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1. Introduction

One of the main advantages of wavelet systems is a good time-frequency localization. Smoothness of wavelets is also a
useful and desired property. So

to construct orthonormal wavelets that preserve time-frequency localization as their orders of smoothness increase (1)

is a very attractive and interesting problem. In the sequel, by a wavelet we mean a function generating an orthonormal basis
of Ly(R) (see the definition in Section 2). The measure of the time-frequency localization is an uncertainty constant (see
the definition in Section 2). So we are interested in wavelet families such that their uncertainty constants are bounded. It is
well known that the main classical families of wavelets contain wavelet functions with arbitrarily large finite smoothness.
Thus, one can investigate how a functional defined on a family of wavelets depends on smoothness of the wavelets. Let the
functional be the uncertainty constant. Unfortunately, the main classical families of wavelets lose the time-frequency local-
ization as smoothness of chosen wavelet function grows. More precisely, Chui and Wang in [1] show that the uncertainty
constants of scaling and wavelet functions tend to infinity as smoothness of the wavelets grows for a broad class of wavelets
such as, for example, Daubechies wavelets and spline wavelets. So Daubechies wavelets and spline wavelets don’t settle (1).

Later Chui and Wang in [2] and Goodman and Lee in [3] construct families of nonorthogonal scaling functions and semi-
orthogonal wavelet functions. These functions have an optimal uncertainty constants (in the sense of Heisenberg uncertainty
principle) as smoothness parameter tends to infinity. But there is no information about orthogonal scaling and wavelet
functions in [2] and [3].
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Trying to solve problem (1), Novikov in [4,5] constructs a family of modified Daubechies wavelets. The wavelet functions
are compactly supported. The squared modulus of the modified Daubechies mask is the Bernstein polynomial interpolating
a piecewise linear function (in the case of the classical Daubechies wavelet, the characteristic function is interpolated).
Smoothness of the modified Daubechies wavelet grows as the order of the Bernstein polynomial increases. The time-
frequency localization of the autocorrelation function constructed for the scaling function of this family is preserved with
respect to the smoothness parameter. But whether the modified Daubechies scaling and wavelet functions preserve the
time-frequency localization as smoothness grows is a still open question.

In [6], the author constructs a new wavelet family solving problem (1) for scaling functions. New scaling functions decay
exponentially and their Fourier transforms decay as O (w™)), like spline wavelets; the uncertainty constants of the scaling
functions are uniformly bounded with respect to the smoothness parameter l. The construction is based on the de la Vallee
Poussin means of a function closely connected with a Meyer mask.

In the present paper, we construct a wide class of such wavelets (see Theorem 1). A new wavelet function also decays ex-
ponentially at infinity and its Fourier transform decays as O (w™), like spline wavelet; that is why it is named a quasispline
wavelet function (see Definition 1). The construction is based on a linear method of summation satisfying some weak, easily
satisfied conditions (see Theorem 2). The wavelet system constructed in [6] is an example of the quasispline wavelets. It is
proven that the quasispline wavelets solve problem (1) for scaling and wavelet functions. Moreover, since the uncertainty
constant for Meyer scaling and wavelet functions is bounded, a stronger than the boundedness property for the quasispline
wavelets is proven (see Theorem 1, item 3). Namely, we establish the convergence of the uncertainty constants defined for
the new scaling (wavelet) functions to those of the Meyer scaling (wavelet) function used in construction with respect to the
smoothness parameter [. It is well known that the Meyer scaling functions and wavelets decay faster then any polynomial
o(t™), t — oo, n € N, but slower then exponent (see, for example, [7] the end of Section 5.4). So the spline wavelets and
the quasispline wavelets are better then the Meyer ones in the time domain (but, of course, not in the frequency domain).
Moreover, there is no infinitely smooth wavelet (¢ € C°) decaying like exponent [7, Corollary 5.5.3]. The above result (see
Theorem 1, item 3) also means that the uncertainty constant is a continuous functional of a nonorthogonal mask m;. It is
necessary to note that the construction of quasispline wavelets can be based not only on the Meyer mask but also on any
smooth orthogonal mask m such that m(w) =1 if |w| <a and m(w) =0 if b < |w| < 7 for some 7 /3 <a<b <2mw/3. Also
we estimate the rate of the convergence.

2. Notations and auxiliary results

By [x] denote an integer part of a real number x. By Ck[a, b] denote the space of all k times continuously differentiable
functions defined on the interval [a, b]. This is a Banach space with respect to the norm ”f”W’o‘o = Z’;:o MaXye([a,b] | fFD ).

