On Oscillation of Solutions of n th-Order Delay Differential Equations

S. R. Grace and B. S. Lalli*
University of Saskatchewan, Saskatoon, Saskatchewan S7N0wO Canada
Submitted by C. L. Dolph

Oscillatory behavior of the solutions of the n th-order delay differential equation $L_{n} x(t)+q(t) f(x[g(t)])=0$ is discussed. The results obtained are extensions of some of the results by Kim (Proc. Amer. Math. Soc. 62 (1977), 77-82) for $y^{(n)}+p y=0$.

The main purpose of this article is to extend some of the results of Kim [1] for

$$
x^{(n)}+p(t) x=0
$$

to the following nth order delay differential equation

$$
\begin{equation*}
L_{n} x(t)+q(t) f(x[g(t)])=0 \tag{E}
\end{equation*}
$$

where $L_{0} x(t)=x(t), L_{k} x(t)=a_{k}(t)\left(L_{k-1} x(t)\right)^{\cdot} \quad(=d / d t), a_{0}(t)=a_{n}(t)=1$, $k=1,2, \ldots, n$.

We shall discuss the following four cases:
(1) n even, $q \geqslant 0$;
(2) n odd, $q \geqslant 0$;
(3) n even, $q \leqslant 0$;
(4) n odd, $q \leqslant 0$.

In the sequel, $\left(E_{i}\right)$, for example, will denote Eq. (E) satisfying condition (i) for $i=1,2,3,4$.

The conditions we always assume for a_{i}, q, g, and f are:
(i) $g:[0, \infty) \rightarrow[0, \infty)$ is continuous and nondecreasing, $g(t) \leqslant t$, and $\lim _{t \rightarrow \infty} g(t)=\infty ;$

[^0](ii) $q:[0, \infty) \rightarrow(-\infty, \infty)$ is continuous and q is not eventually identically zero on $R=(-\infty, \infty)$;
(iii) $a_{i}:[0, \infty) \rightarrow(0, \infty)$ is continuous, $\quad \int^{\infty}\left(1 / a_{i}(s)\right) d s=\infty, \quad i=$ $1,2, \ldots, n-1$,
and either
(iv) $\lim _{t \rightarrow \infty}\left(1 / \alpha_{2}(t)\right) \sum_{i=0}^{k} \alpha_{i}(t)>0$, where $\alpha_{0}(t)=1$, for every choice of the constants c_{i}, with $c_{k}>0$ for $k=2,3, \ldots, n-1$; or
(v) $\lim _{t \rightarrow \infty}\left(1 / \alpha_{1}(t)\right) \sum_{i=0}^{k} c_{i} \alpha_{i}(t)>0$, where $\alpha_{0}(t)=1$, for every choice of the constants c_{i}, with $c_{k}>0$ for $k=1,2, \ldots, n-1$;
where
\[

$$
\begin{aligned}
& \alpha_{1}(t)=\int_{c}^{t} \frac{1}{a_{1}\left(s_{1}\right)} d s_{1}, \\
& \alpha_{2}(t)=\int_{c}^{t} \frac{1}{a_{1}\left(s_{1}\right)} \int_{c}^{s_{1}} \frac{1}{a_{2}\left(s_{2}\right)} d s_{2} d s_{1}, \\
& \alpha_{k}(t)=\int_{c}^{t} \frac{1}{a_{1}\left(s_{1}\right)} \int_{c}^{s_{1}} \cdots \int_{c}^{s_{k-1}} \frac{1}{a_{k}\left(s_{k}\right)} d s_{k} \cdots d s_{1}, \\
& \alpha_{n-1}(t)=\int_{c}^{t} \frac{1}{a_{1}\left(s_{1}\right)} \int_{c}^{s_{1}} \cdots \int_{c}^{s_{n-2}} \frac{1}{a_{n-1}\left(s_{n-1}\right)} d s_{n-1} \cdots d s_{1} ;
\end{aligned}
$$
\]

for some $c \geqslant 0$;
(vi) $f: R \rightarrow R$ is continuous such that $x f(x)>0$ for $x \neq 0$.

We also define

$$
w_{1}(t, s)=\int_{s}^{t} \frac{1}{a_{1}(u)} d u
$$

and

$$
w_{k}(t, s)=\int_{s}^{t} \frac{1}{a_{k}(u)} w_{k-1}(u, s) d u, \quad k=2, \ldots, n-1
$$

We restrict our discussion to those solutions x of the above differential equations which exist on some ray $[0, \infty)$. Such a solution is said to be oscillatory if it has arbitrarily large zeros. Otherwise the solution is said to be nonoscillatory.

