lixit Animal

Care Products, Napa, CA). Weights were monitored for 3 days and then

training was resumed with session length fixed at 256 trials. At the beginning

of the experiment, a baseline was established for all rats. The amount of free

water available outside the task, Wfree, was set at 0.17$Wadlibitum and the

volume of water reward (Wreward) was set individually for each rat such that

the total water available in the taskWtaskwasapproximately 2$Wfree (Figure S2).

The testing consisted of three phases (I–III). (Phase I) For the test group, only

Wfree was reduced to 0 while maintaining Wreward constant. (Phase II) We

doubled the relative frequency of occurrence of themost difficult mixture ratios

(56/44 and 44/56) for the test group. (Phase III) An additional 10 s time out

punishment for error trials was introduced and the maximum time allowed

for session completion was reduced from 50 to 30 min. This manipulation

decreased the amount of water consumed by the test group and produced

a drop in body weight (86.69% ± 3.8% of original weight test group versus

92.63% ± 3.7% control group). No rat dropped below 85% of initial ad libitum

body weight at any time.

One-Direction Rewarded Task

Three naive rats were trained on the 1DR task (Figure 2C). Each session began

with 400 trials where both sideswere rewarded and then rewardwere provided

only for one choice direction (when correct) and this rewarded direction

changed across blocks of 100 correctly performed trials (�120–140 trials

total). Reward were delayed for 1 s after entry into the water-port. We provided

auditory feedback for both correct and error choices for both the rewarded and

unrewarded sides. To ensure that rats responded to the nonrewarded direc-

tion following incorrect choices we repeated the same stimulus in the next trial.

Repeated trials were removed from the analysis.

Go-Signal Paradigm

Go-signal paradigms were similar to reaction time paradigm except rats were

required to stay in the odor sampling port until a 2 kHz, 100 ms pure tone was

delivered after delay dtone after odor valve onset (Figure 3A). Otherwise, the

task timing was identical to the low urgency version of the RT task (Figure 1C).

The following three conditions were considered invalid trials and were not re-

warded and not counted in accuracy or OSD measurements: (1) short odor

poke trials (withdrawal from the odor port before the go-signal) resulted a short

white noise burst (120ms) and 4 s increase in dintertrial. (2) Long odor poke trials

(withdrawal >1.0 s after the go-signal) triggered a long white noise burst (3 s)

and 4 s increase in dintertrial. (3) Delayed choice trials (failure to enter a choice

port within 4 s after a valid odor sampling period) were invalid but not signaled

in any way and did not result in any increase in dintertrial.

In a first set of go-signal experiments (Figure 3), a single go-signal delay was

used in each session and a range of odor mixtures (12% to 90% mixture
Neuron 78, 339–351, April 24, 2013 ª2013 Elsevier Inc. 349
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contrast) were randomly interleaved within the session, as in the RT para-

digms. Go-signal delays were changed from session to session while the

odor stimuli remained constant (Figure 3B). The set of rats tested in this para-

digm were naive at the beginning of training.

In a second set of go-signal experiments (Figure 4), a single odor mixture

pair was delivered in each session and go-signal times were randomly varied

within a session. In these experiments, a single set of four rats was used in five

sequential phases (I–V). (I) A pseudorandom go-signal delay (dgo) for each trial

was drawn from a uniform distribution (0.1–1.0 s in 0.1 s increments). Mixture

ratio difficulty was increased after stable performance was achieved (8–10

sessions per ratio) (Figure 4A, phase I). (II) dgo was drawn from an exponential

distribution (mean 0.3 s) using the 12% mixture contrast stimuli (Figure 4A,

phase II). (III) Subjects were retested using uniformly distributed go-signal

delays while keeping the same stimuli (Figure 4A, phase III). (IV) Subjects

were tested on the RT paradigm by eliminating the go-signal while keeping

other task parameters constant. After reaching stable performance, two

more difficult mixture contrasts (4% and 2% mixture contrast) were sequen-

tially introduced (Figure 6A, phase IV). (V) Rats were returned to a go-signal

paradigm with dgo = 1.0 s at 2% mixture contrast and then trained to stable

performance on 4%mixture contrast (Figure 6A, phase V). (VI) RT performance

was measured on three easier ratio pairs (Figure 6A, phase VI).

Training

The training sequence consisted of (1) handling and habituation to the behavior

box (3 sessions); (2) water-port training (1 day); (3) odor-port training, in which

a single odor (usually ethyl butyrate) was rewarded at either port and the

required center poke duration was increased from 0 to 300 ms (2–4 sessions);

(4) introduction of test odors in 5:95 and 95:5, rewarded at left and right choice

ports with assignments counterbalanced across rats (1–3 sessions); (5) intro-

duction of increasingly difficult mixture ratio pairs rewarded at the side corre-

sponding to the dominant component (4–7 sessions). Go-signal task training

occurred between phase III and IV. For the purpose of experiments involving

training on a new stimulus or condition, stable or asymptotic performance

was defined as <5% change in performance over R5 sessions.

