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Abstract Flash flood in the cities led to high levels of water in the streets and roads, causing many

problems such as bridge collapse, building damage and traffic problems. It is impossible to avoid

risks of floods or prevent their occurrence, however it is plausible to work on the reduction of their

effects and to reduce the losses which they may cause. Flash flood mapping to identify sites in high

risk flood zones is one of the powerful tools for this purpose. Mapping flash flood will be beneficial

to urban and infrastructure planners, risk managers and disaster response or emergency services

during extreme and intense rainfall events. The objective of this paper is to generate flash flood

map for Najran city, Saudi Arabia, using satellite images and GIS tools. To do so, we use SPOT

and SRTM DEMs data for which accuracy assessment is achieved by using check points, obtained

by GPS observations. Analytical Hierarchical Process (AHP) is used to determine relative impact

weight of flood causative factors to get a composite flood hazard index (FHI). The causative factors

in this study are runoff, soil type, surface slope, surface roughness, drainage density, distance to

main channel and land use. All used data are finally integrated in an ArcMap to prepare a final

flood hazard map for study area. The areas in high risk flood zones are obtained by overlaying

the flood hazard index map with the zone boundaries layer. The affected population number and

land area are determined and compared.
� 2015 Authority for Remote Sensing and Space Sciences. Production and hosting by Elsevier B.V. This

is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1. Introduction

Flash flood is generally defined as a rapid onset of flood with a

short duration and a relatively high peak discharge. It occurs
rapidly, generally within one hour of rainfall, and sometimes
accompanied by landslides, mud flows, bridge collapse, dam-
age to buildings, and fatalities (Hapuarachchi et al., 2011).

To find some solutions to reduce the aforementioned effects,
the Kingdom of Saudi Arabia (KSA), ministry of housing
has offered many infrastructural and residential projects in

cities in the risk of flash flood. Among these cities is Najran
city, a city located in the south western of Saudi Arabia, near
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the border of Yemen. Najran extends an area of 119,000
square kilometers with a population rising from 47,500 in
1974 to 316,186 in 2013. It is of high importance for the city

urban planning to map and manage the natural risk causing
by flash floods for the future planning. With the advent and
development of computers disaster authorities can now predict

where floods will occur and how severe they’re likely to be with
an amazing accuracy. So far, many studies have been done to
map flash flood in different countries, such as the United

States (Mastin, 2009), China (Liang et al., 2011), Egypt (El
Bastawesy et al., 2009; Ghoneim et al., 2002), Saudi Arabia
(Saud, 2010; Dawod et al., 2011), India (Bhatt et al., 2010)
and Ghana (Forkuo, 2011). Digital elevation model (DEM)

is the most important input of the hydrological modeling to
get Flood hazard maps. The precision of watershed calculation
is directly dependent on the scale and precision of topographic

maps. The difference in the scale of used maps does not only
cause simplification growth of stream orders, but also cause
many changes in the ration of lower order streams

(El-Behiry et al., 2005). In this study, two different resolution
DEMs are used one from SPOT 5 satellite and the other from
Shuttle Radar Topography Mission (SRTM). Nowadays com-

mercial remote sensing satellite sensors such as SPOT 5
panchromatic (PAN) images can be used to produce DEM
for any areas on the Earth. Various applications of PAN ima-
gery can be found in the studies of panchromatic and multi-

spectral image fusion (Zhang, 2004) and (Simone et al.,
2002), topographic mapping and digital elevation modeling
(Shaker et al., 2003), feature detection and extraction(Segl

and Kaufmann, 2001; Luo et al., 2007; Corbane et al., 2008),
and stereo data extraction (Shaker et al., 2010). In 2003,
NASA released the SRTM free data set for some regions, with

3 arc-second resolution (approximately 90 m at the equator)
for the globe, and 1 arc-second (approximately 30 m at the
equator) for the United States. The main purpose of the pre-

sent study is to locate sites that are vulnerable to flash flood
in Najran city, using a Geographical Information System
(GIS) and the available data. Recently, GIS and other modern
spatial techniques offer capabilities to extract drainage net-

works and basins that have potential to influence accumula-
tion of run-off. Drainage flow can be integrated into the GIS
program to identify areas most likely to be in the risk of flash

flooding (Youssef and Pradhan, 2011).
There are many sources of errors in DEMs. Errors cover

random and human error in data acquisition including errors

caused by measurement equipment. They could also be due
to cloud and forest cover, Earth’s curvature, instable remote
sensing equipment, atmospheric refraction, image processing,
global positioning system (GPS) and inertial navigation system

(INS) Oksanen, 2006. The mentioned errors affect the accu-
racy of DEM directly and hydrological modeling indirectly.
Accurate DEM help to get accurate hydrological analyses

and estimation of hydrographs. Assessment of how satellite
derived DEM vertical inaccuracy affects watershed hydrologi-
cal modeling and analysis was conducted by El Bastawesy

(2007), Abou El-Magd et al. (2010), Endreny et al. (2000)
and Jayaprasad et al. (2000).

In this study two DEMs, one obtained from SRTM and the

other from SPOT 5 data sets, were used to analyze and calcu-
late flow directions. SRTM DEM with 90 m resolution was
downloaded from the web site (SRTM source). The primary
data sets used in this study were obtained from Najran
Municipality, including SPOT 5 DEM with 10 m resolution,
population data of 2013 and a digital remote sensing image
and zone boundaries shape file map.
2. Study area and data set

2.1. Study site

Najran city, located in the southwestern of Saudi Arabia

(Fig. 1), extends between latitude of 15�–17� N and longitude
40�–45�. E. An area approximately 55 km by 28 km, character-
ized by moderate to high relief with elevations from 1080 m to

2252 m above mean see level (see Fig. 2). The study area is sur-
rounded by high mountains from north, south and west. It
includes various land use activities including residential, urban,

and agricultural as well as road networks. Due to high eleva-
tion difference, the risk of damage caused by a flash flood is
very high in this area.

