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Oscillatory behavior of the solutions of the nth-order delay differential equation
L,x(t) + g(®) f(x] g(t)]) =0 is discussed. The results obtained are extensions of

some of the results by Kim (Proc. Amer. Math. Soc. 62 (1977), 77-82) for

y" +py=0.

The main purpose of this article is to extend some of the results of Kim
{1] for

x4+ pt)x=0
to the following nth-order delay differential equation
L,x(t) + q(0) f (x| g(5)]) = 0, (E)

where Lox(f)=x(t), L,x(t)=a,(O)(L,_,x@®)) (=d/dt), a,(t)=a,t)=1,
k=1,2,..,n
We shall discuss the following four cases:

(1) neven, g>0;
(2) nodd,g>0;
(3) nmeven, g<0;
(4) mnodd, ¢<0.

In the sequel, (E;), for example, will denote Eq. (E) satisfying condition (i)
fori=1,2,3,4.
The conditions we always assume for a;, g, g, and f are:

(i) g:[0,0)~ [0, oo) is continuous and nondecreasing, g(¢) < t, and
lim,. ., g(t) = o0
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{it} ¢:[0,00) - (—o0, 00) is continuous and g is not eventually iden-
tically zero on R = (—o0, 0 );

(i) a,:10,0)—>(0,0) is continuous, [ (I/as))ds=occ, i=
L,2.,0—1,

and either

(iv) lim, . (1/a,(8)) X%, ;a,(t) > 0, where a,(t) = 1, for every choice
of the constants ¢;, with ¢, > 0 for k 2,3,.,n—1;0r

(v) dim,,, (1/a,(0) Dhocia(t) > 0, where ay(t)=1, for every
choice of the constants ¢;, with ¢, >0 for k=, 2,..,n—1;

where
{
afty=| ——ds,
1( ) J 1(31) 1

t 1 51 1
@l = fc a(sy) Jc a,(s,) s ds;

~Sk—1 1

s, - sy,
c 1(51) e ag(sy) ‘

a,(t) =

5 Sn2 i
a, ()= ca1(51)f |C PR A ds, - ds,;
for some ¢ > 0;
{vi) f*R— R is continuous such that xf{x) > 0 for x # 0.
We also define

wi(t, S)—{—(*‘)—

and

ot 1

Js a;(u)
We restrict our discussion to those solutions x of the above differential

equations which exist on some ray [0, c0). Such a solution is said to be

oscillatory if it has arbitrarily large zeros. Otherwise the solution is said to

be nonoscillatory.
The oscillatory behavior of solutions of the above equation and/or related

wilt, §) = WU, 8) du, k=2,.,n— L
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equations has recently been studied by many authors, we mention in
particular the work of Kim [1], who discussed the monotonicity and the
oscillatory behavior of those solutions of (E) with a,(t)=1, i=1,.,n—1
which have the property that

x(0)/t* -0 as t— o or x(t)/t->0 as t— 0.

The following two theorems are extensions of the results by Kim:

THEOREM 1. Suppose that conditions (i)—(iv) and (vi) hold. If x is a
nontrivial solution of (E,) or (E,) such that x(¢)>0, x[g(t)] >0, and
x(t)/a,(t)—> 0 as t > oo, then

x()>0, X)>0, (—D'Lx(t)>0 for €0, ),

k=2,3,..,n—1, and

L, x(t)— 0 monotonically as t - o0, k=2,3,..,n— L. (5)
Proof.  Our proof is an adaptation of the argument developed by Kim.

Put y,=L, X, i€, X=Y, Y1 =V2/U1sesVy_1=Yn/0u_1, and let b be an
arbitrary point of [0, o). Then x satisfies the system

Ly,(s )
a,(s )

_ ' y3(s)
Yo(t) = p,(b) +  2,00) d

P@=yib)+ |

raa =1, a0+ [ 280

20 =5,0)~ [ 401 g6 s

Suppose x=y, is a solution of (E,). Then [{q(s)f(y,[g(s)])ds is a
nondecreasing nonnegative function of ¢ and clearly is positive on an interval
[c, ©0) for some ¢ > b. We claim that y,(b) > 0. To prove this, assume the
contrary, that y,(b) < 0. Then y,(f) is nonpositive, nonincreasing on [b, o)
and

740 =340) = | a6/ (&) ds <0,

Le.,

Y <yu(e) <0, tE€ e, ),
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or
Vua) < (Va, (1) y,(c).

Integrating the above inequality from b to ¢, we obtain

t 1
Yo t{D) Y1 (B) + y,(c) jbmds'*”oo as  7- 0.
n-—1

This in turn implies that p, ,(f{}>—o0 as 7— oo, and successively
W {f)» —oo as - oo, regardless of the values y(b), k=1,..,n— 1. In
particular, y,(t)=x(t)—» —o0 as t- oo, contrary to the hypothesis that
x(t) 2 0 on |0, c0). This contradiction proves y,(b) > 0.