Be definition, put C%[a, b] = C[a, b] and C[—m, 7] =C.
We choose the Fourier transform and the reconstruction formula as

8(w) :=/g(t)e‘“‘"dt, g(t) = Lfg(a))e”wdw
27
R R

respectively. For the Fourier series f ~ %" + Y nenGncosnw + by sinnw the sequence (Ank), k=1,...,n, n € N defines
a linear method of summation

n T
up(f,w):= %O + an’k(ak coskw + by sinkw) = / fUn(x, w)dx,

k=1 “n

where U, (x,w) :=1/2 + ZZ:l Ankcosk(x —w) and the terms

g T

1 1

ap = p= / f(w)cosnwdw, b, = p= / f(w)sinnwdw
- -7

are the Fourier coefficients. The following property holds true

un(f', @) = (un(f. ), . )

A function ¢ is called a wavelet function if the functions 24/2y/(2J - —k), j, k € Z form an orthonormal basis of
Ly(R).

By 6(w) denote an odd function equal to 7 /4 for w > 7 /3. We assume henceforth that 6(w) is a nondecreasing twice
continuously differentiable function. By wp denote a parameter such that 7/3 < wp <7 /2 and put wg := 7 — wp. In the
sequel, the notations of wy and w; will be frequently employed. A Meyer scaling function @M is defined by
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1, lw| < 2wo,
eM(w) := { cos(§ +9(M(Ia)| — 1)), 2w <|w| <21 — 2w,
0, |lw| > 27w — 2wg.

A Meyer mask is a 2w -periodic function defined on [—7, 7] as follows mM(w) := a"\/’(Zw). It is well known (see, for
example [7]) that under the above restrictions on the function 6 the constant of uncertainty for the Meyer scaling and
wavelet function is bounded.

The uncertainty constant of f is the functional AfA; such that

f

AG =11, f (t—top[fOF de. A% :=11]lI, [ (@ —wgp)?|f (@) do,
R R

_ 2 = ~ 2
top = 112, [ Ot o= 1712, [olf@ do
R R

The terms Ay, A}, tos, and Woj are called a time radius, a frequency radius, a time centre, and a fre-
quency centre of the function f respectively.

The numbers +e!® are called a pair of symmetric roots of a mask m if m(@) =m(@+ 7)) =0. A set B :=
{b1,...,bp} of distinct complex numbers is called cyclic if bji1 = b? for j=1,...,n and by4+1 = by. A cyclic set B is
called a cycle of a mask m if m(w + ) =0 for all w such that exp(iw) =b; for some j=1,...,n. A trivial
cycle is the set {1}. A mask is called pure if it has neither pairs of symmetric zeros nor cycles. The following result gives
a necessary and sufficient condition for integer shifts ¢ (- + k), k € Z of a scaling function ¢ to be stable (i.e., to form a Riesz
basis).

Proposition 1. (See [8, Corollary 3.4.15].) Integer shifts of a scaling function are stable (i.e., form a Riesz basis) iff its corresponding
mask has neither pairs of symmetric zeros nor nontrivial cycles.

The Holder exponent ay of a function f defined on some closed interval [a, b] is
af ::k+;telﬂg{ﬂ eR||fPx1) — fFO )| < Cplxr — x21?, 1, %2 € [a, b1},
where k := maxpez{h | f € C"[a, b]}. Another characteristic of smoothness of f is
03 ::,ngng{ﬂ €R| ]f(a))] < C(lol + l)iﬁ}.

Smoothness characteristics we introduced are known to satisfy the inequality 9} —1<af < 0}. By 6(m) we mean 6,
where ¢ is the scaling function corresponding to the mask m. The following result can be used for finding 6 (m).

Proposition 2. (See [8, Lemma 7.4.2 and Proposition 7.4.4].) Suppose that some mask m is represented as m(w) = (cos %)L*'lmc(w),
where m is a pure mask; then (m) =L + 1+ 6(m¢) and 8(m¢) = limy_, o, 6, where

1
b=~ logy [ me(@) - me (2 w) | . ?

3. Basic construction and conditions for a linear method of summation

Let us introduce a nonorthogonal mask of a new wavelet function. It is defined as the following 27 -periodic trigonomet-
ric polynomial

2 M
Uny (MM,
my(@) = (cos 9) LIMQ)) (4)
2/ upgy(m”,0)
where
M
M m* (w)
m (w) := , leN, (5)
(cos $)2
M

m™ is a fixed Meyer mask, and the trigonometric polynomial u, (mIM, -) is defined by a fixed linear method of summation
for the function m}M.

Since m; is a trigonometric polynomial and m;(0) = 1, we see that the infinite product ]‘[;’; m,(%) converges absolutely
and uniformly on an arbitrary compact set. (If an infinite product is equal to zero, we assume that it converges.) Thus the
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function m; is a mask for a stable, but not orthogonal scaling function ¢;, where the Fourier transform of ¢; is determined
by the equality

o
— w
wz(w)=]_[mz<§>- (6)
j=1
The functions ¢;(-+k) for k € Z form a Riesz basis in the closure of their linear span; this claim is a straight corollary of the

subsequent Lemma 6 and Proposition 1. From the estimate (17) to be established later it follows that the orthogonalizing
factor

~ 2
B () =Y _|Giw+27k)| (7)
keZ

is well defined. Using the function &; we define the Fourier transform of an orthogonal scaling function

o (@) = P D] (), ®)
an orthogonal mask

mit (@) := (@) P> (@)D 2w), 9
and, finally, the Fourier transform of a wavelet function

— —io — (@ -~ (o

Yt () =e2 m,i<5+n><p,i<§). (10)

Definition 1. By a quasispline wavelet function we mean the function 1//,1-, where the Fourier transform %J‘

is defined by (10) and a nonorthogonal mask is defined by (4). The functions (pll, m,L, ¢, m; defined by (8), (9), (6),
and (4) respectively are called a quasispline scaling function, a quasispline mask, a nonorthogonal
quasispline scaling function, and a nonorthogonal quasispline mask respectively.