2.2. Data set

Used SPOT DEM was produced by Najran Municipality with
spatial resolution of 10 m. A SPOT DEM is a digital elevation

model produced by automatic correlation of stereo pairs
(known as Stereoscopy) acquired by the HRS instrument on
SPOT 5. Stereoscopy is traditionally used to measure variation

of parallax between two images of the same scene taken from
different view (Anderson and Mikhail, 2001). From parallax
measurement in two processing steps the DEM could be

obtained. To produce DEM, the first step is to compute the
parallax map and the second step is to project this map to
proper coordinate system. After processing, the image is re-
sampled to 10 m by 10 m and stored in Panchromatic (PAN)

image as shown in Fig. 2a. SRTM DEM for the study area
was downloaded from web site in geotiff image format, in dec-
imal degrees and datum WGS84. The data were then projected

to UTM coordinate system zone 38 N, using ArcMap (see
Fig. 2b).

SRTM data cover the whole world but there are lack of

data sets in some regions due to various reasons such as a lack
of contrast in the radar image, presence of water, or excessive
atmospheric interference. The areas, where data are missing,
usually appear as holes in the maps with non-random distribu-

tion ranging from 1 pixel to regions of 500 km2. These holes
impede the potential use of SRTM data, and have been the
subject of a number of innovative algorithms for filling-in

the holes through various spatial analysis techniques such as
interpolation methods (Reuter et al., 2007 and Jarvis et al.,
2008). Information about drainage networks could be avail-

able from topographic maps, but developments in satellite
image techniques provide elevation models that derive drai-
nage networks with higher accuracy (Forte and Strobl, 2006).

It is important to examine carefully the quality of the used
DEM to extract drainage network. In this work, the quality of
SPOT 5 and SRTM DEMs was examined with Ground
Control Points (GCPs) their elevations obtained from Global

Positioning System (GPS) technique. In this study, satellite
images were used after doing geometric correction to classify
the study area to determine zones and constructions like build-

ings, roads, which may be affected during flash flood. The
study area contains 75 districts as shown in Fig. 3.



Figure 1 Geographic map of the study area (Dawod et al., 2011).

(a) SPOT 5 raw DEM (b) SRTM raw DEM

Figure 2 Raw digital elevation models of the study area; lighter areas indicate higher elevation regions. The coordinate system is UTM

zone 38 north. DEM covers an area of 55 km by 28 km, with elevation ranging from 2252 to 1079 m above mean sea level.
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3. Methodology

If the rainfall intensity exceeds the evaporation rate and infil-
tration capacity of the soil, surface runoff occurs as a flash

flood. It also occurs when rainfall falls on impervious surfaces,
such as roadways and other paved areas. There are many
factors affecting flood hazard identification and modeling,
varying from one study area to another. For instance urban

flood modeling is extremely complex due to interactions with
various man-made structures such as buildings, roads, cul-
verts, channels, tunnels, and underground structures

(Hapuarachchi et al., 2011). A composite flood hazard index
based on seven causal factors is used during this work. These
factors, which are listed here, have been elected based on dif-

ferent case studies with similar characteristics (Eimers et al.,
2000; Yalcin and Akyurek, 2004; Pramojanee et al., 2001; El
Morjani, 2011; Pedzisai, 2010 and Ho et al., 2010).
1. Run off: The likelihood of a flood increases as the amount
of rain at a location increases (Nyarko, 2002). Higher pre-

cipitation intensity can result in more runoff because the
ground cannot absorb the water quickly enough. In this
study, the annual monthly maximum precipitation has been

used with a return period of 14 years (see Fig. 4) to model
runoff. Runoff production processes may be more impor-
tant than rainfall characteristics (National Oceanic and

Atmospheric Administration, 2010).
2. Soil Influences: Soil type and texture are very important

factors in determining the water holding and infiltration

characteristics of an area and consequently affect flood sus-
ceptibility (Nyarko, 2002). Some soil types can cause very
rapid runoff even in dry conditions (National Oceanic
and Atmospheric Administration, 2010). As a general rule,

runoff from intense rainfall is likely to be more rapid and
greater with clay soils than with sand.



Figure 3 Worldview-2 satellite images (50 cm spatial resolution) with zone boundaries.

Figure 4 Annual rains in Najran city from 2000 to 2014. These data values are collected from the station located at Najran airport

(http://www.theweathernetwork.com).
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3. Surface slope: Land surface slope is one of the effective ele-
ments in floods. The danger from flash flood increases as
the surface slope increases. It is a reliable indicator for flood

susceptibility (Islam and Sado, 2000 and Bapalu and Sinha,
2005). When river slope increases then the flow velocity in
the river also will increase (Masoudian, 2009).

4. Surface roughness: Surface roughness in terms of hydrody-
namic friction is an essential input for flash flood simula-
tion (National Oceanic and Atmospheric Administration,

2010). FromManning’s n (Chow, 1959) which are empirical
values. Reducing channel roughness results in faster stream
flow velocities and less infiltration.

5. Drainage density: Drainage density is the length of all chan-
nels within the basin divided by the area of the basin. If the
drainage network is dense at any area, it will be a good indi-
cator to high flow accumulation path and more likely to get

flooded (Islam and Sado, 2000).
6. Distance to main channel: Areas located close to the main

channel and flow accumulation path are more likely to

get flooded (Islam and Sado, 2000).
7. Land cover: This describes the appearance of the landscape
and is generally classified by the amount and type of
vegetation, which is a reflection of its use, environment,

cultivation and seasonal phenology. Land cover is other
essential influences on runoff (Alexakis et al., 2014).

