JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 91, 328-339 (1983)

On Oscillation of Solutions of *n*th-Order Delay Differential Equations

S. R. GRACE AND B. S. LALLI*

University of Saskatchewan, Saskatoon, Saskatchewan S7N0W0 Canada

Submitted by C. L. Dolph

Oscillatory behavior of the solutions of the *n*th-order delay differential equation $L_n x(t) + q(t) f(x[g(t)]) = 0$ is discussed. The results obtained are extensions of some of the results by Kim (*Proc. Amer. Math. Soc.* 62 (1977), 77-82) for $y^{(n)} + py = 0$.

The main purpose of this article is to extend some of the results of Kim [1] for

$$x^{(n)} + p(t) x = 0$$

to the following nth-order delay differential equation

$$L_n x(t) + q(t) f(x[g(t)]) = 0,$$
(E)

where $L_0 x(t) = x(t)$, $L_k x(t) = a_k(t)(L_{k-1}x(t))^{-1}$ (= d/dt), $a_0(t) = a_n(t) = 1$, k = 1, 2, ..., n.

We shall discuss the following four cases:

- (1) *n* even, $q \ge 0$;
- (2) $n \text{ odd}, q \ge 0;$
- (3) *n* even, $q \leq 0$;
- (4) $n \text{ odd}, q \leq 0.$

In the sequel, (E_i) , for example, will denote Eq. (E) satisfying condition (i) for i = 1, 2, 3, 4.

The conditions we always assume for a_i , q, g, and f are:

(i) $g: [0, \infty) \to [0, \infty)$ is continuous and nondecreasing, $g(t) \leq t$, and $\lim_{t \to \infty} g(t) = \infty$;

* The work of the second author was partially supported by NSERC Grant No. A5293.

(ii) $q: [0, \infty) \to (-\infty, \infty)$ is continuous and q is not eventually identically zero on $R = (-\infty, \infty)$;

(iii) $a_i: [0, \infty) \to (0, \infty)$ is continuous, $\int^{\infty} (1/a_i(s)) ds = \infty$, i = 1, 2, ..., n-1,

and either

(iv) $\lim_{t\to\infty} (1/\alpha_2(t)) \sum_{i=0}^k \alpha_i(t) > 0$, where $\alpha_0(t) = 1$, for every choice of the constants c_i , with $c_k > 0$ for k = 2, 3, ..., n - 1; or

(v) $\lim_{t\to\infty} (1/\alpha_1(t)) \sum_{i=0}^k c_i \alpha_i(t) > 0$, where $\alpha_0(t) = 1$, for every choice of the constants c_i , with $c_k > 0$ for k = 1, 2, ..., n - 1;

where

$$\begin{aligned} \alpha_{1}(t) &= \int_{c}^{t} \frac{1}{a_{1}(s_{1})} \, ds_{1}, \\ \alpha_{2}(t) &= \int_{c}^{t} \frac{1}{a_{1}(s_{1})} \int_{c}^{s_{1}} \frac{1}{a_{2}(s_{2})} \, ds_{2} \, ds_{1}, \\ \vdots \\ \alpha_{k}(t) &= \int_{c}^{t} \frac{1}{a_{1}(s_{1})} \int_{c}^{s_{1}} \cdots \int_{c}^{s_{k-1}} \frac{1}{a_{k}(s_{k})} \, ds_{k} \cdots \, ds_{1}, \\ \vdots \\ \alpha_{n-1}(t) &= \int_{c}^{t} \frac{1}{a_{1}(s_{1})} \int_{c}^{s_{1}} \cdots \int_{c}^{s_{n-2}} \frac{1}{a_{n-1}(s_{n-1})} \, ds_{n-1} \cdots \, ds_{1}; \end{aligned}$$

for some $c \ge 0$;

(vi) $f: R \to R$ is continuous such that xf(x) > 0 for $x \neq 0$.

