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Oscillatory behavior of the solutions of the nth-order delay differential equation 

Lx(t) + dt)f(x[s(t)l) = 0 is d’ Iscussed. The results obtained are extensions of 
some of the results by Kim (Proc. Amer. Math. Sot. 62 (1977), 77-82) for 
y’“’ + py = 0. 

The main purpose of this article is to extend some of the results of Kim 
[l] for 

XC”) + p(t) x = 0 

to the following nth-order delay differential equation 

-&A4 + dw(x~d~)l) = 03 03 
where &,x(t) = x(t), Lkx(t) = a,(t)(L,- ,x(t))’ (’ = d/dt), a,(t) = a,(t) = 1, 
k = 1, 2 ,..., n. 

We shall discuss the following four cases: 

(1) n even, 420; 

(2) n odd, 9 > 0; 

(3) n even, 4 < 0; 

(4) n odd, q < 0. 

In the sequel, (Ei), for example, will denote Eq. (E) satisfying condition (i) 
for i = 1, 2, 3,4. 

The conditions we always assume for ai, q, g, and f are: 

(9 g: P, 4 --$ Kt > . co is continuous and nondecreasing, g(t) < t, and lim 
t-00 g(t) = 00 ; 
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(ii) q: [O, co) + (-co, co) is continuous and 4 is not eventua!ly ide:~~ 
ticaily zero on R = (-co, co); 

(iii) ai: [0, co) + (0, ~73) is continuous, ja (l/a,(s)) dS = co, i = 
3, 2,..., n - 1, 

and either 

(iv) lim t+x: (l/a,(t)) C:=, ia,(t) > 0, where a,(t) = 1, for every choice 
of the constants ci, with ck > 0 for k = 2, 3 ,..., n - 1; or 

(v) lim,,, (I/a,(t)) Cfzo cia,(t) > 0, where a,(l) = 1, for every 
choice of the constants ci, with ck > 0 for k = 1, II,..., n - 1; 

where 

a,(t) = 
i 

f 1 

--ds,, 
c a,@,) 

for some c > 0; 

(vi) f: R --f R is continuous such that X$(X) > 0 for x # 0. 

We also define 

and 

We restrict our discussion to those solutions x of the above different&.! 
equations which exist on some ray [0, co). Such a solution is said to be 
oscillatory if it has arbitrarily large zeros. Otherwise the solution is said to 
be nonoscillatory. 

The oscillatory behavior of solutions of the above equation and/or related 
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equations has recently been studied by many authors, we mention in 
particular the work of Kim [l], who discussed the monotonicity and the 
oscillatory behavior of those solutions of (E) with ai(t) = 1, i = l,..., n - 1 
which have the property that 

x(t)/t’ + 0 as t+co or x(t)/t + 0 as t+co. 

The following two theorems are extensions of the results by Kim: 

THEOREM 1. Suppose that conditions (i)-(iv) and (vi) hold. If x is a 
nontrivial solution of (E,) or (EJ such that x(t) > 0, 
x(t)/a,(t) --t 0 as t + 00, then 

x(t) > 0, i(t) > 0, (-1)k-’ LkX(t) > 0 for 

k = 2, 3 ,..., n - 1, and 

Lkx(t) -+ 0 monotonically as t -+ 00, k = 2, 3 ,..., n - 1 ‘. 

x[ s(t)] > 0, and 

ProoJ Our proof is an adaptation of the argument developed by Kim. 
Put yk=Lkelx, i.e., x=yl, 9, =y,/at ,..., y,,-r =yn/an-,, and let b be an 
arbitrary point of [0, co). Then x satisfies the system 

y,(t) =yn(b) - j; ds)f(y,[&))l) ds. 

Suppose x=y, is a solution of (E,). Then lf,q(s)f(y,[g(s)])ds is a 
nondecreasing nonnegative function of t and clearly is positive on an interval 
[c, co) for some c > b. We claim that y,(b) > 0. To prove this, assume the 
contrary, that y,(b) < 0. Then y,,(t) is nonpositive, nonincreasing on [b, a) 
and 

Y,(C) =Y,@) - j= ~(s)f(y~g(s)l)ds < 0, 
b 

i.e., 

y,(t) G Y,(C) < 0, t E Ic, a>, 
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Integrating the above inequality from b to t, we obtain 

Y,~,(t)~Y,-,(b)+Y,(c) L-J-- 
‘b an-,@I 

ds -+ -a3 as t-+ 30. 

This in turn implies that ynm2(r) -P --03 as t --t co, and successively 
.~~(f)-+ -co as t + co, regardless of the values yk(b), k = I,..., II - 1. In 
particular, yi(t) = x(t) --t -co as t -+ co, contrary to the hypothesis that 
x(t) > 0 on 10, co). This contradiction proves y,(b) > 0. 