Channel depth and river bed characteristic is an important
factor in hydrodynamic modeling. For example, when the dis-
charge of a river increases, the channel may become completely

full. Any discharge above this level will result in the river over-
flowing its banks and causing a flood. But vertical resolution
for used DEMs is not enough to get an accurate cross section

information for delineated streams or drainage rivers. The
sequences of operations are schematically shown in Fig. 5
and can be summarized as following:

1. georeferencing the satellite imagery and registering of the
result to the UTM coordinate system zone 38 N. 6. doing
unsupervised classification for the study area and convert-

ing population information to raster file.

http://www.theweathernetwork.com


Figure 5 Methodology for flood hazard mapping (w = the weight of each flood causative factor).
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2. calculating elevations accuracy for SPOT 5 and SRTM
DEMs using distributed control points.

3. calculating surface slope from SPOTDEM. Slope means the
maximum rate of change from every cell to its neighbors.

4. calculating drainage density from draining network and
basin information.
5. extracting main channel from draining network (which has
maximum stream order) followed by calculating perpendic-
ular distance from zone centroid to main channel.

6. preparing model file by Arc Hydro and HEC-GeoHMS

tools and computing hydrologic parameters by
HEC-HMS software.
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7. integrating all data in a GIS environment using the

Analytical Hierarchical Process (AHP) method to calculate
flood hazard map.

Fig. 6 shows some of data layers used in the analysis. Each
is depicted in a stretch color scale, where black represents the
highest values and white the lowest values. ArcMap 10.1 was
used to execute the above steps for both SRTM and SPOT

images to extract drainage flow net in the study area. The flow
networks and basin boundaries were then vectored. The basin
characteristics and the morphometric parameters were calcu-

lated from spot DEM.
AHP is a multi-criteria decision-making approach and was

introduced by Masoudian (2009) and Mastin (2009). The AHP

is a decision support tool. It is used to solve complex decision
problems, uses a multi-level hierarchical structure of objec-
tives, criteria, sub criteria, and alternatives. Three levels are
used in our problem, Goal, factors criteria and spatial

attributes. To explain The AHP, consider n elements to be
compared, C1 . . . Cn and denote the relative weight of Ci with
respect to Cj by aij and form a square matrix (A ¼ aij) of order

n with the constraints that aij ¼ 1=aijÞ, for i–j and aij ¼ 1, all i.
Figure 6 Some of data layers used in proposed analysis. The data are

higher values.

Figure 7 Ortho rectified satellite images from Worldview-2 sensor wi

system surveyed check points are used for elevation accuracy assessm
Such a matrix is said to be a reciprocal matrix. The weights are
consistent if they are transitive, that is aik ¼ aijaik for all i; j and

k. Such a matrix might exist if the aij are calculated from

exactly measured data. Then find a vector x of order n such
that Ax ¼ kx. For such a matrix, x is said to be an eigenvec-
tor (of order n) and k is an eigenvalue. For a consistent matrix

k ¼ n. A Consistency Index (CI) can be calculated from
ðkmax � nÞ=ðn� 1Þ. Large samples of random matrices have
been calculated by Masoudian (2009). A true Consistency ratio

(Cr) is calculated by dividing the CI for the set of judgments by
the Index for the corresponding random matrix. If Cr ratio
exceeds 0.1 the set of judgments may be too inconsistent to
be reliable. A CR of 0 means that the judgments are perfectly

consistent.

4. Results and discussion

4.1. SPOT and SRTM DEM elevation accuracy assessment

Accuracy of results depends on accuracy of used digital eleva-
tion model. Vertical accuracy for two data sources of DEMs is
converted to raster image by using ArcMap. Darker areas indicate

th 50 cm spatial resolution for the study area. 51 global positioning

ent for both DEMs SPOT and SRTM .



Table 1 Summary of SPOT 5 and SRTM DEMS accuracy

assessment for the study area.

Data SPOT 5 DEM (m) SRTM DEM (m)

Minimum �8.61 �23.71
Maximum 29.35 25.16

Sum �156.72 �335.55
Mean �3.072 �6.58
Standard deviation ±5.64 ±7.59
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checked and compared with 51 ground control points (GCP)

distributed into the study area (Fig. 7).
By using elevations of some available bench marks (BM)

inside the study area, the geoid undulation N (relation between
geoid and orthometric height) is calculated. The orthometric

heights of GCP points are transformed. Vertical accuracy
was determined by comparing the computed Z-coordinate val-
ues at check points with those obtained from post processing

of GPS surveys. Statistics of the results of each DEMs are
summarized in Table 1. Fig. 8 shows frequency distribution
of elevation differences between 51 check points surveyed by

GPS and two used DEMs. The root mean square error of ele-
vation differences (RMSE z) for SPOT one was ±5.64 m while
SRTM was found ±7.59 m.

4.2. Digital river network extraction

Digital river network from SPOT and SRTM data is extracted
by using ArcMap and presented in Figs. 9 and 10. Drainage

density is notably higher in SPOT data compared to the one
obtained from SRTM data. Maximum river order obtained
from SPOT and SRTM data sets are 7 and 6 respectively.

Drainage intensity for any area is calculated by dividing sum-
mation of drainage length by the zone area as shown in
Fig. 11. From this figure, the drainage network covers zones

of 38, 75, 8, 14 intensely, where corresponding drainage inten-
sity values for these zones are 34.6, 28.23, 26.56, 23.99

ðkm=km2Þ respectively. Zone 64 has minimum intensity drai-

nage value 0.6 ðkm=km2Þ. This indicates that zone 38 is the
most likely zone that would be at the risk of flash flood.