We also define

$$w_1(t,s) = \int_s^t \frac{1}{a_1(u)} du$$

and

$$w_k(t,s) = \int_s^t \frac{1}{a_k(u)} w_{k-1}(u,s) \, du, \qquad k = 2, ..., n-1.$$

We restrict our discussion to those solutions x of the above differential equations which exist on some ray $[0, \infty)$. Such a solution is said to be oscillatory if it has arbitrarily large zeros. Otherwise the solution is said to be nonoscillatory.

The oscillatory behavior of solutions of the above equation and/or related

equations has recently been studied by many authors, we mention in particular the work of Kim [1], who discussed the monotonicity and the oscillatory behavior of those solutions of (E) with $a_i(t) = 1$, i = 1, ..., n - 1 which have the property that

$$x(t)/t^2 \to 0$$
 as $t \to \infty$ or $x(t)/t \to 0$ as $t \to \infty$.

The following two theorems are extensions of the results by Kim:

THEOREM 1. Suppose that conditions (i)–(iv) and (vi) hold. If x is a nontrivial solution of (E_1) or (E_4) such that $x(t) \ge 0$, $x[g(t)] \ge 0$, and $x(t)/\alpha_2(t) \to 0$ as $t \to \infty$, then

$$\begin{aligned} x(t) \ge 0, & \dot{x}(t) > 0, \quad (-1)^{k-1} L_k x(t) > 0 \quad for \quad t \in [0, \infty), \\ k = 2, 3, ..., n-1, \text{ and} \\ L_k x(t) \to 0 \text{ monotonically as } t \to \infty, \ k = 2, 3, ..., n-1. \end{aligned}$$
(5)

Proof. Our proof is an adaptation of the argument developed by Kim. Put $y_k = L_{k-1}x$, i.e., $x = y_1$, $\dot{y_1} = y_2/a_1,..., y_{n-1} = y_n/a_{n-1}$, and let b be an arbitrary point of $[0, \infty)$. Then x satisfies the system

$$y_{1}(t) = y_{1}(b) + \int_{b}^{t} \frac{y_{2}(s)}{a_{1}(s)} ds,$$

$$y_{2}(t) = y_{2}(b) + \int_{b}^{t} \frac{y_{3}(s)}{a_{2}(s)} ds,$$

$$\vdots$$

$$y_{n-1}(t) = y_{n-1}(b) + \int_{b}^{t} \frac{y_{n}(s)}{a_{n-1}(s)} ds,$$

$$y_{n}(t) = y_{n}(b) - \int_{b}^{t} q(s)f(y_{1}[g(s))]) ds.$$

Suppose $x = y_1$ is a solution of (E₁). Then $\int_b^t q(s)f(y_1[g(s)]) ds$ is a nondecreasing nonnegative function of t and clearly is positive on an interval $[c, \infty)$ for some c > b. We claim that $y_n(b) > 0$. To prove this, assume the contrary, that $y_n(b) \leq 0$. Then $y_n(t)$ is nonpositive, nonincreasing on $[b, \infty)$ and

$$y_n(c) = y_n(b) - \int_b^c q(s) f(y[g(s)]) \, ds < 0,$$

i.e.,

$$y_n(t) \leq y_n(c) < 0, \qquad t \in [c, \infty),$$

or

$$\dot{y}_{n-1}(t) \leq (1/a_{n-1}(t)) y_n(c).$$

Integrating the above inequality from b to t, we obtain

$$y_{n-1}(t) \leq y_{n-1}(b) + y_n(c) \int_b^t \frac{1}{a_{n-1}(s)} ds \to -\infty \quad \text{as} \quad t \to \infty.$$

This in turn implies that $y_{n-2}(t) \to -\infty$ as $t \to \infty$, and successively $y_k(t) \to -\infty$ as $t \to \infty$, regardless of the values $y_k(b)$, k = 1, ..., n-1. In particular, $y_1(t) = x(t) \to -\infty$ as $t \to \infty$, contrary to the hypothesis that $x(t) \ge 0$ on $[0, \infty)$. This contradiction proves $y_n(b) > 0$.