The oscillatory behavior of solutions of the above equation and/or related
equations has recently been studied by many authors, we mention in particular the work of Kim [1], who discussed the monotonicity and the oscillatory behavior of those solutions of (E) with $a_{i}(t)=1, i=1, \ldots, n-1$ which have the property that

$$
x(t) / t^{2} \rightarrow 0 \quad \text { as } \quad t \rightarrow \infty \quad \text { or } \quad x(t) / t \rightarrow 0 \quad \text { as } \quad t \rightarrow \infty
$$

The following two theorems are extensions of the results by Kim:
Theorem 1. Suppose that conditions (i)-(iv) and (vi) hold. If x is a nontrivial solution of $\left(\mathrm{E}_{1}\right)$ or $\left(\mathrm{E}_{4}\right)$ such that $x(t) \geqslant 0, x[g(t)] \geqslant 0$, and $x(t) / \alpha_{2}(t) \rightarrow 0$ as $t \rightarrow \infty$, then

$$
\begin{align*}
& x(t) \geqslant 0, \quad \dot{x}(t)>0, \quad(-1)^{k-1} L_{k} x(t)>0 \quad \text { for } \quad t \in[0, \infty), \\
& k=2,3, \ldots, n-1, \text { and } \\
& L_{k} x(t) \rightarrow 0 \text { monotonically as } t \rightarrow \infty, k=2,3, \ldots, n-1 \tag{5}
\end{align*}
$$

Proof. Our proof is an adaptation of the argument developed by Kim. Put $y_{k}=L_{k-1} x$, i.e., $x=y_{1}, \dot{y}_{1}=y_{2} / a_{1}, \ldots, y_{n-1}=y_{n} / a_{n-1}$, and let b be an arbitrary point of $[0, \infty)$. Then x satisfies the system

$$
\begin{gathered}
y_{1}(t)=y_{1}(b)+\int_{b}^{t} \frac{y_{2}(s)}{a_{1}(s)} d s \\
y_{2}(t)=y_{2}(b)+\int_{b}^{t} \frac{y_{3}(s)}{a_{2}(s)} d s \\
\vdots \\
y_{n-1}(t)=y_{n-1}(b)+\int_{b}^{t} \frac{y_{n}(s)}{a_{n-1}(s)} d s \\
\left.y_{n}(t)=y_{n}(b)-\int_{b}^{t} q(s) f\left(y_{1}[g(s))\right]\right) d s
\end{gathered}
$$

Suppose $x=y_{1}$ is a solution of $\left(\mathrm{E}_{1}\right)$. Then $\int_{b}^{t} q(s) f\left(y_{1}[g(s)]\right) d s$ is a nondecreasing nonnegative function of t and clearly is positive on an interval $[c, \infty)$ for some $c>b$. We claim that $y_{n}(b)>0$. To prove this, assume the contrary, that $y_{n}(b) \leqslant 0$. Then $y_{n}(t)$ is nonpositive, nonincreasing on $[b, \infty)$ and

$$
y_{n}(c)=y_{n}(b)-\int_{b}^{c} q(s) f(y[g(s)]) d s<0
$$

i.e.,

$$
y_{n}(t) \leqslant y_{n}(c)<0, \quad t \in[c, \infty)
$$

or

$$
\dot{y}_{n-1}(t) \leqslant\left(1 / a_{n-1}(t)\right) y_{n}(c) .
$$

Integrating the above inequality from b to t, we obtain

$$
y_{n-1}(t) \leqslant y_{n-1}(b)+y_{n}(c) \int_{b}^{t} \frac{1}{a_{n-1}(s)} d s \rightarrow-\infty \quad \text { as } \quad t \rightarrow \infty .
$$

This in turn implies that $y_{n-2}(t) \rightarrow-\infty$ as $t \rightarrow \infty$, and successively $y_{k}(t) \rightarrow-\infty$ as $t \rightarrow \infty$, regardless of the values $y_{k}(b), k=1, \ldots, n-1$. In particular, $y_{1}(t)=x(t) \rightarrow-\infty$ as $t \rightarrow \infty$, contrary to the hypothesis that $x(t) \geqslant 0$ on $\lfloor 0, \infty)$. This contradiction proves $y_{n}(b)>0$.