4.3. Basin extraction

By using ArcMap, the BASIN function has been used to
extract drainage basins. BASIN function analyzes the flow
(a) SPOT 5 DEM. RMSE z = ±5.64m

Figure 8 Histogram of elevation differences between 51
direction grid to find all sets of connected cells that belong
to the same drainage basin. It is clear from Fig. 12 that 5
basins are covering the study area. Basin number four covers

almost the whole residential area for the study area as shown
in Fig. 12. Table 2 shows draining intensity for extracted
basins. According to results, the study area has 5 different

basins. Basin number 2 has maximum drainage intensity.
Basin numbers 1 and 5 are leer from any construction like
buildings or roads, numbers 2 and 3 have few of them.

Residential zones for the study area lie in basin 4 as shown
in Fig. 12.

4.4. Land use

Land use is the human modification of the natural environ-
ment by constructing roads or buildings, it has an effect on
interception and run off velocity. Classification of satellite

image means assigning corresponding levels with respect to
groups with homogeneous characteristics, with the aim of dis-
criminating multiple objects from each other within the image.

The famous type of classification technique is the unsupervised
classification which doesn’t need prior knowledge of the area
and the supervised classification which needs prior knowledge

of the area (Lillesand and Kiefer, 2000). The Worldview-2
satellite images with 50 cm spatial resolution were used for
classification processing. By using ArcMap 10.1, the Iso
Cluster Unsupervised classification method is used for classifi-

cation. At the beginning, twenty-five classes are chosen, finally
by using Reclassify function under ArcMap toolbox, four
classes were obtained: roads, building, green area and bare

soil. The land cover classification map is shown in Fig. 13.
Evaluation of the classification’s accuracy is calculated by
comparing some specific pixels of the classified image and their

corresponding reference pixels, which belong to a known class,
succeeds the evaluation of the classification. The results of this
comparison are the error matrix, the accuracy totals and the

kappa statistics (see Table 3).

4.5. Simulation of runoff using HEC-GeoHMS and HEC-HMS

The Soil Conservation Service curve number (SCS-CN) loss

method is used to estimate runoff for the study area. The
response of sub basin to runoff is the lag time, time from cen-
troid of rainfall to peak runoff. This time determined by the

basin shape and size, land cover soil type and topography.
Only one rainfall gauge available for the whole study area is
(b) SRTM DEM. RMSE z = ±7.58m.

check points surveyed by GPS and two used DEM s.



Figure 9 Najran zones and obtained drainage network from SPOT data.

Figure 10 Najran zones and obtained drainage network from SRTM data.

Figure 11 Drainage intensity for the study area.
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used. In this study HEC-GeoHMS (US Army Corps of
Engineers, 2013b) and HEC-HMS (US Army Corps of

Engineers, 2013a) software are used to calculate sub basin
parameters and hydrological modeling.
4.5.1. Computing sub basin parameters by using HEC-GeoHMS

By using Arc Hydro tools for ArcGIS 10.1 (ESRI, 2011),
the following raster layers should be calculated for used
DEM;



Figure 12 Najran zones and Basins extracted from SPOT data. There are five basins inside the study area. Basin number four is covering

whole residential area.

Table 2 Extracted basins for the study area.

Basin nr. Basin area

km2

Summation of

network length km

Drainage intensity

ðkm=km2Þ
1 69.140 264.66 3.83

2 62.180 326.41 5.25

3 331.500 1711.44 5.16

4 929.594 4314.31 4.64

5 202.331 1023.11 5.06

Figure 13 Unsupervised classification for the study area.
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� fill sinks,
� flow direction,

� flow accumulation,

� stream definition (use threshold of 15 km2),
� stream segmentation,
� catchment grid delineation,

� catchment polygon processing,
� drainage line processing,
� adjoin catchment processing.

HEC-GeoHMS uses ArcGIS and the Spatial Analyst exten-
sion to develop a number of hydrologic modeling. Basin num-

ber 4 contains most residential areas as shown in Fig. 12,
therefore the most downstream cell of the DEM is chosen as
a project point (outlet for the watershed) to generate a new
project. Fig. 14 shows new project area with extracted sub
basins for chosen outlet point. Longest flow length, centroid
of basin, basin centroid elevation, and centroid longest flow
path are calculated.

Curve number (CN) parameter is a part of calculating run-
off volumes. For each sub basin, a CN value was calculated
based on land use, land cover, imperviousness and hydrologi-

cal soil type. Table 4 lists CNs based on combinations of Soil
Conservation Service (SCS) land-use data and soil data for
small urban watersheds (National engineering handbook,
1972).

To estimate the average CN values, equation 1 is used:

Cnaw ¼

Xn

i¼1
ðCni � AiÞ

Xn

i¼1
Ai

ð1Þ

where:

Cnaw = the area weighted curve number for the drainage
basin,

Cni = the curve number for each land use-soil group
polygon,
Ai = the area for each land use-soil group polygon

n= the number of land use-soil polygon in the drainage
basin.

After computing Cn grid and other hydrologic parameters
HMS setting is executed. HMS setting assigns the loss method,
transform method and routing method will be used in HMS
and generate the HMS schematic, such as river reach, junction

and sub basin.

4.5.2. Run-off model description

Lag time is defined as the length of time between the centroid
of precipitation mass and the peak flow. In HEC-HMS, the
parameter of lag time is necessary. The lag time was computed
using the SCS lag equation. The lag time could be calculated

from equation 2:

Tlag ¼
L0:8ðSþ 1Þ0:7

1900ðSlopeÞ0:5
ð2Þ



Table 3 Confusion matrix and overall accuracy and Kappa coefficient for unsupervised classification

process.