So for any fixed Meyer mask and for any fixed linear method of summation we get the sequence (‘l’ll)leN of quasispline
wavelet functions, and the symbol [ is a smoothness parameter (see Theorem 4).
In the remaining part of the article the following main theorem will be proven.

Theorem 1. Suppose that 1//1L ((p,i) is a quasispline wavelet (scaling) function (see Definition 1). Let us introduce the following nota-
tions
pw :=la®+yd, e=al)/|m|..  Co:=32w%*™/27,

we=to ('), wne=ue (7)), vor=w/wm©), o= influ©)
=10

; (11)

where a(l), y (I) are defined by (12) and (13) respectively in the subsequent Theorem 2, the parameter ly is defined in the proof of the
subsequent Lemma 1, the term wo, 7w /3 < wo < 7 /2 is the parameter of the Meyer mask, the function mlM is defined by (5); then

1. The functions <pf- and W‘ decay exponentially at infinity (Theorem 5).

2. The functions gall and w,i decay as O (w™) at infinity, namely the Holder exponents o and oyt of the functions satisfy the
inequalities

c c
21— 1+1logy| ———— ) <, <21, 21—1+4+1logy| ———— )| <, 1 <21
i g2<1+e<l>> ot i g2(1+sa>> i
for sufficiently large | € N (Theorem 4).

3. The uncertainty constants A;L AL (AfbL AZJI) of the quasispline scaling (wavelet) functions ¢~ (") tend to those of the Meyer
1 @ 1 i

scaling (wavelet) function, namely

82 = A2y | = 0 (max{je), (de2en) 14 ),

_ I+ed)
a2, — a2y | = 0 (max{u. 1, ),

— 1+e(d)
‘A%[I - AZWAM‘ = 0 (max{u(),IC, I+2logy .

e(l
|A2]/f’L — Azx//M| =0 (max{,u(l)’ (462a)0)—l+210g2 L@

as | — oo (Theorems 3, 6, and 7).
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For the quasispline wavelet function wﬁ to satisfy Theorem 1 and therefore to solve problem (1) it is sufficient to have
the following three conditions for the polynomials u; (see (11)).

Theorem 2. Suppose that there exists a sequence n(l) for | € N such that

Ju—m)|| . =ta®)=0(I"") asl— oo, (12)
Juri— (mM) | =y =0(1) asl— oo, (13)
uny(mM, ) #0, (14)

where uj and uq ; are defined by (11); then the corresponding quasispline scaling (8) and wavelet (10) functions satisfy the conditions
of Theorem 1.

De la Vallee Poussin means satisfy these conditions (for the proof see [6, p. 460, p. 465, and p. 461] respectively).
Conditions (12)-(14) define a very wide class of linear methods of summation. It follows from Proposition 1 in [6] that for a
linear method of summation to satisfy the assumptions (12)-(14) it is sufficient to have [upqy(f, ) — fllc <Aw(f, (n())~%)
for any f € C(—m,m), where o > 0, A is an absolute constant, and w(f,-) is a modulus of continuity. The inequality is
satisfied for many of the famous classical means defined for example by operators such as Fejer, Rogosinski, monotonous de
la Vallee Poussin, Abel-Poisson operators.

4. Convergence of frequency radii for the scaling functions

Lemma 1. |m; — mM||c < Ka(l) =o(~ 1) as| — oo, where K := % + 1 is bounded.

Proof. Combining (4) and (12), we get

_mM| = 2 Uy u o
Im =mle = Jeostwr2) 7 = < faw ~™
o M llullc
- + - <——— 0)—1|+ad
u;(0) U c =" lrlfz<;1|uk(0)||”’( ) — 1]+ ()

llurllc )
| —————+1)a®d.
<1ﬂfk>l [uk (0)]

Since u;(0) — m,"/’(O) =1 as | — oo, it follows that infy>, [ux(0)| > co > 0 for some lp € N and some positive constant co,

llugllc :
therefore > T O] is bounded. O

From here, we suppose that [ > Iy.
Lemma 2. ||m; — mMY|lc = 0(u(l)) as | — oo. The parameter i (l) are defined by (11).