Since b is arbitrary, we conclude that $y_{n}(t)>0, t \in[0, \infty)$. It is now easy to see that $y_{n}(t) \rightarrow 0$ as $t \rightarrow \infty$ for $n>2$. If this were not the case, there would exist a constant $C>0$ such that

$$
y_{n}(t)>C, \quad t \in\left[c_{1}, \infty\right), \quad \text { for some } c_{1} \geqslant 0
$$

This implies, however, that

$$
x(t)=y_{1}(t)>\sum_{i=0}^{n-2} y_{i+1}\left(c_{1}\right) \alpha_{i+1}(t)+C \alpha_{n-1}(t), \quad \alpha_{0}(t)=1
$$

If we divide the above inequality by $\alpha_{2}(t)$ and take the limit as $t \rightarrow \infty$, we get, in view of (iv) with $k=n-1$, a contradiction to the fact that $x(t) / \alpha_{2}(t) \rightarrow 0$ as $t \rightarrow \infty$.

Next we shall prove that $y_{n-1}(t)<0$ if $n>2$. If $y_{n-1}(b) \geqslant 0$, then $y_{n-1}(t) \geqslant 0$ on $[b, \infty)$ and there would exist constants $C_{1}>0$ and $d>b$ such that

$$
y_{n-1}(t)>C_{1}, \quad t \in[d, \infty)
$$

This would imply

$$
x(t)=y_{1}(t)>\sum_{i=0}^{n-3} y_{i+1}(d) \alpha_{i+1}(t)+C_{1} \alpha_{n-2}(t)
$$

which would again lead to a contradiction. Thus $y_{n-1}(b)<0$ and hence $y_{n-1}(t)<0$, since b is arbitrary. Moreover, we must have $y_{n-1}(t) \rightarrow 0$ as $t \rightarrow \infty$, for otherwise we would again be led to the contradiction that $x(t) \rightarrow-\infty$ as $t \rightarrow \infty$. In this way, we can successively establish the inequalities $y_{n}(t)>0, y_{n-1}(t)<0, \ldots, y_{4}(t)>0, y_{3}(t)<0, t \in[0, \infty)$ with the property that $y_{k}(t) \rightarrow 0$ as $t \rightarrow \infty, k=3,4, \ldots, n$. Continuing this process, we deduce $y_{2}(t)>0$ and $y_{1}(t) \geqslant 0, t \in[0, \infty)$. This proves the theorem for $\left(\mathrm{E}_{1}\right)$. The proof for $\left(E_{4}\right)$ is similar; in this case, we first prove that $y_{n}(t)<0$ and $y_{n}(t) \rightarrow 0$ as $t \rightarrow \infty$, and continue as in the case of $\left(\mathrm{E}_{1}\right)$.

In somewhat similar fashion, we can prove
Theorem 2. Let conditions (i)-(ii), (v) and (vi) hold. If' x is a nontrivial solution of $\left(\mathrm{E}_{2}\right)$ or $\left(\mathrm{E}_{2}\right)$ such that
$x(t) \geqslant 0, x[g(t)] \geqslant 0$, and $x(t) / \alpha_{1}(t) \rightarrow 0$ as $t \rightarrow \infty$, then

$$
\begin{align*}
& x(t)>0, \dot{x}(t)<0,(-1)^{k} L_{k} x(t)>0 \text { for } t \in[0, \infty), k=2,3, \ldots \\
& n-1 \text { and } L_{k} x(t) \rightarrow 0 \text { monotonically as } t \rightarrow \infty, k=2, \ldots, n-1 \tag{6}
\end{align*}
$$

We now give some illustrative examples.
Example 1. Consider the equation

$$
\left(\frac{1}{t}\left(t\left(\frac{1}{t} \dot{x}\right)^{\cdot}\right)^{\cdot}+\frac{15}{16} \frac{1+t^{3}}{t^{5}} \frac{x}{1+x^{2}}=0, \quad t \geqslant 1 .\right.
$$

Thus

$$
\begin{aligned}
& \alpha_{1}(t)=\frac{1}{2}\left(t^{2}-1\right) \\
& \alpha_{2}(t)=\frac{1}{4} t^{2}\left(\log t^{2}-1\right)+\frac{1}{4} \\
& \alpha_{3}(t)=\frac{1}{4} t^{2}\left(\frac{1}{4} t^{2}-\log t\right)-\frac{1}{16} .
\end{aligned}
$$

Clearly, condition (iv) is satisfied, since t^{4} will dominate all other terms when t is sufficiently large. The above equation has a solution $x(t)=t^{3 / 2}$ satisfying (5). We may note that [1, Theorem 1] is not applicable to this equation since $f(x) \neq x$ and $a_{i} \neq 1, i=1,2,3$.