Since b is arbitrary, we conclude that y,(¢) > 0, € |0, ). It is now easy
to see that y,(t) = 0 as t - oo for n > 2. If this were not the case, there would
exist a constant C > 0 such that

ya(t) > C, L€ ey, ®), for some ¢, > 0.

This implies, however, that

n—2

x(O)=pi(t)> N Viale) a () + Ca, (1), ay(t) =1

pra—

i=0
If we divide the above inequality by a,(¢) and take the limit as 7 oo, we
get, in view of (iv) with k=wn— 1, a contradiction to the fact that
x(#)/a,(t)— 0 as ¢~ co.
Next we shall prove that y, (1) <0 if a>2. If y, ,(6)>0, then
V,-1(t) >0 0n [b, 00) and there would exist constants C, > 0 and d > b such
that

Y i(t) > Cy, t€|d, o).

This would imply

n—3

x(t)=y,(t) > 2 Yiodd)y oy (6 + Cha, (),
i=0

which would again lead to a contradiction. Thus y,_ {6} <0 and hence
Voi{t) <0, since b is arbitrary. Moreover, we must have y, (1)~ 0 as
t— oo, for otherwise we would again be led to the contradiction that
x(t)» —o0 as t— oo. In this way, we can successively estabjish the
inequalities y,(t) > 0, y,_ () < 0,..., ,(£) > 0, ¥,{t) < 0, t € |0, c0) with the
property that y,(¢1)— 0 as - oo, k=3, 4,..., n. Continuing this process, we
deduce y,(z) > 0 and y,(t) > 0, £ € [0, o0 ). This proves the theorem for (E,).
The proof for (E£,) is similar; in this case, we first prove that y,(f} <0 and
v,{t) = 0 as t— oo, and continue as in the case of (E,}.

409/91/2-3
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In somewhat similar fashion, we can prove

THEOREM 2. Let conditions ()-(ii), (v) and (vi) hold. If x is a nontrivial
solution of (E,) or (E,) such that

x(£) >0, x[ g(t)) > 0, and x(t)/a,(t) 0 as t > oo, then

x(t) >0, #() <0, (~=1*L,x(t)>0 for t€[0, ), k=2,3,.,
n—1 and L, x(t)— 0 monotonically as t - o, k=2,.,n— L. 6)

We now give some illustrative examples.

ExampLE 1. Consider the equation
1 1 yyYy 15148 x
— X —_—— =1, t> 1L
(t (t<tx)))+16 £ 1+x* =

a,(t)= 4>~ 1)
a,(0) = i (log  — 1) + §
ay(t) = 4t (5> —log t) — .

Thus

Clearly, condition (iv) is satisfied, since ¢* will dominate all other terms
when ¢ is sufficiently large. The above equation has a solution x(f)=*?
satisfying (5). We may note that [1, Theorem 1] is not applicable to this
equation since f(x)# x and q;# 1, i=1,2,3.

ExampE 2. The equation

o 15V X
16 £ 1+x%/2)

has a solution x(f) = \ﬂ, satisfying (5). Again we note that [1, Theorem 1]
cannot be applied to this equation.

ExamPLE 3. The equation

1 .
(T (IX) ) + %t(7-a)/2 lx\a sgn(x) =0, a >0,

has a solution x(f)=¢""?

applied.

satisfying (6), while [1, Theorem | cannot be
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As was done by Kim, in order to characterize the behavior of solutions o/
(E,) or (E,) we may reformulate Theorem 1 as

THEOREM 3. Suppose that conditions (i}-(iv) and (vi) hold. Let x be o
nontrivial solution of (E,) or (E,) such that x(t)/a,(t)— 0 as 1 - 0. Then
either

(a) x is oscillatory on [0, o0), or

(b) x20 (xK0) on [ty,0) for some >0 and x {(—x) satisfies
inequalities (5) of Theorem 1. In particular, x (—x) increases (decreases)
monotonically on [t,, o).

CoroiLarY 1. If x is a nontrivial solution of (E,} or (E,) such that
x(t}— 0 as t = oo, then x is oscillatory.

THEOREM 4. Suppose that conditions (i}~(iv}) and (vi} hold, and that
(vily fx)>0o0r x#0 (' =d/dx).

Let x be a nontrivial solution of (E,) or (E,) such that x{(t)/a,(t)— 0 as
i~ 00. Then if

=00

im sup —— (t) { W, (8, ¢)q(s)ds >0, c>0,

X is oscillatory.