Reference test information 

Class Road Building Green Bare Row total User's 
Accuracy 

Remote 
sensing 

classificatio
n 

Road 101 0 25 20 146 69.18% 
Building 0 128 0 17 145 88.28% 

Green 10 0 104 1 115 90.43% 
Bare 2 4 2 105 113 92.92% 

Column 
total 113 132 131 143 519 

Producer's 
accuracy 89.38% 96.97% 79.39% 73.43% 

Overall accuracy = 84.4%, Kappa coefficient: 0.825.

Figure 14 Automatic sub basin delineation for outlet point driven by HEC-GeoHMS based on SPOT DEM.

Table 4 Curve number generation for small urban

watersheds.

SCS land use category Hydrologic soil group

A B C D

Road 98 98 98 98

Residential (low) 47 65 76 82

Agricultural 64 75 82 85

Bare land 77 86 91 94

Soil groups A, B, C and D are classified according to their infil-

tration rate.
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where:

Tlag = lag time in hours

L =watershed length (ft)
S = (1000/Cn) � 10
Slope= watershed slope in percentage.
Time of concentration Tc is the longest travel time taken by

a particle of water to reach a discharge point in a watershed

(Wanielista et al., 1997). According to the formula proposed
by SCS Tlag ¼ Tc � 0:6.

4.5.3. Meteorological model

The meteorological model in HEC-HMS is done by specifying

a daily time series of rainfall for the month June 2008 (see
Fig. 15). Rainfall data are downloaded and collected from
web site http://www.theweathernetwork.com. Muskingum

routing method is used.

4.5.4. Simulation results

Fig. 16 shows the summary of peak discharge and discharge

volume for SCS transform method.
Table 5 presents Hydrological results in the study area.

Time of concentration values varies between 20.3 and 1.0,
the mean value is 5.5 h. Peak discharge values are between

http://www.theweathernetwork.com


Figure 15 Rainfall information used for runoff simulation (from Jun.01.2008 to Jul.29.2008).

Figure 16 Runoff hydrographs from sub basin number 490.
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0.1 and 22.8, mean is 10.6 m3 /s. Surface slope values are
between 1.2% and 29.3% with 14.5% mean value. Recall from
Table 5, catchment 530 has the higher CN value, since it

mainly has least permeability. Depending on the fact that,
the lower the concentration time, the more the hazards in
the runoff (Dawod et al., 2011), catchment 530 may be consid-

ered as the most hazardous catchment.
Model calibration and validation can be done by compar-

ing model output with observed data. For the study area there

are no available observed stream flows. The stream flows can
be entered for a stream gauge, and linked to the watershed
outlet. This helps in comparing the model output with
observation, and also can be used for model calibration. The

study area is suffering from absent of stream gauge data,
therefore the obtained results are compared by using two
different DEMs for the study area.

4.6. Estimation of the weighted scores

The objective of this research is to map flood hazard zones in

Najran city. The decision factors to relate attributes to
suitability concerning a particular goal are the factors control-

ling flood hazard in the study area. The primary decision fac-
tors are considered in this study as listed in section 3 (see
Fig. 5). Once the decision factors are identified and selected,

sub-factors are identified to better describe these criteria. For
example, the surface slope is sub-divided into 7 sub-factors
(Eimers et al., 2000) (Pramojanee et al., 2001) and (Yalcin

and Akyurek, 2004). We used AHP, which is a multi-criteria
decision-making approach introduced by Saaty (1977) and
Saaty (1994). The AHP is a decision support tool, which is

used to solve complex decision problems. It uses a multi-
level hierarchical structure of objectives, criteria, sub criteria,
and alternatives. Three levels are used in our problem: goal,
factors criteria and spatial attributes. Each land use has a dif-

ferent surface roughness value. These values (ranged from 0.03
to 0.1) were specified for different land use (see Table 6).

The surface roughness map is derived from a land use map

and should have the same resolution as the used DEM. In the
US and Europe, a threshold in lag time of approximately 6 h is
often employed to distinguish a flash flood from a slow-rising

flood (Georgakakos, 1986). All causative factors are divided



Table 5 Hydrological results in the study area.

Sub basin Area km2 CN Longest flow path m Tlag H Tc H Slope% Peak Discharge m3/s Volume mm

W320 38.76 90 22064.9 1.49 2.5 21.22 18.5 161.8

W330 20.40 75.63 9002.5 1.02 1.7 28.43 7.7 119.76

W340 37.29 85 17556.7 1.27 2.1 29.32 16.7 146.99

W350 45.05 90 21006.4 1.39 2.3 22.52 21.6 161.8

W360 29.85 63.26 16296.1 4.47 7.4 7.46 8 85.15

W370 26.65 55.44 16404.1 12.20 20.3 1.51 5.2 64.26

W380 13.08 55.94 10422.1 9.45 15.8 1.18 2.6 65.6

W390 66.34 58.98 28987.2 8.63 14.4 6.26 15.2 73.62

W400 40.90 58.59 15671.1 3.96 6.6 11.32 9.2 72.58

W410 48.43 66.14 22395.6 3.26 5.4 20.10 14.2 93.05

W420 3.71 62.24 5599.5 2.81 4.7 3.59 1 82.38

W450 0.37 66.95 1663.2 1.47 2.5 1.47 0.1 95.29

W460 15.01 65.36 13857.3 2.28 3.8 19.93 4.3 90.9

W470 2.06 65.08 4185.9 2.84 4.7 1.91 0.6 90.13

W490 47.61 90 22950.2 1.54 2.6 20.98 22.8 161.8

W500 43.06 90 16698.0 1.47 2.4 14.00 20.6 161.8

W510 10.87 63.34 11018.8 5.29 8.8 2.84 2.9 85.37

W520 63.97 66.14 20354.4 3.13 5.2 18.66 18.8 93.05

W530 15.70 90 7914.1 0.60 1.0 25.13 7.5 161.8

W540 4.74 63.02 7292.8 3.18 5.3 4.11 1.3 84.49

W550 44.45 71.41 18648.3 2.36 3.9 21.49 15.2 107.77

W560 21.76 68.97 14738.1 2.15 3.6 20.36 7 100.91

W570 3.96 60.52 6648.0 3.84 6.4 2.77 1 77.73

W580 35.11 75.73 13337.7 1.52 2.5 24.01 13.3 120.05

W610 49.77 85 15101.9 1.15 1.9 28.05 22.3 146.99

W620 57.13 67.18 16380.6 2.51 4.2 19.39 17.3 95.93

Total 786.03

Table 6 Land use and surface roughness values Shaviraachin

et al., (2005) and Phillips and Tadayon, (2006).