Since b is arbitrary, we conclude that y,(t) > 0, t E [0, co). It is now easy 
to see that y,(t) -+ 0 as t -+ 03 for II > 2. If this were not the case, there would 
exist a constant C > 0 such that 

Y,(f) > c, t E [c, 3 co), 

This implies, however, that 

for some c, 2 0. 

n-2 

x(ri =Yltt) > r Yi+ l(cl) ai+ lCt) + can- ICtL ITO 
a,(f) = 1. 

If we divide the above inequality by a2(t) and take the limit as t -+ co, -we 
get, in view of (iv) with k= II - 1, a contradiction to the fact that 
x(t)/a?(t) 3 0 as C --t 00. 

Next we shall prove that y,,- i(t) < 0 if n > 2. 
y, ,(L) > 0 on [b, co) and there would exist constants 
that 

Yn-i(f) > Cl, t E [d, co). 

This would imply 

n-3 

If y,- ,Cb) Z 0, then 
C, > 0 and d > b such 

which would again lead to a contradiction. Thus yn _ ljb) < 0 and hence 
.Y,~ _ ,(t) < O9 since b is arbitrary. Moreover, we must have y,_,(l) + 0 as 
L---) co, for otherwise we would again be led to the contradiction that 
x(t) --f --co as t-co. In this way, we can successively establish the 
inequalities y,(l) > 0, y,-,(t) < 0,...,y4(t) > 0, y,(l) < 0; I e [0, co) with the 
property that yk(t) + 0 as t--f co, k = 3,4,..., n. Continuing this process, we 
deduce y2(t) > 0 and yi(t) 2 0, t E [0, co). This proves the theorem for (E,). 
The proof for (E4) is similar; in this case, we first prove that y,(r) < 0 and 
y,(t) --f 0 as t--f 00, and continue as in the case of (E,). 
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In somewhat similar fashion, we can prove 

THEOREM 2. Let conditions (i)-(ii), (v) and (vi) hold. If x is a nontrivial 
solution of (E,) or (E2) such that 

x(t) > 0, x[ g(t)] > 0, and x(t)/a,(t) -+ 0 as t + co, then 

x(t) > 0, z?(t) < 0, (-l)“,?+(t) > 0 for 1 E [O, co), k = 2, 3 ,..., 
n - 1 and Lkx(t) --t 0 monotonically as t--t 00, k = 2 ,..., n - 1. (6) 

We now give some illustrative examples. 

EXAMPLE 1. Consider the equation 

(+ (t (-+)‘)‘i’+$-y+/o, t>l. 

Thus 

al(t) = f(t’ - 1) 

a,(t) = +t2(log t2 - 1) + a 

a3(t) = at’@’ - log t) - &. 

Clearly, condition (iv) is satisfied, since t4 will dominate all other terms 
when t is sufficiently large. The above equation has a solution x(t) = t3’* 
satisfying (5). We may note that [l, Theorem I] is not applicable to this 
equation sincef(x) # x and ai # 1, i = 1, 2, 3. 

EXAMPE 2. The equation 

x(4) + 15 fl 1 + t -w2) ___- 
16 t’ 1 +xZ(t/2)=0 

has a solution x(t) = 4, satisfying (5). Again we note that [ 1, Theorem l] 
cannot be applied to this equation. 

EXAMPLE 3. The equation 

+ it’7--n)‘2 (xla sgn(x) = 0, a > 0, 

has a solution x(t) = tr112 satisfying (6), while [ 1, Theorem ] cannot be 
applied. 
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As was done by Kim, in order to characterize the behav-ior of soiuiioies J:’ 
{E,) or (E4) we may reformulate Theorem 1 as 

THEOREM 3. Suppose that conditions ii)- and (tii) hold. Let x be ha 
nontrivial solution of (E,) or (E4) such that x(t)/a,(t) i 0 as t-+ CB. Then 
either 

(a) x is oscillatory on [O, a-2), or 

jb) x > 0 (x < 0) on [t,, co) for some t, > 0 aPzd x (-x) satisJies 
inequalities (5) of Theorem 1. In particular, x c-x) increases (decreases) 
monotonically on [t, , 00). 

COROLLARY 1. If x is a nontrivial solution of (E,) or (E4) such rhcl8 
x(t) + 0 as t + co, then x is oscillatory. 

THEOREM 4. Suppose that conditions (i>-(k) apzd (vi) hold, and U&Z 

(vii) f 'ix> > O&or x # 0 (’ = d/dx). 