Proof. Using Lemma 1, (2), and (13), we get

’((cos %)211”(0)))/ - (mM)/(a))‘ = ’—l(cos
= '—l(cos

2
+ (cos %) (mM) (@) + ur (@) — (mM) (@) — (mM),(a))‘

a1, o\ 2!
) sin Eul(a)) + <COS E) uy () — (mM)/(G))‘

N[E N[E

2-1
) sin %(m{w(w) + u(@) —m’ (@)

2-1
= ’—ltan %mM (w) — l(cos E) sin %(u,(a)) —m ()

( w)m mM) (@) (cos $)* +I(cos $)* ' sin §mM ()
+(cos= ) -
(cos §)4

2
+ (cos %) (u11(w) — (mlM)/(w)) - (mM)/(a))‘
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w 21-1 w
= ‘—l(cos 5) sin o) (ui(w) — m (@)

2
+ <cos %) (u11(w) — (m,M)/(a)))‘

=0l () + y ().
Hence for m;, we have
, _[Wcos M ur))
) = () @] = | “CLBOL () )
21 / 21 i
w -1 w M /
< ‘((cos 5) u,(w)) lu7 ') — 1|+ .((cos E) ul(a))> — (m") (a))‘
’ O(ad
= ([(m") @) | + 0 (le) + y 1)) (Oé( Dy O(lay+y M)
=0(la(h+y®M). O
Lemma 3. |§; — W”C[a,b] =0(u()) asl— oo foranya <b, a,b € R. The parameter (1) is defined by (11).

Proof. One can rewrite the proof of the lemma from [6, Lemma 1]. It is sufficient to change the notation v; by u; and so
on and to use the conditions (12), (13) instead of the property of the de la Vallee Poussin mean (see the formulas (4)-(7),
(11), (12) in [6]). O

Lemma 4. |§; — M||L2(R) O (max{u (), (4e (11).

Proof. We claim that there exists a function & such that & € L?(R) and |@(w)| < £(w). The construction of the majorant
can be rewritten with an inessential change of notation from [6, Lemma 2]. So let us write the results. By definition, put

__ o1 (@2
Poi(@) =[] i@z 7) |

15
11w 1>

Then under the assumption |w| > 1 we have

Tol(@)| < |w| 20 Mo 2000 (D))  |¢y(2108 L) p2w0 (0 (D)) 16
%o,

So |@(w)| are majorized by the functions

G(@)] < &(w) = [ M (@)] + 0 (1)),
e

1+e(l)
€ bl

lw| < 4e2®0,

2w

(17)
lw| > 4e

Thus the function & may be defined as

V1, lw| < 4620,

1+e()
<, || > 4e2@,

¢(w) = {

mlw|™

where v; and v, are constants, vy, V2 > 0, I1 := max{lp, 2log, ”Ts(” + 2}. Then the convergence follows from the Lebesgue
dominated convergence theorem and Lemma 3.
Let us estimate the rate of the convergence. If |w| > 4“0, then goM (w) =

|- Pl = [100) - PP do= [+
R

0, so

|w|<4e%?0  |w|>4e%“0
200 |~ M2 oud —2l+4log, 1120
g Se wo “(Pl _ (pM ||C[_482w0’462w0] +e () / |(U| +4log; —¢ dw
|w|>4e%20
, 20 (1)) (g2w0)~2+4l0g; e 4q
=86 |71 = g g +
C[—4e%®0,4e°®0] 2l — 410g ]+8(l) -1

This completes the proof of Lemma 4. O
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Remarl( 1. If we combine Lemmas 3 and 4, we get ||@; — Mllc(R) = O (max{u(), (4e
@ — ||C(R) maX{SUP|w|g4e2wo |@1(w) — M(w)l SUD) 4,/ 46200 |@1(w) — M (w)|}. Using for the first item Lemma 3 and for

the second one the definition of @M and (17), we obtain SUP| 4y < 46200 |@1(w) — W(wﬂ =0 () and SUD| /> 4620 |@1(w) —

2001 +2log, 120
M(U))| = SUP| > 4¢20 |@1(w)] = (4e°®0)~ telog

Lemma 5. || &, — 1]|c = O (max{x(), (4e (11).

Proof. Suppose w € [—7, 7]. Since ¢ is an orthogonal scaling function, we see that Y kez |5M(a)+27'[k)|2 = 1. Taking into
account (17), we define kg := [2e2“0 /7 4 1/2]. Hence

|P1(w) — 1| = Z|<p,(a)+2rrk)| Z\goM(w+2nk)} ‘
keZ keZ
<)@ +270)° — (PM@+270)° = Y+ Y.
keZ k|<ko  |k|>ko

Using Lemma 3, we get

> <@+ D( sup [@@) -V @)]+2 sup [pM@)]) sup [gi(@) — M (@)] < O(n().

Ik|<ko o] <420 || <4e2@0 || <4e2@0
Since M(w) =0 as |w| > 4e%?, using (17) and the definition of ko, we obtain

1+eD
Y <Y e0WM g k| 2HalE FER = o ((ge2e0) AT

\k\>k0 |k|>k0

l+6(l)

Therefore,

)—21+410g2 1+T£“) }) )

l|®; — 1llc = O (max{pu(l), (4e** O

Now let us prove the convergence of the frequency radii for the scaling function.