Performance Accuracy and OSD Analysis

All the analysis was performed in Matlab 6.5 Release 13. Behavioral accuracy

was defined as the percentage of correct choices over the total number of

correct and incorrect choices. Odor sampling duration (OSD) was calculated

as the difference between odor valve actuation until odor port exit, with

100 ms subtracted to account for the delay from valve opening to odor reach-

ing the nose (Feierstein et al., 2006; Figure 1C). Movement time (MT) was

defined as the time between odor port exit and choice port entry. We excluded

from calculation of performance accuracy and OSD trials in which odor port

withdrawal occurred less than 100 ms after odor onset (<10% of trials) or

before the go signal in go-signal paradigms (<25% of trials) and trials in which

no choice was made or choice port entry occurred after the response deadline

(<1% of trials) (Figure S1E). Performance accuracy as a function of mixture

difficulty was fitted with a Weibull function using a maximum likelihood

method and OSDs using a linear regression, except in Figure 2Cii where

a logistic regression using binomial distribution was used. Logistic regression

was also used to fit the psychometric function in Figure 2Ci. Error bars are

mean ± SEM (n across rats) or mean ± SD (n across sessions). The effect of

difficulty on accuracy or OSD was tested using one-way ANOVA with pairwise

comparisons between different mixture contrast ratios (MULTCOMPARE

function in Matlab) at a significance level of p < 0.0125 (i.e., adjusted for

multiple comparisons).

Subjective Hazard Rate Analysis

In order to estimate the ability of the subject to anticipate the occurrence of

a go signal, we calculated the subjective anticipation function, as described

in Janssen and Shadlen (2005). First, we assume that the uncertainty in time

estimation scales with elapsed time (‘‘scalar timing’’ [Gibbon, 1977; Gibbon

et al., 1997; Janssen and Shadlen, 2005]) such that a go signal which occurred

at time t is perceived at time t ± s(t), where

sðtÞ=4,t; (Equation 1)
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where the coefficient of variation or Weber fraction (4) = 0.15 (Gibbon et al.,

1997). Therefore, a subjective estimate of the go-signal distribution was

computed by smoothing the probability distribution with a normal distribution

whose standard deviation was proportional to the elapsed time (Equation 1;

Figures S4E and S4F)

sðtÞ= 1

4t
ffiffiffiffiffiffi
2p

p
ZN

�N

fðtÞe� ðt�tÞ2
ð242 t2Þdt (Equation 2)

The expectation of the go signal was then calculated according to its hazard

rate (Janssen and Shadlen, 2005):

hðtÞ= sðtÞ
ð1� SðtÞÞ;

where h(t) is the hazard rate, s(t) the subjective probability density function of

go-signal delays dgo and S(t) the cumulative probability density function of

subjective go-signal delays.

Performance accuracy was plotted as a function of delay to the go signal

because the subjective anticipation is a function of go-signal times and not

OSDs. The subjective anticipation functions (Figures S4G and S4H) (for

uniform and exponential distributions) were fitted to the performance accuracy

functions (Figure 4D) using the following equation:

rðtÞ= c0 + c1,sunifðtÞ+ c2,sexpðtÞ;
where r(t) is the instantaneous performance accuracy, c0 is a constant term,

sunif and sexp are the subjective anticipation function for uniform and exponen-

tial distributions (Equation 1), and c1 and c2 are the weighting coefficients for

the two anticipation functions.Optimal parameterswere found using adownhill

simplex method, FMINSEARCH function in Matlab.
SUPPLEMENTAL INFORMATION

Supplemental Information includes five figures and can be found with this

article online at http://dx.doi.org/10.1016/j.neuron.2013.02.010.

ACKNOWLEDGMENTS

Wewould like to thank past and presentmembers of theMainen Laboratory for

many helpful discussions and Drs. Joseph J. Paton, Dmitry Rinberg, and Anne

Churchland for their comments on an earlier version of this paper. This work

was supported by the National Institutes on Deafness and Other Communica-

tion Disorders (DC006104) and Cold Spring Harbor Laboratory.

Accepted: February 5, 2013

Published: March 28, 2013

REFERENCES

Abraham, N.M., Spors, H., Carleton, A., Margrie, T.W., Kuner, T., and

Schaefer, A.T. (2004). Maintaining accuracy at the expense of speed:

stimulus similarity defines odor discrimination time in mice. Neuron 44,

865–876.