Since b is arbitrary, we conclude that $y_n(t) > 0$, $t \in [0, \infty)$. It is now easy to see that $y_n(t) \to 0$ as $t \to \infty$ for n > 2. If this were not the case, there would exist a constant C > 0 such that

$$y_n(t) > C$$
, $t \in [c_1, \infty)$, for some $c_1 \ge 0$.

This implies, however, that

$$x(t) = y_1(t) > \sum_{i=0}^{n-2} y_{i+1}(c_1) \alpha_{i+1}(t) + C\alpha_{n-1}(t), \qquad \alpha_0(t) = 1.$$

If we divide the above inequality by $\alpha_2(t)$ and take the limit as $t \to \infty$, we get, in view of (iv) with k = n - 1, a contradiction to the fact that $x(t)/\alpha_2(t) \to 0$ as $t \to \infty$.

Next we shall prove that $y_{n-1}(t) < 0$ if n > 2. If $y_{n-1}(b) \ge 0$, then $y_{n-1}(t) \ge 0$ on $[b, \infty)$ and there would exist constants $C_1 > 0$ and d > b such that

$$y_{n-1}(t) > C_1, \qquad t \in [d, \infty).$$

This would imply

$$x(t) = y_1(t) > \sum_{i=0}^{n-3} y_{i+1}(d) \, \alpha_{i+1}(t) + C_1 \alpha_{n-2}(t),$$

which would again lead to a contradiction. Thus $y_{n-1}(b) < 0$ and hence $y_{n-1}(t) < 0$, since b is arbitrary. Moreover, we must have $y_{n-1}(t) \to 0$ as $t \to \infty$, for otherwise we would again be led to the contradiction that $x(t) \to -\infty$ as $t \to \infty$. In this way, we can successively establish the inequalities $y_n(t) > 0$, $y_{n-1}(t) < 0$,..., $y_4(t) > 0$, $y_3(t) < 0$, $t \in [0, \infty)$ with the property that $y_k(t) \to 0$ as $t \to \infty$, k = 3, 4, ..., n. Continuing this process, we deduce $y_2(t) > 0$ and $y_1(t) \ge 0$, $t \in [0, \infty)$. This proves the theorem for (E₁). The proof for (E_4) is similar; in this case, we first prove that $y_n(t) < 0$ and $y_n(t) \to 0$ as $t \to \infty$, and continue as in the case of (E₁).

In somewhat similar fashion, we can prove

THEOREM 2. Let conditions (i)–(ii), (v) and (vi) hold. If x is a nontrivial solution of (E_2) or (E_2) such that

 $x(t) \ge 0$, $x[g(t)] \ge 0$, and $x(t)/\alpha_1(t) \to 0$ as $t \to \infty$, then

$$\begin{aligned} x(t) > 0, \ \dot{x}(t) < 0, \ (-1)^k L_k x(t) > 0 \ for \ t \in [0, \infty), \ k = 2, 3, ..., \\ n-1 \ and \ L_k x(t) \to 0 \ monotonically \ as \ t \to \infty, \ k = 2, ..., n-1. \end{aligned}$$

We now give some illustrative examples.

EXAMPLE 1. Consider the equation

$$\left(\frac{1}{t}\left(t\left(\frac{1}{t}\dot{x}\right)^{2}\right)^{2}\right)^{2} + \frac{15}{16}\frac{1+t^{3}}{t^{5}}\frac{x}{1+x^{2}} = 0, \qquad t \ge 1.$$

Thus

$$\alpha_1(t) = \frac{1}{2}(t^2 - 1)$$

$$\alpha_2(t) = \frac{1}{4}t^2(\log t^2 - 1) + \frac{1}{4}$$

$$\alpha_3(t) = \frac{1}{4}t^2(\frac{1}{4}t^2 - \log t) - \frac{1}{16}$$

Clearly, condition (iv) is satisfied, since t^4 will dominate all other terms when t is sufficiently large. The above equation has a solution $x(t) = t^{3/2}$ satisfying (5). We may note that [1, Theorem 1] is not applicable to this equation since $f(x) \neq x$ and $a_i \neq 1$, i = 1, 2, 3.