Proof.  Let x(f) be a nonoscillatory solution of (E;) or {E,). Without loss
of generality, we may assume that x{r) and x| g(r}] are positive for r > ¢, > 0.
Now a simple induction argument shows that for t ¢, and 1 <k <n—1

x(1) = x{ty) + }k: (‘”jk} Wj([’ £o) ij(l)

i=1

0wyl 1)L x(6))) s

In particular, if £ > 1,

n—1
x(@)=x(ty+ Y (1Y T wlts to) Lyx(e)

i=1

-f
| oo (s, ) @l)S (<L gs))]) . 7

to
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By Theorem 1, we have

ST wilt ) Lix() 20, t>t.
=1

Since x%(¢) > 0 on [¢,, 00), x is nondecreasing on {Z,, o0). Thus for ¢

x(t) > x(1) + j Wa (5 1) (5) (6 (5)1]) ds

t
> x(ty) +/ (<[ 8(E)]) | wa_ (5, £0) a(5) ds.
to
Now we divide both sides of the above inequality by «,(¢) and obtain

i 5O S i sup  CLEED
0= tim 20> tim sup OB [, (5,10 g(6) s > 0.

a contradiction. This completes the proof of the theorem.

As an illustration, we consider the equation

() ) o prstzon=o. > ®

where f and g satisfy the conditons in Theorem 4. We let

¢
w, (&, 1)=j sds= 32— 1),
wyt, 1)=131" —logt —3
wi(t, 1) = 42(36% —log 1) — 7%,
a,(t) =4 (log 2 — 1) + 4.
Now

lim su w,(s, 1
oo p 2( )J 3( )

=t —Stlne+ 5+ (1/160) — 3
= lim sup & +24 +(/1 ) 1o as - oo
=00 itfJog " — 1)+ 3

We conclude that if x is a nontrivial solution of (8) such that
Im,,  (x(t)/a,(t)) =0, then x is oscillatory. We may note that the above

conclusion does not appear to be deducible from other known oscillation
criteria.
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THEOREM 5. Let conditions (i}-(iv), (vi), and (vii) hold. If

[~ w,_{s,¢)q(s)ds = o0, c>20, 3

then every nonoscillatory solution of (E,) or {E,) is unbounded on [0, w0

Proof. We only consider Eq. (E,). Assume the contrary, that there exisis
a nontrivial solution x of (E,) which is bounded and positive oa {¢,, ),
¢, > 0. Since x increases monotonically by Theorem 1, there exist positive
constants M, and M, such that

M, < x[g()] < M,, LE |1y, ).

Using (7) and Theorem!, we have

n-1
N (LY T wile, 1) Lyx() — My < —x(t)

i=1

—~1O1) [ w15, 10) g(6) . (103

The left-hand side of (10) cannot tend to —oo as ¢— oo, while the right-hand
side does tend to —oo as f-» oo. Therefore, inequality (10) cannot hold
throughout [¢,, o). This incompatibility proves that the solution x must be
unbounded on |0, o).

ExampLE 5. Consider the equation

DR + 51/ x =0, 31, )
W}([a 1):%[2(%412_]% [)_T’g’ Whey

hence

— ;ﬂ:—logs~——— ds = o0.
© 1 /s s 1 )

Jyost 16 4 16

Thus all nonoscillatory solutions of {11) are unbounded. One such solution
is x(t) =1
Remarks. (1) Condition (9) is only a sufficient condition, since the

equation

(/DA R))) + 21/ x* =0,  >1
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has an unbounded nonoscillatory solution x(¢) = t*/2, whereas

st 8

foow(S) (S)ds—fOi — ——logs ! )ds<oo
L A S TR S AT

2) If a(t)=1, i=1l,.,n—1, f(x)=x, and g(t)=t, then [1,
Theorem 3| and our Theorem 5 are the same.

THEOREM 6. Let conditions (i}-(iii) and (v)}-(vii) hold. If x(t) is a
nontrivial solution of (E,) or (E;) such that x(t)/a,(t)— 0 as t > o, and if

. t i t
lim SUPJ j g(s)ds --- ds, _ 1>11m2ﬁ0supf(z) (12)

=0 g0 @1(Sp_1) %5, _, 51

£

then x is oscillatory.

Proof. We only consider (E,). Let x(¢) be a nonoscillatory solution of
(E,) and x(¢)/a () - 0 as t » co. Without loss of generality, we may assume
that x(¢) and x[ g(¢t)] are positive for ¢ > ¢,.

Hence (6) of Theorem2 holds. If s<¢ then g(s)<g{f), and
x| g(s)] > x| g(1)].