Abraham, N.M., Egger, V., Shimshek, D.R., Renden, R., Fukunaga, I.,

Sprengel, R., Seeburg, P.H., Klugmann, M., Margrie, T.W., Schaefer, A.T.,

and Kuner, T. (2010). Synaptic inhibition in the olfactory bulb accelerates

odor discrimination in mice. Neuron 65, 399–411.

Barlow, H.B. (1958). Temporal and spatial summation in human vision at

different background intensities. J. Physiol. 141, 337–350.

Bowman, N.E., Kording, K.P., and Gottfried, J.A. (2012). Temporal integration

of olfactory perceptual evidence in human orbitofrontal cortex. Neuron 75,

916–927.

Burr, D.C., and Santoro, L. (2001). Temporal integration of optic flow,

measured by contrast and coherence thresholds. Vision Res. 41, 1891–1899.

http://dx.doi.org/10.1016/j.neuron.2013.02.010


Neuron

The Limits of Deliberation in a Decision Task
Correa, A., Lupianez, J., Madrid, E., and Tudela, P. (2006). Temporal attention

enhances early visual processing: a review and new evidence from event-

related potentials. Brain Res. 1076, 116–128.

Ditterich, J. (2006). Stochastic models of decisions about motion direction:

behavior and physiology. Neural Netw. 19, 981–1012.

Drugowitsch, J., Moreno-Bote, R., Churchland, A.K., Shadlen, M.N., and

Pouget, A. (2012). The cost of accumulating evidence in perceptual decision

making. J. Neurosci. 32, 3612–3628.

Feierstein, C.E., Quirk, M.C., Uchida, N., Sosulski, D.L., and Mainen, Z.F.

(2006). Representation of spatial goals in rat orbitofrontal cortex. Neuron 51,

495–507.

Friedrich, R.W. (2006). Mechanisms of odor discrimination: neurophysiological

and behavioral approaches. Trends Neurosci. 29, 40–47.

Gallistel, C.R., and Gibbon, J. (2000). Time, rate, and conditioning. Psychol.

Rev. 107, 289–344.

Ghose, G.M., andMaunsell, J.H. (2002). Attentional modulation in visual cortex

depends on task timing. Nature 419, 616–620.

Gibbon, J. (1977). Scalar expectancy theory and Weber’s law in animal timing.

Psychol. Rev. 84, 279–325.

Gibbon, J., Malapani, C., Dale, C.L., and Gallistel, C. (1997). Toward a neurobi-

ology of temporal cognition: advances and challenges. Curr. Opin. Neurobiol.

7, 170–184.

Green, D.M. (1961). Detection of auditory sinusoids of uncertain frequency.

J. Acoust. Soc. Am. 33, 897.

Griffin, I.C., Miniussi, C., and Nobre, A.C. (2001). Orienting attention in time.

Front. Biosci. 6, D660–D671.

Grinband, J., Hirsch, J., and Ferrera, V.P. (2006). A neural representation of

categorization uncertainty in the human brain. Neuron 49, 757–763.

Hanks, T.D., Mazurek, M.E., Kiani, R., Hopp, E., and Shadlen, M.N. (2011).

Elapsed decision time affects the weighting of prior probability in a perceptual

decision task. J. Neurosci. 31, 6339–6352.

Janssen, P., and Shadlen, M.N. (2005). A representation of the hazard rate of

elapsed time in macaque area LIP. Nat. Neurosci. 8, 234–241.

Jaramillo, S., and Zador, A.M. (2011). The auditory cortex mediates the

perceptual effects of acoustic temporal expectation. Nat. Neurosci. 14,

246–251.

Kahneman, D. (2011). Thinking Fast and Slow (New York: Farrar, Straus and

Giroux).

Karpov, A.P. (1980). Analysis of neuron activity in the rabbit’s olfactory bulb

during food-acquisition behavior. In Neural Mechanisms of Goal-Directed

Behavior, R.F. Thompson, L.H. Hicks, and V.B. Shvyrkov, eds. (New York:

Academic Press), pp. 273–282.

Katzner, S., Treue, S., and Busse, L. (2012). Improving behavioral performance

under full attention by adjusting response criteria to changes in stimulus

predictability. J. Vis. 12. http://dx.doi.org/10.1167/12.10.1.

Kepecs, A., Uchida, N., Zariwala, H.A., and Mainen, Z.F. (2008). Neural corre-

lates, computation and behavioural impact of decision confidence. Nature

455, 227–231.

Khan, R.M., and Sobel, N. (2004). Neural processing at the speed of smell.