Exampe 2. The equation

$$
x^{(4)}+\frac{15 \sqrt{2}}{16} \frac{1+t}{t^{5}} \frac{x^{3}(t / 2)}{1+x^{2}(t / 2)}=0
$$

has a solution $x(t)=\sqrt{t}$, satisfying (5). Again we note that [1, Theorem 1] cannot be applied to this equation.

Example 3. The equation

$$
\left(\frac{1}{t}(t \dot{x})^{\cdot}\right)^{\cdot}+\frac{5}{8} t^{(7-\alpha) / 2}|x|^{\alpha} \operatorname{sgn}(x)=0, \quad \alpha>0
$$

has a solution $x(t)=t^{-1 / 2}$ satisfying (6), while [1, Theorem] cannot be applied.

As was done by Kim, in order to characterize the behavior of solutions of $\left(E_{1}\right)$ or $\left(E_{4}\right)$ we may reformulate Theorem 1 as

Theorem 3. Suppose that conditions (i)-(iv) and (vi) hold. Let x be a nontrivial solution of $\left(\mathrm{E}_{1}\right)$ or $\left(\mathrm{E}_{4}\right)$ such that $x(t) / \alpha_{2}(t) \rightarrow 0$ as $t \rightarrow \infty$. Then either
(a) x is oscillatory on $[0, \infty)$, or
(b) $x \geqslant 0(x \leqslant 0)$ on $\left[t_{0}, \infty\right)$ for some $t_{0} \geqslant 0$ and $x(-x)$ satisfies inequalities (5) of Theorem 1. In particular, $x(-x)$ increases (decreases) monotonically on $\left[t_{0}, \infty\right)$.

Coroliary 1. If x is a nontrivial solution of $\left(\mathrm{E}_{1}\right)$ or $\left(\mathrm{E}_{4}\right)$ such that $x(t) \rightarrow 0$ as $t \rightarrow \infty$, then x is oscillatory.

Theorem 4. Suppose that conditions (i)-(iv) and (vi) hold, and that
(vii) $\quad f^{\prime}(x) \geqslant 0$, for $\quad x \neq 0 \quad(\prime=d / d x)$.

Let x be a nontrivial solution of $\left(\mathrm{E}_{1}\right)$ or $\left(\mathrm{E}_{4}\right)$ such that $x(t) / \alpha_{2}(t) \rightarrow 0$ as $t \rightarrow \infty$. Then if

$$
\lim _{t \rightarrow \infty} \sup \frac{1}{\alpha_{2}(t)} \int_{c}^{t} w_{n-1}(s, c) q(s) d s>0, \quad c \geqslant 0
$$

x is oscillatory.
Proof. Let $x(t)$ be a nonoscillatory solution of $\left(\mathrm{E}_{1}\right)$ or $\left(\mathrm{E}_{4}\right)$. Without loss of generality, we may assume that $x(t)$ and $x[g(t)]$ are positive for $t \geqslant t_{0} \geqslant 0$. Now a simple induction argument shows that for $t \geqslant t_{0}$ and $1 \leqslant k \leqslant n-1$

$$
\begin{aligned}
x(t)= & x\left(t_{0}\right)+\sum_{j=1}^{k}(-1)^{j-1} w_{j}\left(t, t_{0}\right) L_{j} x(t) \\
& \left.+(-1)^{k} \int_{t_{0}}^{t} w_{k}\left(s, t_{0}\right)\left(L_{k} x(s)\right)^{\circ}\right) d s
\end{aligned}
$$

In particular, if $t \geqslant t_{0}$,

$$
\begin{align*}
x(t)= & x\left(t_{0}+\sum_{j=1}^{n-1}(-1)^{j-1} w_{j}\left(i, t_{0}\right) L_{j} x(t)\right. \\
& \left.\left.+\int_{t_{0}}^{t} w_{n-1}\left(s, t_{0}\right) q(s) f(x \mid g(s))\right]\right) d s \tag{7}
\end{align*}
$$

By Theorem 1, we have

$$
\sum_{j=1}^{n-1}(-1)^{j-1} w_{j}\left(t, t_{0}\right) L_{j} x(t) \geqslant 0, \quad t \geqslant t_{0}
$$