Land use Manning’s n values

Build up (buildings, houses and roads) 0.10

Bare land (sand) 0.03

Farmland (crop and paster) 0.05
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into 7 sub factors to be considered in the calculation of the rel-
ative weight for each causative by using the AHP decision

making approach (see Fig. 17). Pairwise comparisons are used
to determine the relative importance of each alternative in
terms of each criterion. Decision makers can quantify the

importance of these criteria by comparing pairs of criteria on
a scale of 1 to 9, from least to most important, respectively.
Table 7 shows scale of relative importance to build pairwise

comparison matrix (Saaty, 1977).
The weight of each factor was given on the basis of its esti-

mated significance into cause of flooding. The weight of each
factor is described in Table 8.

We also divided each factor into a number of classes and
gave a weight to each class, according to its estimated signifi-
cance for causing flooding. The maximum and minimum

weights for each class of every factor are 7 and 1 respectively
(see Fig. 17). Final weighted flood hazard index is created from
an additive model which was adapted for this study (Bapalu

and Sinha, 2005). RIW are the normalized eigenvectors corre-
sponding to the maximum eigenvalues of the pair-wise
comparison matrices constructed at each level of the decision
hierarchy.

FHI ¼
Xn2

i¼1
ðRIW2

i Þ � ðRIW2
j Þ ð3Þ

where:
FHI = flood hazard index.

n2 = the number of level 2 decision factor.

RIW 2
i = relative importance weight of level 2 decision fac-

tor i.

RIW 2
j = relative importance weight of level 3 sub-factor j of

level 2 decision factor j.

The results of pairwise comparison matrix for this work are
presented in Table 9. In this table, the last column contains
RIW for each criteria.

With the input values in pairwise comparison and weights

calculated, consistency ratio (CR) was found to be 0.024.
This indicates a reasonable level of consistency in the pairwise
comparison of all factors. The FHI was used to consider the

rate of probability of flooding which was calculated based on
Eq. (4):

FHI ¼ Rf� 0:355þ St� 0:240þ Slo� 0:159þ Ro

� 0:104þDd� 0:068þDist� 0:045þ Lu

� 0:030 ð4Þ

Finally FHI is computed using weighted overlay analysis
and raster calculator in ArcMap 10.1 software. The obtained
values of FHI were classified into low, moderate, high and very



Figure 17 Decision hierarchies for flood hazard index factor.

Table 7 Scale of relative importance.

Intensity of importance

Definition

Intensity of importance

definition

1 Equal importance

3 Moderate

5 Strong

7 Very strong

9 Extreme importance

2,4,6 and 8 Intermediate values

Table 8 Factor weight.

Factor Weight

Runoff 7

Soil type 6

Surface slope 5

Roughness 4

Drainage density 3

Distance to main channel 2

Land use 1

Table 9 Pairwise comparison matrix and relative importance

weights (RIWs) for factor criteria.

Factor

criteria

Rf St Slo Ro Dd Dist Lu Priority

vector

Rf 1 2 3 4 5 6 7 0.355

St 0.5 1 2 3 4 5 6 0.240

Slo 0.33 0.5 1 2 3 4 5 0.159

Ro 0.25 0.33 0.50 1 2 3 4 0.104

Dd 0.20 0.25 0.33 0.5 1 2 3 0.068

Dist 0.17 0.20 0.25 0.33 0.5 1 2 0.045

Lu 0.14 0.17 0.20 0.25 0.33 0.5 1 0.030

Rf = Runoff, St = Soil type, Slo = Surface slope, Ro = Rough-

ness, Dd = Drainage density, Dist = Distance to main channel,

Lu = Land use, kmax ¼ 7:196, Cr = 0.024.
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high. According to these layers and calculation the Flash
Flood Hazard Map area defined is shown in Fig. 18. The nat-
ural breaks method is used for interval classification.

Hazard values have been divided into three classes. The
classification scheme is summarized in Table 10. To define
zones and population number likely to be affected by flash
flood, zonal statistics function is used, the classification scheme

is summarized in Table 10.
The areas at risk were obtained by overlaying the flood haz-

ard index map with the zone boundaries layer. Determination

of the areas at risk was needed for flood warning and flood-
plain development control. About 25% population residing
in 17 zones is vulnerable to low, 50% population belonging
to 23 zones vulnerable to moderate, 9% population belonging
to 17 zones vulnerable to high and about 16% population
belonging to 11 zones is vulnerable to very high flood hazard

risk in the study area. The high and moderate risk areas are
mostly in the relatively larger basin watersheds with high curve
number, surface slope and drainage density.

5. Effect of DEM type on flood hazard index map

DEM is the most important input of hydrological modeling. In

this paper two DEMs are used to calculate some causative fac-
tors. SRTM DEM is used also to get a new flash flood hazard
map for the same study area. Some of spatial maps for causa-

tive factor (which are dependent on used DEM like runoff,
drainage density and surface slope) should be recalculated.
Other causative factors (soil type, surface roughness, distance
to main channel and land use) will remain the same for used

two models, only their resolution should be adjusted to 90 m



Figure 18 Flood hazard map with 10 m resolution (SPOT DEM) for the study area (each pixel has a FHI value).