Neuron 44, 744–747.
Laing, D.G. (1985). Optimum perception of odor intensity by humans. Physiol.

Behav. 34, 569–574.

Laing, D.G. (1986). Identification of single dissimilar odors is achieved by hu-

mans with a single sniff. Physiol. Behav. 37, 163–170.

Lauwereyns, J., Watanabe, K., Coe, B., and Hikosaka, O. (2002). A neural

correlate of response bias in monkey caudate nucleus. Nature 418,

413–417.

Luce, R.D. (1986). Response Times: Their Role in Inferring Elementary Mental

Organization (New York: Oxford University Press).

McDonald, J.J., Teder-Salejarvi, W.A., and Hillyard, S.A. (2000).

Involuntary orienting to sound improves visual perception. Nature 407,

906–908.

Mazurek,M.E., Roitman, J.D., Ditterich, J., and Shadlen, M.N. (2003). A role for

neural integrators in perceptual decision making. Cereb. Cortex 13, 1257–

1269.

Nobre, A.C. (2001). Orienting attention to instants in time. Neuropsychologia

39, 1317–1328.

Ohzawa, I., Sclar, G., and Freeman, R.D. (1982). Contrast gain control in the

cat visual cortex. Nature 298, 266–268.

Paton, J.J., Belova, M.A., Morrison, S.E., and Salzman, C.D. (2006). The

primate amygdala represents the positive and negative value of visual stimuli

during learning. Nature 439, 865–870.

Ratcliff, R., and Smith, P.L. (2004). A comparison of sequential sampling

models for two-choice reaction time. Psychol. Rev. 111, 333–367.

Reinagel, P.,Mankin, E., andCalhoun, A. (2012). Speedandaccuracy in a visual

motion discrimination task as performed by rats. arXiv, arXiv:1206.0311, http://

arXiv.org/abs/1206.0311.

Rinberg, D., Koulakov, A., and Gelperin, A. (2006). Speed-accuracy tradeoff in

olfaction. Neuron 51, 351–358.

Roesch,M.R., andOlson, C.R. (2004). Neuronal activity related to reward value

and motivation in primate frontal cortex. Science 304, 307–310.

Roitman, J.D., and Shadlen, M.N. (2002). Response of neurons in the lateral

intraparietal area during a combined visual discrimination reaction time task.

J. Neurosci. 22, 9475–9489.

Sanders, J.I., and Kepecs, A. (2012). Choice ball: a response interface for two-

choice psychometric discrimination in head-fixed mice. J. Neurophysiol. 108,

3416–3423.

Stanford, T.R., Shankar, S., Massoglia, D.P., Costello, M.G., and Salinas, E.

(2010). Perceptual decision making in less than 30 milliseconds. Nat.

Neurosci. 13, 379–385.

Uchida, N., and Mainen, Z.F. (2003). Speed and accuracy of olfactory discrim-

ination in the rat. Nat. Neurosci. 6, 1224–1229.

Uchida, N., Kepecs, A., andMainen, Z.F. (2006). Seeing at a glance, smelling in

a whiff: rapid forms of perceptual decision making. Nat. Rev. Neurosci. 7,

485–491.

Watson, A.B. (1979). Probability summation over time. Vision Res. 19,

515–522.

Wesson, D.W., Carey, R.M., Verhagen, J.V., andWachowiak, M. (2008). Rapid

encoding and perception of novel odors in the rat. PLoS Biol. 6, e82.
Neuron 78, 339–351, April 24, 2013 ª2013 Elsevier Inc. 351

http://arXiv.org/abs/1206.0311
http://arXiv.org/abs/1206.0311

	The Limits of Deliberation in a Perceptual Decision Task
	Introduction
	Results
	The Odor Mixture Category Decision Task
	Manipulations of Motivation
	Manipulation of Sampling Time using a Response Deadline (Go Signal)
	Manipulation of the Predictability of the Response Deadline (Go Signal)
	Manipulation of Stimulus Predictability: Blocked versus Interleaved Context
	Asymptotic Performance in Odor Mixture Discrimination within 300 ms

	Discussion
	The Role of Reward and Motivation in Decision Tasks
	Stimulus Context: Interleaving versus Blocking Stimuli
	Temporal Anticipation of a Response Deadline Modulates Accuracy
	Speed-Accuracy Tradeoff and the Origin of Decision Noise

	Experimental Procedures
	Animal Subjects
	Testing Apparatus and Odor Stimuli
	Reaction Time Paradigm
	Water Manipulation
	One-Direction Rewarded Task
	Go-Signal Paradigm
	Training
	Performance Accuracy and OSD Analysis
	Subjective Hazard Rate Analysis

	Supplemental Information
	Acknowledgments
	References