Since $\dot{x}(t) \geqslant 0$ on $\left[t_{0}, \infty\right), x$ is nondecreasing on $\left[t_{0}, \infty\right)$. Thus for $t \geqslant t_{0}$

$$
\begin{aligned}
x(t) & \geqslant x\left(t_{0}\right)+\int_{t_{0}}^{t} w_{n-1}\left(s, t_{0}\right) q(s) f(x[g(s)]) d s \\
& \geqslant x\left(t_{0}\right)+f\left(x\left[g\left(t_{0}\right)\right]\right) \int_{t_{0}}^{t} w_{n-1}\left(s, t_{0}\right) q(s) d s
\end{aligned}
$$

Now we divide both sides of the above inequality by $\alpha_{2}(t)$ and obtain

$$
0=\lim _{t \rightarrow \infty} \frac{x(t)}{\alpha_{2}(t)} \geqslant \lim _{t \rightarrow \infty} \sup \frac{f\left(x\left[g\left(t_{0}\right)\right]\right)}{\alpha_{2}(t)} \int_{t_{0}}^{t} w_{n-1}\left(s, t_{0}\right) q(s) d s>0
$$

a contradiction. This completes the proof of the theorem.
As an illustration, we consider the equation

$$
\begin{equation*}
\left(\frac{1}{t}\left(t\left(\frac{1}{t} \dot{x}\right)^{\cdot}\right)^{\cdot}\right)+\frac{1}{t^{2}} f(x[g(t)])=0, \quad t \geqslant 1 \tag{8}
\end{equation*}
$$

where f and g satisfy the conditons in Theorem 4 . We let

$$
\begin{aligned}
w_{1}(t, 1) & =\int_{1}^{t} s d s=\frac{1}{2}\left(t^{2}-1\right), \\
w_{2}(t, 1) & =\frac{1}{4} t^{2}-\frac{1}{2} \log t-\frac{1}{4}, \\
w_{3}(t, 1) & =\frac{1}{4} t^{2}\left(\frac{1}{4} t^{2}-\log t\right)-\frac{1}{16}, \\
\alpha_{2}(t) & =\frac{1}{4} t^{2}\left(\log t^{2}-1\right)+\frac{1}{4} .
\end{aligned}
$$

Now

$$
\begin{aligned}
& \lim _{t \rightarrow \infty} \sup \frac{1}{\alpha_{2}(t)} \int_{1}^{t} w_{3}(s, 1) \frac{1}{s^{2}} d s \\
& \quad=\lim _{t \rightarrow \infty} \sup \frac{\frac{1}{48} t^{3}-\frac{1}{4} t \ln t+\frac{1}{4} t+(1 / 16 t)-\frac{1}{3}}{\frac{1}{4} t^{2}\left(\log t^{2}-1\right)+\frac{1}{4}} \rightarrow \infty \quad \text { as } \quad t \rightarrow \infty
\end{aligned}
$$

We conclude that if x is a nontrivial solution of (8) such that $\operatorname{lm}_{t \rightarrow \infty}\left(x(t) / \alpha_{2}(t)\right)=0$, then x is oscillatory. We may note that the above conclusion does not appear to be deducible from other known oscillation criteria.

TheOrem 5. Let conditions (i)-(iv), (vi), and (vii) hold. If

$$
\int_{c}^{\infty} w_{n-1}(s, c) q(s) d s=\infty, \quad c \geqslant 0
$$

then every nonoscillatory solution of $\left(\mathrm{E}_{1}\right)$ or $\left(\mathrm{E}_{4}\right)$ is unbounded on $[0, \infty)$.
Proof. We only consider Eq. (E_{1}). Assume the contrary, that there exists a nontrivial solution x of $\left(\mathrm{E}_{1}\right)$ which is bounded and positive on $\left[t_{0}, \infty\right)$, $t_{0} \geqslant 0$. Since x increases monotonically by Theorem 1 , there exist positive constants M_{1} and M_{2} such that

$$
M_{1} \leqslant x[g(t)] \leqslant M_{2}, \quad t \in\left[t_{0}, \infty\right)
$$

Using (7) and Theorem1, we have

$$
\begin{gather*}
\sum_{j=1}^{n-1}(-1)^{j-1} w_{j}\left(t, t_{0}\right) L_{j} x(t)-M_{2} \leqslant-x\left(t_{0}\right) \\
-f\left(M_{1}\right) \int_{t_{0}}^{t} w_{n-1}\left(s, t_{0}\right) q(s) d s \tag{10}
\end{gather*}
$$

The left-hand side of (10) cannot tend to $-\infty$ as $t \cdots \infty$, while the right-hand side does tend to $-\infty$ as $t \rightarrow \infty$. Therefore, inequality (10) cannot hold throughout $\left[t_{0}, \infty\right)$. This incompatibility proves that the solution x must be unbounded on $[0, \infty)$.