EXAMPE 2. The equation

$$x^{(4)} + \frac{15\sqrt{2}}{16} \frac{1+t}{t^5} \frac{x^3(t/2)}{1+x^2(t/2)} = 0$$

has a solution $x(t) = \sqrt{t}$, satisfying (5). Again we note that [1, Theorem 1] cannot be applied to this equation.

EXAMPLE 3. The equation

$$\left(\frac{1}{t}(t\dot{x})\right) + \frac{5}{8}t^{(7-\alpha)/2} |x|^{\alpha} \operatorname{sgn}(x) = 0, \qquad \alpha > 0,$$

has a solution $x(t) = t^{-1/2}$ satisfying (6), while [1, Theorem] cannot be applied.

As was done by Kim, in order to characterize the behavior of solutions of (E_1) or (E_4) we may reformulate Theorem 1 as

THEOREM 3. Suppose that conditions (i)-(iv) and (vi) hold. Let x be a nontrivial solution of (E_1) or (E_4) such that $x(t)/\alpha_2(t) \rightarrow 0$ as $t \rightarrow \infty$. Then either

(a) x is oscillatory on $[0, \infty)$, or

(b) $x \ge 0$ ($x \le 0$) on $[t_0, \infty)$ for some $t_0 \ge 0$ and x (-x) satisfies inequalities (5) of Theorem 1. In particular, x (-x) increases (decreases) monotonically on $[t_0, \infty)$.

COROLLARY 1. If x is a nontrivial solution of (E_1) or (E_4) such that $x(t) \rightarrow 0$ as $t \rightarrow \infty$, then x is oscillatory.

THEOREM 4. Suppose that conditions (i)-(iv) and (vi) hold, and that

(vii)
$$f'(x) \ge 0$$
, for $x \ne 0$ $(' = d/dx)$.

Let x be a nontrivial solution of (E_1) or (E_4) such that $x(t)/\alpha_2(t) \to 0$ as $t \to \infty$. Then if

$$\lim_{t\to\infty}\sup\frac{1}{\alpha_2(t)}\int_c^t w_{n-1}(s,c)\,q(s)\,ds>0,\qquad c\geqslant 0.$$

x is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of (E_1) or (E_4) . Without loss of generality, we may assume that x(t) and x[g(t)] are positive for $t \ge t_0 \ge 0$. Now a simple induction argument shows that for $t \ge t_0$ and $1 \le k \le n-1$

$$\begin{aligned} x(t) &= x(t_0) + \sum_{j=1}^k \, (-1)^{j-1} \, w_j(t, t_0) \, L_j x(t) \\ &+ \, (-1)^k \int_{t_0}^t \, w_k(s, t_0) (L_k x(s))^{\cdot}) \, ds. \end{aligned}$$

In particular, if $t \ge t_0$,

$$\begin{aligned} x(t) &= x(t_0 + \sum_{j=1}^{n-1} (-1)^{j-1} w_j(t, t_0) L_j x(t) \\ &+ \int_{t_0}^t w_{n-1}(s, t_0) q(s) f(x[g(s))]) \, ds. \end{aligned}$$
(7)