1+e()
c

Theorem 3. |[AZ. — A;AM\ = 0 (max{u(l), (4e2w0)—2+4log, }) as | — oo. The parameters are defined by (11).
@

— =0, where w_—, are the frequency centers

Proof. Since the functions ¢:- and oM are even, we see that o~ = w , W\
@i ¢ 0" 0¢ 0g; 0pM

(see Section 2).
Taking into account Lemma 3, the proof of Lemma 5 ((pM(a)) 0 as |w| > 4e%®0 and so on), and the estimate (17), we
have

A% —AZM}—V (@)@~ (¢ )(a)))da)‘

2 (a))_ —\2 / /
<wa o) ¥ )(w)‘dwg i

|w|<4e?®0  |w|>4e%®0

< 16e4®@0 / (((Pl) (CU)’ m - 1’ + |((ﬂl) (w) — ( ) (a))|> dw
|w| <4e2®0
1 32
v w@reg s 1664‘”"<||a>, e [
lol>4e%0 || <4e2®0

+ @ - oM ||C[—4ez‘”0,4ez‘”0] / |P1(@) + W(wﬂ da))

|w|<4e2“0

200 (D) (4e2w0)~2+4log Lie@ 43

inf,, Pi(@) (2l — 4log, 1TEQ 3
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From Lemmas 3 and 5 it follows that the integrals

(@)* () N —
/ de’ / |P1(@) + M (w)| dw

|w|<4e20 |w|<4e2®0

are bounded. Hence

—2I+4log, 1H£0 2i+4log, HS(”)

AL — A%’W’ = 0 (max{u(), (462“’0) D+o(u®m)+o ((462‘”0)

éi

:O(max{u(l),(452wo) 2+4log, L0 . .

5. The growth of the smoothness and the exponential decaying

Lemma 6. The polynomial m; = (cos 5)21u0,, is a pure mask.

Proof. Let us use Proposition 1. Recall that ug; = u;/u;(0). Since (cos a)/2)2’ =0 iff w =m + 2wk, k € Z, we apply Propo-
sition 1 for the polynomial u;. By the condition (12), Sup_y /2 7 /21 luy — mM| = 0(a()) = 0(I"!) as | — oo. Recall that
/3 < wo < 71/2, where wy is a parameter of the Meyer mask. Combining this with the definition (5), we get

inf |m(w)| = mf (cosw/Z)_2’ 1,
lw|<wo
-2l
|ml( )|_ CcoS £+9 w >£ E )
w0<|a)|<7r/2 w0<|a)|<ﬂ/ 4 3(T — 2wg) 2 2

Therefore for sufficiently large I, u;(w) # 0 on the interval [—7 /2, r /2]. Hence the polynomial u; has no pair of symmetric
Zeros.
If B:={b1,..., by} is a cyclic set and by =reé, thenr=1, £ = 22,,”_"1 If B is a nontrivial cycle of the mask m;, then any

number 7 + 22,.’1"1 is a root of u;. But we have just proven that u;(w) # 0 on the interval w € [—-7 /2, 7w /2]. So the mask m

has no a nontrivial cycle. Finally, the condition u;(;r) # 0 is postulated in (14). Therefore u; has no a trivial cycle. O

Using Lemma 6, one can apply Proposition 2 to estimate smoothness of the nonorthogonal quasispline scaling function ¢;.

Lemma 7. The following inequality holds true 21 — 1+ logz(ﬁ) < ag < 2l for sufficiently large | > lo. The parameters are defined
by (11).

Proof. If we recall (12) and the notation ¢ = infj>, u;(0), then we get

sup,, [u(@)| _ (1+ D) sup,, mM (@)

sup|ug ()| < < sup|f01(w)|
w Cc c

for e(l) := ot(l)/||mlM||c — 0 as | — oo, where fp; is an even 2 -periodic function and fp (w) := (1 +e())(cosw/2)~2 /c for
0<w<wr and fo(w):=0 for w1 <w <. So we get O (ug ) = 6k(fo,1)-
The definition of fq; yields

—2I k
| fou(@) - fo(2 ) |, = fou(@)- -~ for(27 wy) = (COS % -cos %) (1 +C£(l)> .
Then using Proposition 2, we have
1 1+e0\F w1 wp |7k c
Ok(for)=—— logz( . ) — 2llog, |cos i - COS 2% log2<m>
as k — oo. Passing to the limit, we use the identity I—[] 1€0s & o = ‘““T“’ Therefore 6(ug ;) > lng(%s(l)) For ug, the mul-
tiplicity of the trivial cycle is equal to 2I. Hence 2l — 1 + l°g2(1+g(1)) < @y, By the definition of the norm || - [l we have

||u0,,(a)).‘.uo_l(Z"*lw)Hoc > uo_l(O)...uo,l(Z"*1 - 0) = 1. Therefore Proposition 2 yields 6 (ug) <0, then 6(ug;) <0, thus
oty < 21. Finally, we obtain 21 — 1 +logy (1757) <@g <2 O

Lemma 5 allows to estimate smoothness of the orthogonal scaling and wavelet functions.
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Theorem 4. The following inequalities hold true

C C

for sufficiently large | > ly. The parameters are defined by (11).