Example 5. Consider the equation

$$
\begin{gather*}
\left((1 / t)(t((1 / t) \dot{x}) \cdot) \cdot+\frac{15}{16}\left(1 / t^{5}\right) x=0, \quad t \geqslant 1\right. \tag{11}\\
w_{3}(t, 1)=\frac{1}{4} t^{2}\left(\frac{1}{24} t^{2}-\log t\right)-\frac{1}{16},
\end{gather*}
$$

hence

$$
\int_{1}^{\infty} \frac{1}{s^{5}}\left(\frac{s^{4}}{16}-\frac{s^{4}}{4} \log s-\frac{1}{16}\right) d s=\infty
$$

Thus all nonoscillatory solutions of (11) are unbounded. One such solution is $x(t)=t^{3 / 2}$.

Remarks. (1) Condition (9) is only a sufficient condition, since the equation

$$
((1 / t)(t((1 / t) \dot{x}) \cdot))+\frac{15}{16}\left(1 / t^{8}\right) x^{3}=0, \quad t \geqslant 1
$$

has an unbounded nonoscillatory solution $x(t)=t^{3 / 2}$, whereas

$$
\int_{1}^{\infty} w_{3}(s) q(s) d s=\int_{1}^{\infty} \frac{1}{s^{8}}\left(\frac{s^{4}}{16}-\frac{s^{2}}{4} \log s-\frac{1}{16}\right) d s<\infty
$$

(2) If $a_{i}(t)=1, i=1, \ldots, n-1, f(x)=x$, and $g(t)=t$, then $[1$, Theorem 3] and our Theorem 5 are the same.

Theorem 6. Let conditions (i)-(iii) and (v)-(vii) hold. If $x(t)$ is a nontrivial solution of $\left(\mathrm{E}_{2}\right)$ or $\left(E_{3}\right)$ such that $x(t) / \alpha_{1}(t) \rightarrow 0$ as $t \rightarrow \infty$, and if

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \sup \int_{g(t)}^{t} \frac{1}{a_{1}\left(s_{n-1}\right)} \int_{s_{n-1}}^{t} \cdots \int_{s_{1}}^{t} q(s) d s \cdots d s_{n-1}>\lim _{z \rightarrow 0} \sup \frac{z}{f(Z)} \tag{12}
\end{equation*}
$$

then x is oscillatory.
Proof. We only consider $\left(\mathrm{E}_{2}\right)$. Let $x(t)$ be a nonoscillatory solution of $\left(\mathrm{E}_{2}\right)$ and $x(t) / \alpha_{1}(t) \rightarrow 0$ as $t \rightarrow \infty$. Without loss of generality, we may assume that $x(t)$ and $x[g(t)]$ are positive for $t \geqslant t_{0}$.

Hence (6) of Theorem 2 holds. If $s \leqslant t$, then $g(s) \leqslant g(t)$, and $x[g(s)] \geqslant x[g(t)]$.

Hence we get

$$
\begin{equation*}
L_{n} x(s)+f(x[g(t)])(q(s)) \leqslant 0 \tag{13}
\end{equation*}
$$

Integrating (13) n times, we have

$$
\begin{aligned}
x(t)- & x[g(t)]+(-1) L_{1} x(t) \int_{g(t)}^{t} \frac{1}{a_{1}\left(s_{n-1}\right)} d s_{n-1}+\cdots+(-1)^{n-1} L_{n-1} x(t) \\
& \times \int_{g(t)}^{t} \frac{1}{a_{1}\left(s_{n-1}\right)} \int_{s_{n-1}}^{t} \cdots \int_{s_{2}}^{t} \frac{1}{a_{n-1}\left(s_{1}\right)} d s \cdots d s_{n-1} \\
& +f(x[g(t)]) \int_{g(t)}^{t} \frac{1}{a_{1}\left(s_{n-1}\right)} \int_{s_{n-1}}^{t} \cdots \int_{s_{1}}^{t} q(s) d s \cdots d s_{n-1} \leqslant 0
\end{aligned}
$$

which implies

$$
\begin{equation*}
x(t)+f(x[g(t)]) \int_{g(t)}^{t} \frac{1}{a_{1}\left(s_{n-1}\right)} \int_{s_{n-1}}^{t} \cdots \int_{s_{1}}^{t} q(s) d s \cdots d s_{n-1} \leqslant x[g(t)] \tag{14}
\end{equation*}
$$