By Theorem 1, we have

$$\sum_{j=1}^{n-1} (-1)^{j-1} w_j(t, t_0) L_j x(t) \ge 0, \qquad t \ge t_0.$$

Since $\dot{x}(t) \ge 0$ on $[t_0, \infty)$, x is nondecreasing on $[t_0, \infty)$. Thus for $t \ge t_0$

$$x(t) \ge x(t_0) + \int_{t_0}^t w_{n-1}(s, t_0) q(s) f(x[g(s)]) ds$$
$$\ge x(t_0) + f(x[g(t_0)]) \int_{t_0}^t w_{n-1}(s, t_0) q(s) ds.$$

Now we divide both sides of the above inequality by $\alpha_2(t)$ and obtain

$$0 = \lim_{t\to\infty} \frac{x(t)}{\alpha_2(t)} \ge \lim_{t\to\infty} \sup \frac{f(x[g(t_0)])}{\alpha_2(t)} \int_{t_0}^t w_{n-1}(s, t_0) q(s) \, ds > 0,$$

a contradiction. This completes the proof of the theorem.

As an illustration, we consider the equation

$$\left(\frac{1}{t}\left(t\left(\frac{1}{t}\dot{x}\right)^{\prime}\right)^{\prime}\right)^{\prime}+\frac{1}{t^{2}}f(x[g(t)])=0, \qquad t \ge 1,$$
(8)

where f and g satisfy the conditons in Theorem 4. We let

$$w_1(t, 1) = \int_1^t s \, ds = \frac{1}{2}(t^2 - 1),$$

$$w_2(t, 1) = \frac{1}{4}t^2 - \frac{1}{2}\log t - \frac{1}{4},$$

$$w_3(t, 1) = \frac{1}{4}t^2(\frac{1}{4}t^2 - \log t) - \frac{1}{16},$$

$$\alpha_2(t) = \frac{1}{4}t^2(\log t^2 - 1) + \frac{1}{4}.$$

Now

$$\lim_{t \to \infty} \sup \frac{1}{\alpha_2(t)} \int_1^t w_3(s, 1) \frac{1}{s^2} ds$$

=
$$\lim_{t \to \infty} \sup \frac{\frac{1}{48}t^3 - \frac{1}{4}t \ln t + \frac{1}{4}t + (1/16t) - \frac{1}{3}}{\frac{1}{4}t^2(\log t^2 - 1) + \frac{1}{4}} \to \infty \quad \text{as} \quad t \to \infty.$$

We conclude that if x is a nontrivial solution of (8) such that $\lim_{t\to\infty}(x(t)/\alpha_2(t)) = 0$, then x is oscillatory. We may note that the above conclusion does not appear to be deducible from other known oscillation criteria.

THEOREM 5. Let conditions (i)-(iv), (vi), and (vii) hold. If

$$\int_{c}^{\infty} w_{n-1}(s,c) q(s) \, ds = \infty, \qquad c \ge 0, \qquad (9)$$

then every nonoscillatory solution of (E_1) or (E_4) is unbounded on $[0, \infty)$.

Proof. We only consider Eq. (E₁). Assume the contrary, that there exists a nontrivial solution x of (E₁) which is bounded and positive on $[t_0, \infty)$, $t_0 \ge 0$. Since x increases monotonically by Theorem 1, there exist positive constants M_1 and M_2 such that

$$M_1 \leqslant x[g(t)] \leqslant M_2, \qquad t \in [t_0, \infty).$$

Using (7) and Theorem 1, we have

$$\sum_{j=1}^{n-1} (-1)^{j-1} w_j(t, t_0) L_j x(t) - M_2 \leq -x(t_0) -f(M_1) \int_{t_0}^t w_{n-1}(s, t_0) q(s) ds.$$
(10)

The left-hand side of (10) cannot tend to $-\infty$ as $t \to \infty$, while the right-hand side does tend to $-\infty$ as $t \to \infty$. Therefore, inequality (10) cannot hold throughout $[t_0, \infty)$. This incompatibility proves that the solution x must be unbounded on $[0, \infty)$.