Let x be a nontrivial solution of (E,) or (E4) such lhar x(t)/a,(t) -+ 0 IZS 
I+ XI. Then f 

x is oscillatory. 

ProoJ Let x(t) be a nonoscillatory solution of (E,) or (E4). ithou; loss 
of generality, we may assume that x(t) and x[ g(t)] are positive for t > 1, > 0. 
Now a simple induction argument shows that for c >: to and 1 < k < n - 1 

X(t) = X(t,) + 5 (-l)'-" wj(t3 i()) Ljx(f) 

j=l 

i- (-qk f W&, &))(L,x(s))~) A. 

to 

In particuiar, if I > t,, 

n--i 
X(t)=X(t, + s (-l)j-' Wj(t, t,)LjX(t) 

j=l 
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By Theorem 1, we have 

n-l 
IT1 (-l)j-’ wj(tY to> Ljx(t) > O7 t > tO’ 

Since i(t) > 0 on [to, co), x is nondecreasing on [to, co). Thus for t > to 

x(t) > x(to> + f ~n--Ib to> ds)S(x[g(s)l) ds 
h 

2 x(to> +fMdto)l) it w,-ds> to> q(s) ds. 
to 

Now we divide both sides of the above inequality by q(t) and obtain 

x(t) 0 = lim - > lim ~up~(~‘~(~~)‘) 
t-co q(t) ’ t-to0 ( 

* w,-,(s, to) q(s) ds > 0 
%(O to 

9 

a contradiction. This completes the proof of the theorem. 

As an illustration, we consider the equation 

where f and g satisfy the conditons in Theorem 4. We let 

wl(t, l)=fsds=t(r’- l), 
1 

w2(t, 1) = it’ - $ log t - 4, 

w,(t, 1) = $t2($’ - log t) - &-, 

a,(t) = $2 (log t2 - 1) + $. 

Now 

1 f 
lim sup- 
t-cc I a,(t) 1 

w&, 1) ids 

= lim sup 
&t’ - at In t + $ t + (1/16t) - f --f o. 

as t-+m. 
t-02 t t2(1og t2 - 1) + + 

We conclude that if x is a nontrivial solution of (8) such that 
lm t-tao(x(t)/a2(t)) = 0, then x is oscillatory. We may note that the above 
conclusion does not appear to be deducible from other known oscillation 
criteria. 
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THEOREM 5. Let conditions (iF(iv), (vi), and (vii) hid. IJ~ 

j’mw,,(s,c)q(s)ds= cx), ~20, 
“C 

,,s; 

then every nonoscillatory solution of (E,) or (E4) is unbounded on 10, 3cl j. 

F’roojI We only consider Eq. (E,). Assume the contrary, that there exists 
a nontrivial solution x of (E,) which is bounded and positive on [to, KI). 
I?,, > 0. Since x increases monotonically by Theorem 1, there exist positive 
constants M, and M, such that 

Using (7) and TheoremI, we have 

n-1 

~ 
,z* 

(-l)‘-” wj(t, t,) LjX(t) - M* ~ -X(to) 

-f @f, > jt w, _ 1 (s, to) q(s) ds. (W 
to 

The left-hand side of (10) cannot tend to -co as C-, co, while the right-hand 
side does tend to -co as t--t 03. Therefore, inequality (IO) cannot hold 
throughout [t,, co). This incompatibility proves that the solution x must be 
unbounded on 10, co). 

EXAMPLE 5. Consider the equation 

((I/t)(t((l/t) z?)‘)‘)’ + +$(1/t’) x = I), f> :, 

w,(t, 1) = $t2(j,t2 - log t) - &, 
(11; 

hence 

Thus all nonoscillatory solutions of (I 1) are unbounded. One such so~ut:or; 
is x(t) = 1312. 

Remarks. (1) Condition (9) is only a sufficient condition, since :he 
equation 

((l/t)(t((l/t) 2)‘)‘)’ + g-(1/t”) x3 = 0, r> 1 
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has an unbounded nonoscillatory solution x(t) = t3’*, whereas 

jmW3(S)q(S)dSq~ (-&-;logs-~)ds < 00. 
1 

(2) If q(t) = 1, i= l,..., n-l, f(x)=x, and g(t)=t, then [l, 
Theorem 3] and our Theorem 5 are the same. 

THEOREM 6. Let conditions (i)-(iii) and (v)-(vii) hold. If x(t) is a 
nontrivial solution of (E2) or (EJ such that x(t)/al(t) + 0 as t -+ co, and if 

then x is oscillatory. 

ProoJ We only consider (E2). Let x(t) be a nonoscillatory solution of 

(E2) and x(WG> + 0 as t--t co. Without loss of generality, we may assume 
that x(t) and x[ g(t)] are positive for t > t,. 