Since $\dot{x}(t)<0$ for $t \geqslant t_{0}, x(t)$ decreases to a limit $c(\geqslant 0)$ as $t \rightarrow \infty$. From (14) we obtain $c=0$. By (14)

$$
\begin{equation*}
\frac{x[g(t)]}{f(x[g(t)])} \geqslant \int_{g(t)}^{t} \frac{1}{a_{1}\left(s_{n-1}\right)} \int_{s_{n-1}}^{t} \cdots \int_{s_{1}}^{t} q(s) d s d s_{1} \cdots d s_{n-1}, \quad t \geqslant t_{0} \tag{15}
\end{equation*}
$$

Taking the limit superior of both sides of (15) as $t \rightarrow \infty$, we obtain a contradiction to (12). This contradiction completes our proof.

Corollary 2. Assume that $a_{k}(t)=1, k=1, \ldots, n-1$. If x is a nontriviai solution of $\left(\mathrm{E}_{2}\right)$ or $\left(\mathrm{E}_{3}\right)$ such that $x(t) / t \rightarrow 0$ as $t \rightarrow \infty$ and

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \sup \int_{g(t)}^{t}[s-g(t)]^{n-1} q(s) d s>(n-1)!\lim _{z \rightarrow 0} \sup (z / f(z)) \tag{16}
\end{equation*}
$$

then x is oscillatory.
Example 6. Consider the equation

$$
\left((1 / t)(t x)^{\circ}\right)+\left(1 / t^{3}\right)|x[\sqrt{t}]|^{\alpha} \operatorname{sgn} x[\sqrt{t}]=0, \quad \alpha \in(0,1], \quad t>0
$$

Let $\alpha_{1}(t)=\log t$. It is easy to verify that

$$
\begin{aligned}
& \lim _{t \rightarrow \infty} \sup \int_{\sqrt{t}}^{t} \frac{1}{s} \int_{s}^{t} u \int_{u}^{t} \tau^{-3} d \tau d u d s \\
& \quad=\lim _{t \rightarrow \infty} \sup (\log t)^{2}\left[\frac{1}{16}-\frac{1}{8 \log t}+\frac{(1 / 4)-(1 / 4) t}{(\log t)^{2}}\right]=\infty
\end{aligned}
$$

and

$$
\begin{aligned}
& \lim _{z \rightarrow 0} \sup (z / f(z))=\lim _{z \rightarrow 0} \sup z^{1-\alpha}=0, \quad \text { if } \quad \alpha \in(0,1), \\
& =1, \quad \text { if } \quad \alpha=1 .
\end{aligned}
$$

Hence every nontrivial solution x of the above equation such that $x(t) / \log t \rightarrow 0$ as $t \rightarrow \infty$ is oscillatory.

Remark. Similar oscillation criteria have been obiained by Ladas, Lakshmikantham, and Papadakis [2], Mahfoud [3], and Sficas and Staikos [4]. According to [4, Theorem 1]. all bounded solutions of $\left(E_{2}\right)$ or $\left(E_{3}\right)$ with $a_{i}=1, i=1, \ldots, n-1$ are oscillatory if

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \sup \int_{g(t)}^{t}[g(t)-g(s)]^{n-1} q(s) d s>(n-1)!\lim _{z \rightarrow 0} \sup \frac{z}{f(z)} \tag{17}
\end{equation*}
$$

where g and f are the same as in Theorem 6 . We give an example where Theorem 6 is applicable; however, $[4$, Theorem 1] cannot be applied.

Example 7. Consider the equation

$$
\begin{equation*}
\ddot{x}-\left(1 / t^{2}\right) x[\sqrt{t}]=0 . \tag{18}
\end{equation*}
$$

Now condition (16) implies

$$
\lim _{t \rightarrow \infty} \sup \int_{\sqrt{t}}^{t} \frac{1}{s^{2}}(s-\sqrt{t}) d s=\lim _{t \rightarrow \infty} \sup \left(\frac{1}{2} \log t+\frac{1}{\sqrt{t}}-1\right)=\infty
$$

Thus every nontrivial solution of the above equation with the prty that $x(t) / t \rightarrow 0$ as $t \rightarrow \infty$ is oscillatory.