EXAMPLE 5. Consider the equation

$$((1/t)(t((1/t)\dot{x}))) + \frac{15}{16}(1/t^5)x = 0, \quad t \ge 1, w_3(t, 1) = \frac{1}{4}t^2(\frac{1}{24}t^2 - \log t) - \frac{1}{16},$$
(11)

hence

$$\int_{1}^{\infty} \frac{1}{s^{5}} \left(\frac{s^{4}}{16} - \frac{s^{4}}{4} \log s - \frac{1}{16} \right) ds = \infty.$$

Thus all nonoscillatory solutions of (11) are unbounded. One such solution is $x(t) = t^{3/2}$.

Remarks. (1) Condition (9) is only a sufficient condition, since the equation

$$((1/t)(t((1/t)\dot{x}))) + \frac{15}{16}(1/t^8)x^3 = 0, \qquad t \ge 1$$

has an unbounded nonoscillatory solution $x(t) = t^{3/2}$, whereas

$$\int_{1}^{\infty} w_{3}(s) q(s) ds = \int_{1}^{\infty} \frac{1}{s^{8}} \left(\frac{s^{4}}{16} - \frac{s^{2}}{4} \log s - \frac{1}{16} \right) ds < \infty.$$

(2) If $a_i(t) = 1$, i = 1, ..., n - 1, f(x) = x, and g(t) = t, then [1, Theorem 3] and our Theorem 5 are the same.

THEOREM 6. Let conditions (i)-(iii) and (v)-(vii) hold. If x(t) is a nontrivial solution of (E_2) or (E_3) such that $x(t)/\alpha_1(t) \rightarrow 0$ as $t \rightarrow \infty$, and if

$$\lim_{t \to \infty} \sup \int_{g(t)}^{t} \frac{1}{a_1(s_{n-1})} \int_{s_{n-1}}^{t} \cdots \int_{s_1}^{t} q(s) \, ds \cdots ds_{n-1} > \lim_{z \to 0} \sup \frac{z}{f(z)}, \quad (12)$$

then x is oscillatory.

Proof. We only consider (E₂). Let x(t) be a nonoscillatory solution of (E₂) and $x(t)/\alpha_1(t) \to 0$ as $t \to \infty$. Without loss of generality, we may assume that x(t) and x[g(t)] are positive for $t \ge t_0$.

Hence (6) of Theorem 2 holds. If $s \leq t$, then $g(s) \leq g(t)$, and $x[g(s)] \geq x[g(t)]$.

Hence we get

$$L_n x(s) + f(x[g(t)])(q(s)) \le 0.$$
(13)

Integrating (13) *n* times, we have

$$\begin{aligned} x(t) - x[g(t)] + (-1) L_{1}x(t) \int_{g(t)}^{t} \frac{1}{a_{1}(s_{n-1})} ds_{n-1} + \dots + (-1)^{n-1} L_{n-1}x(t) \\ \times \int_{g(t)}^{t} \frac{1}{a_{1}(s_{n-1})} \int_{s_{n-1}}^{t} \dots \int_{s_{2}}^{t} \frac{1}{a_{n-1}(s_{1})} ds \dots ds_{n-1} \\ + f(x[g(t)]) \int_{g(t)}^{t} \frac{1}{a_{1}(s_{n-1})} \int_{s_{n-1}}^{t} \dots \int_{s_{1}}^{t} q(s) ds \dots ds_{n-1} \leqslant 0, \end{aligned}$$

which implies

$$x(t) + f(x[g(t)]) \int_{g(t)}^{t} \frac{1}{a_1(s_{n-1})} \int_{s_{n-1}}^{t} \cdots \int_{s_1}^{t} q(s) \, ds \cdots ds_{n-1} \leq x[g(t)].$$
(14)

Since $\dot{x}(t) < 0$ for $t \ge t_0$, x(t) decreases to a limit $c(\ge 0)$ as $t \to \infty$. From (14) we obtain c = 0. By (14)

$$\frac{x[g(t)]}{f(x[g(t)])} \ge \int_{g(t)}^{t} \frac{1}{a_1(s_{n-1})} \int_{s_{n-1}}^{t} \cdots \int_{s_1}^{t} q(s) \, ds \, ds_1 \cdots ds_{n-1}, \qquad t \ge t_0.$$
(15)

Taking the limit superior of both sides of (15) as $t \to \infty$, we obtain a contradiction to (12). This contradiction completes our proof.