Table 10 Zones and population number which may be affected by flash flood based on SPOT DEM.

FHI range Hazard class Number of zones likely

to be affected

Total population likely

to be affected

Total population (%)

4.48–3.83 Very High 11 33295 16

3.83–3.18 High 17 19233 9

3.18–2.53 Moderate 23 103295 50

2.53–1.88 Low 17 51592 25

Total 68 207415 100

Figure 19 Automatic sub basin delineation for outlet point driven by HEC-GeoHMS by using both DEM.
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instead of 10 m. A threshold value of 15 square km2 is used in

stream definition step for both used DEMs. Table 11 shows a
comparison between drainage density and river lengths for
both used DEMs. Maximum obtained drainage density from

SPOT is almost two times than that of one SRTM.
To calculate runoff information based on SRTM DEM,

HEC-GeoHMS is used to generate physical characteristics of
sub basin and rivers. After that, the most downstream cell of
the DEM is chosen as a project point (outlet for the watershed)
to generate new project. The same storm and period



Table 11 Statistical analyses of extracted drainage length and

drainage intensity for 75 zones.

Data Drainage length Drainage intensity

SPOT m SRTM m SPOT

ðkm=km2Þ
SRTM

ðkm=km2Þ
Minimum 0 0 0 0

Maximum 84212.8 52158.4 22.70 10.70

Sum 1092620.7 914225.5 244.14 174.10

Mean 14568.3 12188.3 3.26 2.32
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information which is used before for SPOT runoff calculation
is used to simulate runoff. Fig. 19 shows obtained sub basins

for outlet point driven by HEC-GeoHMS from SPOT and
SRTM. Some differences between sub basin boundaries from
two models is noticed.

Table 12 shows Hydrological simulation results which were
obtained by HEC-HMS. Time of concentration values lies
between 11.82 and 1.02, mean value is 3.7 h. Peak discharge

values are between 0 and 23, mean is 9.51 m3/s. Surface slope
Table 12 Hydrological results in the study area by using SRTM D

Sub basin Area km2 CN Longest flow path m Tlag H

W400 19.00 83.61 7153.05 0.80

W410 37.56 84.17 19507.84 2.18

W420 38.70 86.95 17087.64 1.43

W430 27.61 87.88 17190.65 1.53

W440 21.38 87.72 11396.32 1.29

W450 39.15 76.79 16023.49 7.09

W460 20.87 77.19 10843.18 5.14

W470 22.55 78.48 13038.05 2.87

W480 6.96 82.51 7031.26 3.04

W490 52.23 78.50 23551.55 4.98

W500 6.86 77.68 5902.44 2.69

W510 15.15 76.75 9220.23 4.06

W530 4.52 73.29 4998.41 3.28

W540 37.34 85.01 12575.03 1.35

W550 28.48 78.10 13069.71 2.30

W560 2.02 81.43 3203.79 1.66

W570 9.82 74.12 10126.94 4.99

W580 26.68 85.97 11117.86 1.25

W590 8.22 77.21 8231.98 1.59

W600 42.48 83.09 15464.69 2.29

W610 19.47 80.89 10001.93 1.37

W620 26.04 85.59 13144.27 1.36

W630 16.25 82.96 7572.06 0.95

W650 6.59 76.30 8951.45 4.10

W660 34.17 79.64 15036.56 1.85

W670 10.37 80.23 7487.84 1.31

W680 24.80 79.77 11293.31 1.73

W690 18.79 82.35 11240.20 1.29

W700 0.12 77.50 645.69 0.61

W710 13.15 77.53 9876.93 1.72

W730 21.61 82.43 13510.73 1.38

W740 51.58 79.91 13920.08 1.45

W750 7.41 74.20 7737.85 2.06

W760 39.91 80.87 13748.40 1.61

W770 18.83 82.78 11565.32 1.17

W780 20.51 81.17 9401.57 1.12

Total 797.2
values are between 1.04% and 21.98% with 10.27% mean
value.

A new FHI is computed using weighted causative factors by

using equation 4 and raster calculation in ArcMap 10.1 soft-
ware. Fig. 20 shows obtained map.

To define zones and population number likely to be

affected by flash flood, zonal statistics function is used.
Table 13 summarizes the results.

22% population residing in 13 zones is vulnerable to low,

7% population belonging to 20 zones vulnerable to moderate,
69% population belonging to 30 zones vulnerable to high and
about 2% population belonging to 5 zones is vulnerable to
very high. To compare obtained results from two used

DEMs, the affected area are calculated in Table 14.

The study site covers a total of 446 km2. SPOT gives 9% of

land has very high risk flooding, while SRTM gives only 3%,
while obtained area with high flood risk from SRTM is dou-
bled that one from SPOT. Low and moderate flood hazard
indexes are almost the same value from both DEMs. A com-

parison between flash flood causative factors extracted from
two DEMs is shown in Table 15. Districts 75, 31, 39, and 1
have the same value of FHI from both used DEMs.
EM.