On the other hand

$$
\left.\lim _{t \rightarrow \infty} \sup \int_{\sqrt{t} s^{2}}^{t} \frac{1}{\sqrt{t}}-\sqrt{s}\right) d s=\lim _{t \rightarrow \infty} \sup \left(\frac{1}{\sqrt{t}}-\frac{2}{\sqrt[4]{t}}+1\right)=1
$$

so criterion (17) is not applicable to (18).
Remark. The following result provides an oscillation criterion in case either condition (16) or (17) is not satisfied.

Theorem 7. Let conditions (i)-(iii) and (v)-(vii) hold,

$$
\int_{ \pm 0}^{ \pm 1} \frac{d u}{f(u)}<\infty
$$

and

$$
\begin{aligned}
& \int^{\infty} \frac{1}{a_{1}(t)} \dot{g}(t) \int_{g^{(t)}}^{t} \frac{1}{a_{2}\left(s_{n-2}\right)} \int_{s_{n-2}}^{t} \cdots \int_{s_{1}}^{t} \\
& \quad \times q(s) d s d s_{1} \cdots d t=\infty .
\end{aligned}
$$

If x is a nontrivial solution of $\left(\mathrm{E}_{2}\right)$ or $\left(\mathrm{E}_{3}\right)$ with the property that $x(t) / \alpha_{1}(t) \rightarrow 0$ as $t \rightarrow \infty$, then x is oscillatory.

Proof. As in the proof of Theorem 6, we have inequality (13). Integrating (13) $n-1$ times and using Theorem 2, we obtain

$$
\begin{aligned}
& \frac{\dot{x}[g(t)]}{f(x[g(t)])}+\frac{1}{a_{1}(t)} \int_{g(t)}^{t} \frac{1}{a_{2}\left(s_{n-2}\right)} \int_{s_{n-2}}^{t} \cdots \int_{s_{1}}^{t} \\
& \quad \times q(s) d s d s_{1} \cdots d s_{n-2} \leqslant 0 .
\end{aligned}
$$

Multiplying the above inequality by $\dot{g}(t)$ and integrating, we obtain the desired contradiction.

Corollary 3. Assume that $a_{k}(t)=1, k=1, \ldots, n-1$. If x is a nontrivial solution of $\left(\mathrm{E}_{2}\right)$ or $\left(\mathrm{E}_{3}\right)$ with the property that $x(t) / t \rightarrow 0$ as $t \rightarrow \infty$,

$$
\int_{ \pm 0}^{ \pm 1} \frac{d u}{f(u)}<\infty
$$

and

$$
\begin{equation*}
\int^{\infty} \dot{g}(t) \int_{g(i)}^{l}(s-g(t))^{n-2} q(s) d s d t=\infty \tag{19}
\end{equation*}
$$

then x is oscillatory.
For an illustration consider the equation

$$
\ddot{x}+|x[t-(1 / \sqrt{t})]|^{\alpha} \operatorname{sgn} x[t-(1 / \sqrt{t})]=0, \quad \alpha \in(0,1), \quad t>0 .(20)
$$

From Corollary 3 it follows that every solution of (20) with the property that $x(t) / t \rightarrow 0$ as $t \rightarrow \infty$ is oscillatory since

$$
\dot{g}(t) \int_{g(t)}^{t}(s-g(t)) d s d t=\int^{\infty}\left(1+\frac{1}{2 t \sqrt{t}}\right)\left(\frac{1}{2 t}\right) d t=\infty
$$

Condition (16) fails here, however. In fact, it is easily verified that

$$
\int_{t-(1 / \sqrt{t})}^{t}(s-g(t))^{2} d s=\lim _{t \rightarrow \infty} \sup \frac{1}{3 t \sqrt{t}}=0
$$

and $\lim _{z \rightarrow 0} \sup z / f(z)=0$, and hence (16) is not satisfied.

References

1. W. J. Kim, Monotone and oscillatory solutions of $y^{(n)}+p y=0$, Proc. Amer. Math. Soc. 62 (1977), 77-82.
2. G. Ladas, V. Lakshmikantham, and J. S. Papadakis, Oscillatiul of higher-oder retarded differential equations generated by the retarded argument, in "Delay and Functional Differential Equations and Their Applications," pp.219-231, Academic Press, New York, 1972.
3. W. E. Mahfoud, Remarks on some oscillation theorems for nth order differential equations with a retarded argument, J. Math. Anal. Appl. 62 (1978), 68-80.
4. Y. G. Spicas and V. A. Staikos, The effect of retarded actions on nonlinear oscillation, Proc. Amer. Math. Soc. 46 (1974), 259-264.

[^0]: ${ }^{*}$ I he work of the second author was partially supported by NSERC Grant No. A5293.