COROLLARY 2. Assume that $a_k(t) = 1$, k = 1, ..., n - 1. If x is a nontrivial solution of (E_2) or (E_3) such that $x(t)/t \to 0$ as $t \to \infty$ and

$$\lim_{t \to \infty} \sup \int_{g(t)}^{t} [s - g(t)]^{n-1} q(s) \, ds > (n-1)! \lim_{z \to 0} \sup (z/f(z)), \quad (16)$$

then x is oscillatory.

EXAMPLE 6. Consider the equation

$$((1/t)(t\dot{x})^{\cdot})^{\cdot} + (1/t^3) |x[\sqrt{t}]|^{\alpha} \operatorname{sgn} x[\sqrt{t}] = 0, \qquad \alpha \in (0, 1], \quad t > 0.$$

Let $\alpha_1(t) = \log t$. It is easy to verify that

$$\lim_{t \to \infty} \sup \int_{\sqrt{t}}^{t} \frac{1}{s} \int_{s}^{t} u \int_{u}^{t} \tau^{-3} d\tau du ds$$
$$= \lim_{t \to \infty} \sup (\log t)^{2} \left[\frac{1}{16} - \frac{1}{8 \log t} + \frac{(1/4) - (1/4) t}{(\log t)^{2}} \right] = \infty$$

and

$$\lim_{z \to 0} \sup \left(\frac{z}{f(z)} \right) = \lim_{z \to 0} \sup z^{1-\alpha} = 0, \quad \text{if} \quad \alpha \in (0, 1).$$
$$= 1, \quad \text{if} \quad \alpha = 1.$$

Hence every nontrivial solution x of the above equation such that $x(t)/\log t \to 0$ as $t \to \infty$ is oscillatory.

Remark. Similar oscillation criteria have been obtained by Ladas, Lakshmikantham, and Papadakis [2], Mahfoud [3], and Sficas and Staikos [4]. According to [4, Theorem 1]. all bounded solutions of (E_2) or (E_3) with $a_i = 1, i = 1, ..., n - 1$ are oscillatory if

$$\lim_{t \to \infty} \sup \int_{g(t)}^{t} [g(t) - g(s)]^{n-1} q(s) \, ds > (n-1)! \lim_{z \to 0} \sup \frac{z}{f(z)}, \quad (17)$$

where g and f are the same as in Theorem 6. We give an example where Theorem 6 is applicable; however, [4, Theorem 1] cannot be applied.

EXAMPLE 7. Consider the equation

$$\ddot{x} - (1/t^2) x[\sqrt{t}] = 0.$$
(18)

Now condition (16) implies

$$\lim_{t\to\infty}\sup\int_{\sqrt{t}}^t\frac{1}{s^2}\left(s-\sqrt{t}\right)ds=\lim_{t\to\infty}\sup\left(\frac{1}{2}\log t+\frac{1}{\sqrt{t}}-1\right)=\infty.$$

Thus every nontrivial solution of the above equation with the prty that $x(t)/t \rightarrow 0$ as $t \rightarrow \infty$ is oscillatory.

On the other hand

$$\lim_{t\to\infty}\sup\int_{\sqrt{t}s^2}^t (\sqrt{t}-\sqrt{s})\,ds = \lim_{t\to\infty}\sup\left(\frac{1}{\sqrt{t}}-\frac{2}{\sqrt[4]{t}}+1\right) = 1,$$

so criterion (17) is not applicable to (18).