Hence (6) of Theorem 2 holds. If s < t, then g(s) < g(t), and 

4 g(s)1 h 4 gWl* 
Hence we get 

Lx(s) +f(4g(01)(ds)) G 0. (13) 

Integrating (13) y1 times, we have 

+ (-l>“-%-,x(t) 

which implies 

44 +f(xk(t)l)j”g~t, a,(s’,-,, [ -, a.0 j-)Ws ..a ds,-1 Gx[&>l. (14) 
n 

Since i(t) < 0 for t > t,, x(t) decreases to a limit c(>O) as t-t co. From 
(14) we obtain c = 0. By (14) 

tat,. (15) 
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Taking the iimit superior of both sides of (15) as l+ co, we obtam L 
contradiction to (12). This contradiction completes our proof. 

CoRokLARV 2. Assume that a,(t) = 1, k = I,..., n - 1, Ifx is Q mmmm 
soh~tion of (E2) or (E3) such that x(t)/t + 0 as t + 03 and 

then x is osciilatoiy. 

EXAMPLE 6. Consider the equation 

((4w4’> + U/t”) lx[fi]l* SW XL\/;] = Q, aE(O, 1;: t>Q. 

Let ai = log t. It is easy to verify that 

hm sup !I/;+ 
r-m 

[ u f re3 dz du ds 
i *u 

= ,“z sup(l0g t)’ 
+ L 

1 
+ - ___ 

8 log t 
+ (l/4,) - (l/4) f 

dlog t12 
=Kl 

and 

flz sup (z/f(z)) = Fz sup z!-a = 3, if LYE@ I), 

= 1, if a=!. 

Hence every nontrivial soiution x of the above equation such Iha6 
x(t)/log t 3 0 as t + co is oscillatory. 

Remark. Similar oscillation criteria have been obtained by Eadas, 
Eakshmikantham, and Papadakis 121, Mahfoud 131, and Xicas and Staikos 
141. According to 14, Theorem I]. all bounded solutions of (E2) or (E3) with 
ai = 1, i = I,..., n - 1 are oscillatory if 

where g and S are the same as in Theorem 6. We give an example where 
Theorem 6 is applicable; however, 14, Theorem 1 j cannot be applied. 

EXAMPLE 7. Consider the equation 

.I?- (l/t*)X[\/i] =o. 
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Now condition (16) implies 

lim sup 
t-cc I ;$ (s - v’? ds = ,‘iz sup ($ log t + 

= co. 

Thus every nontrivial solution of the above equation with the prty that 
x(t)/t -+ 0 as t--f co is oscillatory. 

On the other hand 

!;& sup&#-\/;)ds= fi$ sup (-$-$+ 1) = I, 

so criterion (17) is not applicable to (18). 

Remark. The following result provides an oscillation criterion in case 
either condition (16) or (17) is not satisfied. 

THEOREM 7. Let conditions (i)-(iii) and (v)-(vii) hold, 

*l du 
i- io I-(u) < Oo3 

and 

i i: --2 *.. It ” Sl 
xq(s)dsds,...dt=co. 

If x is a nontrivial solution of (E,) or (E3) with the property that 
x(t)/cQ(t) --t 0 as t + 03, then x is oscillatory. 

Prooj As in the proof of Theorem 6, we have inequality (13). Integrating 
(13) n - 1 times and using Theorem 2, we obtain 

i[g(t)J 1 .t 1 .t 

f(4 &)I) + al(t) i g(t) a,@,-,) s,-2 *.. -s, Jt I 
xq(s)dsds, . ..ds.p,<O. 

Multiplying the above inequality by g(t) and integrating, we obtain the 
desired contradiction. 

COROLLARY 3. Assume that a,(t) = 1, k = l,..., n - 1. If x is a nontrivial 
solution of (E2) or (E3) with the property that x(t)/t --t 0 as t--f 00, 



DELAYDIFFERENTIALEQL;AFIONS 339 

.*I du 
“*o f(u) < Oo3 I-- 

rhen x is osciilatory. 

For an illustration consider the equation 

.F+ jx[t- (l/j,ft)]/” sgnx[t- (l/$)j =O, a E (0, l), 1 > 0. (LO) 

From Corollary 3 it follows that every solution of (20) with the property 
:hatx(t)/t+ 0 as t --f cx) is oscillatory since 

&(t) j.( (s-g(t))dsdt=f= (1 -1&-i-$) dr= CD. 
-R(t) 

Condition (16) fails here, however. In fact, it is easily verified that 

and lim,_, sup z/‘(z) = 0, and hence (16) is not satisfied. 
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