Hence we get

Lax(s) +.f(x[ 2(1)]){g(s)) 0. (13)

Integrating (13) n times, we have

x()—x[g)] + (=D L, «0) [ Sy o+ (1) L x(0)

g0 @1(8,_ 1)

t 1 ¢ t 1
X ds .- ds _
J.zf;(t) a(Sy-1) Ysu_y J;z a,_y(s;) 7t

RO );;(;1——) [ s e ds, <0,
which implies
$O+fGleO) [ s [ [ gy ds s, <xlg0) (14)

Since x(¢) < O for ¢ 3> t,, x(t) decreases to a limit ¢(>>0) as ¢t - oo. From
(14) we obtain ¢ =0. By (14)

x{g@)] ‘ 1 ‘
f(X[g(f)]) >Jg(t) al(sn—l) Sn—l.“"‘sl q(S)dS dsl"'dsngl, t>t0. (15)
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Taking the limit superior of both sides of (13) as - oo, we obtain 2
contradiction to (12). This contradiction completes cur proof.

COROLLARY 2. Assume that a, (ty=1, k= 1,.,n— L If x is a nontriviai
solution of (E,) or (E;) such that x(t)/t >0 as t - o and

~t

iim sup

[s —g®)]" "q(s)ds > (n— Dl limsup (z/f(z)),  (16)
=W Jg(t) z-0
then x is oscillatory.

ExampLE 6. Consider the equation

(@YY + (/) | x[Vell7 senx[\/T] =0,  a€(0, 1],

Let a,(t)=log . It is easy to verify that

4
<o

YA R
lim sup | ._( u(r”drduds
=00 J\/t_ S Jg Ju

. 1 1 (1/4)—(1/4)¢
=1 o \
s sup(log ) [ 16 8logr (log t)* ]

and

lirr(} sup (z/f(z)) = lirr(} supz' * =0, it a€ (0, 1),

Hence every nontrivial solution x of the above equation such that
x(t)/log t - 0 as { - oo is oscillatory.

Remark. Similar oscillation criteria have been obtained by Ladas,
Lakshmikantham, and Papadakis |2}, Mahfoud {3}, and Sficas and Staikos
|4]. According to {4, Theorem 1]. all bounded solutions of (E,) or (E,) with
a;,=1,i=1,.,n—1 are oscillatory if

S
f@)’

where g and f are the same as in Theorem 6. We give an example where
Theorem 6 is applicable; however, [4, Theorem 1] cannot be applied.

£
lim sup ]” [g(t) —g(s)]" " qls)ds > (n — 1)} lim sup (7
/=00 gt z—0

Exampre 7. Consider the equation

i— (1) x[\/1] =0. (i8)
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Now condition (16) implies
lim s f L (5= /) ds = lim sup (Llog s+ —=—1)=
Jim sup ) 7 (s s = lim sup {3 log 7i )—

Thus every nontrivial solution of the above equation with the prty that
x(t)/t— 0 as t > oo is oscillatory.
On the other hand

tlim sup 7 (\/- \f )ds = hm sup (

i AR

so criterion (17) is not applicable to (18).

Remark. The following result provides an oscillation criterion in case
either condition (16) or (17) is not satisfied.

THEOREM 7. Let conditions (1)-(iii) and (v)-(vii) hold,
=1 du
Lo 7(;)— <
and

© 1 ¢ 1 ¢ t
J a—l(T)_g(t) f(t) ay(Sy_2) s, J’

& Si

X q(s)dsds, - dt =0

If x is a nontrivial solution of (E,) or (E;) with the property that
x(t)/a,(t)— 0 as t - oo, then x is oscillatory.

Proof. As in the proof of Theorem 6, we have inequality (13). Integrating
(13) n— 1 times and using Theorem 2, we obtain
x| o(r)] 1 -t 1 . Ny
Sxlg®))  a,(t) Jew ay(s,_,) Sa_2 sy
X g(s)dsds, ---ds,_,<0.

Multiplying the above inequality by g(¢) and integrating, we obtain the
desired contradiction.

COROLLARY 3.  Assume that a,(1)=1, k= 1,...n— 1. If x is a nontrivial
solution of (E,) or (E;) with the property that x(t)/t - 0 as t— oo,
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Lt1 du
- < 00,
"‘io S(u)
and
.0 Lt
| &) )(S—g(l))"’ZQ(S) ds dt = o, (19)
- ‘e

then x is oscillatory.

For an illustration consider the equation

x|t — (/D] sgnx[t—(1/\/D]=0, a€(0,1), r>0. (20)

From Corollary 3 it follows that every solution of (20) with the property
thatx(¢)/t — 0 as 1 — oo is oscillatory since

X+

»g'w (1) —":(r) (s — g(t)) ds dt = J‘w ( L }\ﬂ> (—2%) dt = .

Condition {16) fails here, however. In fact, it is easily verified that

" i
' s —g(1))* ds = lim su =
i (s — &) lim p3t\ﬂ

1D
and lim, ,, sup z/f(z) = 0, and hence (16) is not satisfied.

0,
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