Remark. The following result provides an oscillation criterion in case either condition (16) or (17) is not satisfied.

THEOREM 7. Let conditions (i)-(iii) and (v)-(vii) hold,

$$\int_{\pm 0}^{\pm 1}\frac{du}{f(u)}<\infty,$$

and

$$\int^{\infty} \frac{1}{a_1(t)} \dot{g}(t) \int_{g(t)}^{t} \frac{1}{a_2(s_{n-2})} \int_{s_{n-2}}^{t} \cdots \int_{s_1}^{t} \\ \times q(s) \, ds \, ds_1 \cdots dt = \infty.$$

If x is a nontrivial solution of (E_2) or (E_3) with the property that $x(t)/\alpha_1(t) \to 0$ as $t \to \infty$, then x is oscillatory.

Proof. As in the proof of Theorem 6, we have inequality (13). Integrating (13) n-1 times and using Theorem 2, we obtain

$$\frac{\dot{x}[g(t)]}{f(x[g(t)])} + \frac{1}{a_1(t)} \int_{g(t)}^t \frac{1}{a_2(s_{n-2})} \int_{s_{n-2}}^t \cdots \int_{s_1}^t \\ \times q(s) \, ds \, ds_1 \cdots ds_{n-2} \leqslant 0.$$

Multiplying the above inequality by $\dot{g}(t)$ and integrating, we obtain the desired contradiction.

COROLLARY 3. Assume that $a_k(t) = 1$, k = 1, ..., n - 1. If x is a nontrivial solution of (E_2) or (E_3) with the property that $x(t)/t \to 0$ as $t \to \infty$,

$$\int_{\pm 0}^{\pm 1} \frac{du}{f(u)} < \infty$$

and

$$\int_{g(t)}^{\infty} \dot{g}(t) \int_{g(t)}^{t} (s - g(t))^{n-2} q(s) \, ds \, dt = \infty, \tag{19}$$

,

then x is oscillatory.

For an illustration consider the equation

$$\ddot{x} + |x[t - (1/\sqrt{t})]|^{\alpha} \operatorname{sgn} x[t - (1/\sqrt{t})] = 0, \quad \alpha \in (0, 1), \quad t > 0.$$
 (20)

From Corollary 3 it follows that every solution of (20) with the property that $x(t)/t \rightarrow 0$ as $t \rightarrow \infty$ is oscillatory since

$$\int_{g(t)}^{\infty} \dot{g}(t) \int_{g(t)}^{t} (s - g(t)) \, ds \, dt = \int_{0}^{\infty} \left(1 + \frac{1}{2t\sqrt{t}}\right) \left(\frac{1}{2t}\right) \, dt = \infty.$$

Condition (16) fails here, however. In fact, it is easily verified that

$$\int_{t-(1/\sqrt{t})}^{t} (s-g(t))^2 \, ds = \lim_{t \to \infty} \sup \frac{1}{3t\sqrt{t}} = 0,$$

and $\lim_{z\to 0} \sup z/f(z) = 0$, and hence (16) is not satisfied.

References

- 1. W. J. KIM, Monotone and oscillatory solutions of $y^{(n)} + py = 0$, Proc. Amer. Math. Soc. 52 (1977), 77–82.
- 2. G. LADAS, V. LAKSHMIKANTHAM, AND J. S. PAPADAKIS, Oscillation of higher-order retarded differential equations generated by the retarded argument, *in* "Delay and Functional Differential Equations and Their Applications," pp. 219–231, Academic Press, New York, 1972.
- 3. W. E. MAHFOUD, Remarks on some oscillation theorems for *n*th order differential equations with a retarded argument, J. Math. Anal. Appl. 62 (1978), 68–80.
- 4. Y. G. SFICAS AND V. A. STAIKOS, The effect of retarded actions on nonlinear oscillation, *Proc. Amer. Math. Soc.* 46 (1974), 259–264.