Tc H Slope% Peak Discharge m3 /s Volume mm

1.34 19.232 8.3 142.9

3.64 12.493 18 161.8

2.38 19.353 17.3 146.99

2.55 15.925 13.2 161.8

2.14 11.803 10.2 161.8

11.82 1.3811 15.1 123.09

8.57 1.3747 8.1 124.24

4.78 5.485 9 127.96

5.06 1.4133 3 139.68

8.29 4.6904 20.9 128.02

4.49 1.8378 2.7 125.65

6.76 1.7463 5.9 122.98

5.47 1.2211 1.6 113.09

2.25 15.237 16.7 147.01

3.84 8.7303 11.3 126.87

2.76 1.4468 0.9 136.53

8.32 1.5611 3.6 115.45

2.08 13.737 12.8 161.8

2.65 9.224 3.2 124.3

3.81 8.4718 20.3 161.8

2.28 13.571 8.2 134.95

2.27 15.495 12.5 161.8

1.59 15.712 7.8 161.8

6.83 1.6787 2.5 121.69

3.08 15.494 14 131.32

2.18 9.7936 4.3 133.03

2.88 11.106 10.2 131.7

2.16 16.685 8.1 139.21

1.02 1.0352 0 125.14

2.86 10.411 5.2 125.22

2.31 19.466 9.3 139.45

2.41 21.977 23.1 146.99

3.43 5.947 2.7 115.68

2.68 16.338 16.7 134.9

1.95 20.716 8.1 140.47

1.86 18.068 8.6 135.77



Figure 20 Flood hazard map with 90 m resolution (from SRTM DEM) for the study area (each pixel has a FHI value).

Table 13 Zones and population number which may be affected by flash flood based on SRTM model.

FHI range Hazard class Number of zones

likely to be affected

Total population likely

to be affected

Total population (%)

4.77–4.07 Very high 5 5199 2

4.04–3.31 High 30 174211 69

3.31–2.57 Moderate 20 18262 7

2.57–1.84 Low 13 55098 22

Total 68 252770 100

Table 14 Obtained areas in different flood hazards from both

DEMs.

Flood

risk

SPOT DEM SRTM DEM

District area

likely to be

affected km2

District

area

(%)

District area

likely to be

affected km2

District

area

(%)

Very high 40.6 9 13.8 3

High 44.8 10 94.8 21

Moderate 86.02 21 120.7 27

Low 274.5 62 216.7 48

Total 446 100 446 100

Table 15 Obtained areas in different flood risks from both

DEMs.

Factor SPOT SRTM

Min. Max. Mean Min. Max. Mean

Time of

concentration (H)

1.02 11.82 3.7 1 20.3 5.5

Surface slope % 1.2 29.3 14.5 1.04 21.98 10.27

Districts which have

very high FHI.

75, 66, 31, 40, 39, 44,

1, 15, 71, 64, 18

1, 38, 75, 39, 31
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From these results we can conclude that, low resolution
DEM (SRTM) gives low surface slope and higher time of con-

centration for extracted basins. This explains why high
resolution model (SPOT) gives more area that has very high

index value (9% of total area under very high risk by using
SPOT model while 3% by using SRTM). 4 districts (75, 31,
39, and 1) have the same index value from two models.

6. Conclusions and recommendations

The research presented in this article formulates an efficient

methodology to accurately delineate the flood hazard areas
in Najran city, KSA. Flash flood is a natural hazard that poses
a risk to both populations and structures within the affected

areas. There are several factors that affect the amount of run-
off which help determine the intensity of flooding. Therefore,
physical characteristics such as impervious surfaces, the
hydraulic rating of soil, and flow accumulation of water were

combined with demographic characteristics to create a com-
posite flood hazard index. In this paper some applications of
ArcMap are used to extract the drainage network based on

DEM for the study area. Two DEMs (SPOT 5 and SRTM)
data have been used. Accuracy assessment of used DEMs
has been investigated by using check points, their elevations

are collected by GPS observations. SPOT data are more accu-
rate and dense flow network for the study area. The study area
has 75 residential zones. Basin and drainage intensity of differ-

ent zones is determined. The causative factors of flash flood are
discussed. AHP is used to determine relative impact weight of
flood causative factors to get a composite flood hazard index
map. All used data are finally integrated to prepare a final
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flood hazard map for the study area. By overlaying the flood
hazard index map with the zone boundaries layer, the map is
obtained. By using SPOT model, 25% population residing in

17 zones is prone to low flooding risk, 50% population belong-
ing to 23 zones is prone to moderate, 9% population belonging
to 17 zones is prone to high and about 16% population

belonging 11 zones is prone to very high flood hazard risk.
While by using SRTM model, 22% population residing in 13
zones is prone to low flooding risk, 7% population belonging

to 20 zones is prone to moderate, 69% population belonging to
30 zones is prone to high and about 2% population belonging
5 zones is prone to very high flood hazard risk. Extracted flash
flood causative factors (runoff, drainage density, surface slope)

from low resolution DEM (SPOT) are near reality and give
higher values from low one (SRTM). The sensitivity of results
depends on the error in the input data as criterion weights and

criterion attributes. The produced maps from the current study
can be used as a guide for determining areas for further detail.
Detailed flash flood hazard mapping production requires low

resolution DEM which describes elevation changes densely
and precisely. In the study area, the calibration of the simulation
model results is difficult because of the absence of stream-

gauging records. Results from both used DEMs are compared.
Some recommendations can be addressed as the following:

1. Data inadequacies, stream-gauging records are absent; only

one gauge for the study area is available. This leads to,
flood hazard assessments based on direct measurements
may not be possible.

2. The input data used in flood hazard mapping (land use and
DEM maps) should be updated regularly. Updating land
use maps can be done by mapping all cover changes, such

as construction of dams or other major water resources
projects using recently satellite images. DEM can be
updated by using highly accurate and spatial resolution

measurement techniques such as LiDAR, terrestrial laser
scanner, total station or GPS observations.

3. Inside the study area, there are some areas that have inad-
equate hydraulic structures. However, the delineated

boundaries are not to be taken as rigidly defining the extent
of flooding. This is only possible with detailed surveys.

4. Both used DEMs are insufficient for getting accurate chan-

nel cross sections to be used for hydraulic modeling. It
needs higher resolution DEM.
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