Proof. It is sufficient to prove 63 = 9(;1 = Gﬁ. Using Lemma 5, we get 0 < ¢1 < &j(w) < ¢2 < oo. Therefore C;O‘S\(ﬁ” <
1 1

|¢>IJ—| < cl_o'sl(ﬁll. Thus taking into account the definition of 6, we get 65 = G(p?.

Then the application of (10) yields

- w w _ ~f[ W _ w
ot ot (3 oo (Sor ().

There exists an arbitrary large w (for example, @ € [—2wp + 27 (2k — 1), 200 + 27 (2k — 1)], k € Z) such that 1 — o () <
mi(w/2 + 1) < 1+ a(l). Therefore for such » we have (1 —a()c?°c;!@i(@/2)] < [Yit (@) < A+ a )35 @iw/2)].
Finally, again taking into account the definition of 6+, we get 65 = 9]/;. a
1

Lemma 5 also allows to deduce exponential decay of the orthogonal scaling function go,L and the wavelet function w,i.
Theorem 5. The functions (pll and wll decay exponentially at infinity.

Proof. Let us fix sufficiently large | € N. Consider the function q)l—os (w). Let ag, k € Z be its Fourier coefficients. First,
we claim that ay = 0 (e #1¥l), B; > 0, k € Z. Indeed, since m; is a trigonometric polynomial, we see that ¢ is compactly
supported. Therefore its orthogonalizing factor @;(w) is a trigonometric polynomial too. By (7) and Lemma 5, &; > A > 0
for some absolute constant A, so that @;(w) # 0 for the band |Imw| < B, B8 > 0. Using the substitution z = e'®, we deduce
that the Laurent series ) ., axZ converges for z such that e# < |z| < ef. Taking 0 < B; < B and applying the Cauchy
inequality, we get |hy| < M(B1)e A1kl < Me—A1Kl where M(B;) := max;, _os | Y ke axzX|. Since Y",.; axz¢ is an analytical
function on the ring e=# < |z| < ef, we obtain M(8;) < M for some absolute constant M. Thus we have a, = 0 (e A1l
> 0.
i Now, by (8), ¢ (t) = Yz, ak@i(t —k). Since ¢ is compactly supported, it follows that ¢f-(t) = 0 (e #1I*l), t — o0, g1 > 0.
Then by (10), it follows that y;*(t) = Yz (—D¥h 4195 (2t — k), where hy are the Fourier coefficients of the func-
tion m;-. In the same way as for ai, one can show that hi = 0(e~#2), g, > 0. Therefore, we have

[y O] = D (D g @ =] <Y hogt @t =k < A e FriRek=AikHL

keZ keZ keZ

where A is a constant. The application of the property of modulus and geometric series yields

etB1—2p11t] eth

1—eB2—h + ebi—B2 1

el +B112t—[2t]|—B2|[2t]]
1—eB—H ’

Z e B [2t—k|—Ba|—k+1] _
keZ

(eF1-2+20=pali20) _ g=26111) 4

where k = —B; as t >0 and k = —p; as t < 0. Therefore /- = 0 (e~ M*f2 )12y

6. Convergence of time radii for the scaling functions

First, let us establish an auxiliary technical result.

Lemma 8. For any a, b such that —oo < a < b < oo, we have

() ()

asn — oo, where (]_[‘]?i1 my(w29)) is the notation for the series Z‘]?Oozl 2*j0ml’(a)2*j0) ]_[J‘?il_’j;ﬁj0 my(w2).

—0
Cla,b]
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Proof. Using the introduced notation we have

(n(5) (1 (3))|

j=1 j=1

> ) ad ® ® L )

j w @ j w @

=| 2 <2w> [1 m’<2f> > 2 (2fo> [ m’(2f>'

Jjo=1 j=1j#jo Jo=1 j=1j#jo

iﬂm/g ﬁm2+i2ﬂ-om/g ﬁmg_ﬁmg
‘ N2jo) 11 T\ 3j ' Noio J\ 11 "\ 35j S R O
jo=n+1 j=1j#jo Jjo=1 j=1j#jo j=1j#jo

=: J1n(w) + ]Z,n(a))~

The application of the Lagrange Theorem and Lemma 2 yields |m;(w)| < 1+ A|w|, where A is a constant. Hence

Jjo—1 Jjo—1 i

) Y00 Ini 4 Ajw)— lnzf A\wIZ LA
[ mz<21> []0+Aw27)=e>i= <t
j=1 j=1

So using additionally Lemmas 2 and 3 for the first sum, we get
Jin(@) < Z 270

3 i) Tm(5)e ()

<MY |+ m; - (mM)/“c)eAlw‘(”‘PMHC(R) + oM = @i ¢ g))2 ™"

where all factors are bounded as a <@ < b, l € N. Thus J; n(®w) — 0 as n — oo.
For the second sum J, ,(w), we obtain

Baan() 1 ~(5)(o(2) 1)

Jjo=1 J=1,j#jo

Jon(w) =

Since the function ¢ is continuous, ¢;(0) =1, and a < |w| < b, it follows that |(p,(2n) 1| =¢1(n), e1(n) -> 0 as n — o0. So
we get

Jaa@) < (1= g J (1Y |+ = () | e o,

where all factors are bounded as a < w < b, l e N. Thus Jq(w) > 0asn—o0. O

Lemma9. |/ — W/“C[a,b] = 0(u()) asl — oo, where —oco < a < b < oo. The parameter j4(l) is defined by (11).

Proof. Using the definition of ¢ and Lemma 8, we get

(11(3)) - (11(5))|
See(n(z) 1 m(3)-ei(2) 1 ()

B (@) — oM ()| =

Jjo=1 j=1j#jo j=1j#jo
ad w w ad w

—Jjo 7 ad My [ % M[ ™
<X (i(5) - ()] TT [ (5)
Jo=1 j=1,j#jo

S ©
+ |m; o
From Lemma 2 it follows that |m/ (210) - (mM) (2]0 ) = 0(u@)) and |m/ (210 ) =M + 0(u(l)), where M := ||(mM)||c. Since
[mM| < 1, we have |]_[j:]7j¢j0m (I <

1 n(2)- 11 »(2))

Jj=1j#jo
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Taking into account Lemma 1 and the definition of @ (6), we obtain
el w ad w jo1 w Jo1 1)
[ m’<2f> [T m (21) [1 m’(Zf) [Tm (21) g
j=1.j#]jo j=1.j#jo j=1 j=1
Jo—1
w
T(5) o
2]

j=1

<

_|_

Using (12) and the property of the Meyer mask mM™ < 1, we get
Jjo—1 Jjo—1
w uf @
[Tm(5) - 11m(3)
j=1 j=1
Jjo—1
uf @ w
m"| — m| =
T (57)+[(5)

w w
<m(%)-m(%)
j=2

< Jmy —-m" ”c + (14 [my _mM”C)

1

Jjo— Jjo—1
1) e
m,(—zj)— | | m <—2j)‘
=2 j=2

Jj=

() TTm(2)]

j=2 j=2

Reiterating the procedure jy — 2 times, we obtain

j=1 j=1

From Lemma 3 and the definition of the Meyer scaling function it follows that |@(2%)| =14+ 0(u() and |(’p\1(2%0 -

(/)’V’(zj0 )| = 0 (u(l)). Finally, we note that [mM| < 1, therefore |]—H0 11 mM(%)| <1
Combining all the estimates together, we obtain

o0

@ (@) — oV (@) < 0 () 3 2790 + (M + 0 (D))
jo=1
x (O(u(l)) i 2790 1+ (14 0 (W) i 270 ((14 0 (@)™ - 1))
Jjo=1 jo=1
= 0(u(h) + 250 = 0 ().
The next to the last equality follows from the identity

1+£(I)

—2log; }) as | — oo. The parameters are defined by (11).

e —
Lemma 10. |3/ — oM ||, = O (max{().1°°Cy

Proof. We prove the Lemma in a similar manner as Lemma 4. Let us ﬁnd a majorant & € Ly(R) for the function @;’. From

the definition of ¢;, Lemma 8, (15), and the identity ZJ 127 Jo tan 210+1 = % — cot % it follows that
ad w R w i w
o~/ _ - _ —Jjom/ [ -
@' (@) = (Hmz(zj» =22 m,(zjo) [T m 2j>
j=1 Jjo=1 j=1,j#jo
00 21-1 w [ 21 w
i w Sio w ui\ 5
= Z 2—]0( <cos 2]0+]) <— sin 2]0+1) u((ZO)) 1_[ <cos ﬁ) u((2(;))
jo=1 7 =iz :

21 00 21 )
) U1l(2,0) ) Ul(g)
* <C°S 21’0“) woy 11 <c°5 W) (0)

j=1.j#jo
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00 7]' w oo w 2l o© ul(%)
= Z 270l —tan — l_[ COS — 1_[
: 2Jot1 J 2i+1 L ou(0)
Jjo=1 j=1 j=1

00 2l 00 1)
i 2]0) 2N ()
* Z u1<0> g(cos 2]’“) [l ©©

J=1.j#jo

oo

(e 2)\(sinw/2\'__ sinw/2\* & i) B ()
_'(C°t5‘5>< )2 ) ‘p”°(w)+( /2 ) D MO L M

Jjo=1 j=1.j#jo

. 2l

sinw/2

=11 (w) + I |(w).
w/2

If |w| > 4e%@0, then applying (16) and (17) for the first item, we have

: 21
2sinw/2 2 o e
11 (w)| = ’l(cos% - 7;’/ )(5) (sinw/2)% '@ o(w)’ < CleO M) gp| ~H2log 5

Let us estimate the second item

o 1
B _j 11(210)10 u’(z]) (ﬂ)
I ((w) = Z Pl 110) Jl:[ ” (O) 570 )

Jjo=1

Using (16) for |w| > 4e2®0, we get @05l < < |w2~Jo| =200 g2wo(+0 (1)) - Using the condition (13), the definition of the

function ml (5), and the inequality 7 /2 < wq < 27 /3, we obtain

w m/ [ @
(55 )| <[ty (55| +otr)
—21 —2l-1
wm/ [ @ w1 m{ @ . W @1
< (m") (27) (cos W) +Im <2j0+1 ) sin o7 (cos 2].0+1>

=2l
+0(y(M) < (cos 2501“> (M +Itan ;)H) +0(yM)

<@/3)'(M+1V3)+0(y ).

Then taking into account condition (12), the properties of the Meyer mask [mM| <1, mM(w) =0 as w1 < |w| < 7, and the
inequality 7 /2 < w1 < 27 /3, we have

Jo—1 (g) Jjo—1 M —j Jjo—1
13 m" (w277) ) ( 1 )
< _ME D a0 < - ta
g u;(0) ]11 ((cosa)z—l—])” +ad E (cosw2—i—1)2 +ad)
Jo—1 a 00 L
< S cosw 279 N
]11 (cosa)12—1—1)21 l:[ !

21 21 21
=ajo—1( ©1/2 ) <a10—1<ﬂ> <a10—1<2”) 7
sinwy /2 V2 32

where a is a majorant of the expression 1+ a(l)(cosw;2~4~1)2 so it can be chosen a < 1.5.
Collecting the estimates, we obtain

22 G MWD FOo D) - 1(2_71)2’
1—al) 3v2

—20(ug,))

@ 200(1+0 (b))

2Jo

I (w) <

Jjo=1

) B +e() : I
Since log, (1357;) < 0(uo) <0 and a < 1.5, we get | © as |w| =1, 2000000 <1, and Y50, 27/og/o!

=@2—-a)'. S

I (w) < eCHO(M +1V3+ 3/4'0(y ) (87t2e2“’0 >I|w|21°g2 o)

I-a®)2—-a) 27
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Thus we have for |w| > w
. 21 INYEY i I
sinw/2 @) < (sina)/2)2'eow( DM +1v/3+ 3/9'0(y (1)) (3272e2®0 o] 212108, 0
w/2 ’ A—ad)2—a) 27

_ 1+e()
< C(, wo)ljw| 72082 =

where C(I, wg) 1= eC U (M/I+ /3 +171(3/4)'0(y 1)))(1 —a()) "1 (2 —a)~! is bounded with respect to the parameters |
and wg. Put C(l, wp) < A, A is a constant.

S0 if |w| > Co := 2222 e have the following estimate |(@))' ()] < Allw| 2108 =%
Finally, using Lemma 9 one can define the functions &;; such that
M 2,20
’ (@MY (@) + 0 (u(l)), |o| < 327220
!((pl)/(a))| SEn@):= i —l42log, 1+E0 N 327122732(00 (18)
Al|a)| 27, |a)| > >

So the majorant &; is defined in the following way

2,20,
§1(w) = V1 lwl < 32”2;, >
1 : L) 2,2
v l|a)| l1+2log, lw| > 327127e “0 ,

where vj and V) are constants, vj,1v, > 0, Iy = max{lg, 2log, ”C—a(') + 2} is defined in the proof of Lemma 4. Then the
convergence follows from the Lebesgue dominated convergence theorem and Lemma 9.
Let us estimate the rate of the convergence. If |w| > Co, then oM (w) =0, so

||@’—W||iz(R)=/|@’(w>—5“7’<w)|2dw= / +
R lw|<Co  |w|=Co

o~ 7’2 _ 1+e()

I _ oM 272 2I+4log

<2600 — ¢ ”qfco.co]"'Al / o] 2 do
|w]|>=Co

1+£(I)
212(C0) 2l+4log, +1

2
:2C0||(/)l/—‘/)M ||C[—C0,C0]+ 20 — 4log, 1+s(l) 1

+P(l)
= 0 (max{p2(), Ic, 2418

This completes the proof of Lemma 10. O

Remark 2. Using Lemma 9 and the estimate (18) (similarly to Remark 1) we get

—1+2 logz 1+8(l)

@& — g;M/HC(R) = 0 (max{u(®), ¢,

Lemma 11. | @/ ||c = O (max{ju(), I°°(4Coe?*?)

Proof. Taking into account the definition @; and the estimate (17) one can termwise differentiate the series, i.e.,
2\ 2
o~ o~ /7
®| () = <Z|(p1(a) +27k) | ) =Y (|@iw+27k)|")"
keZ keZ

Since the Fourier transform of the Meyer scaling function is compactly supported and satisfies the property > ;.5 Iﬁ(a) +
2wk)|> =1, we get

Z(|¢M(w+2nk)| = <Z|§0M(a)+2nk)| > (1 =0.

keZ keZ
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Suppose |w| < 7, then we obtain

|2{(@)] <2 |Gi@ + 270 (@ + 27k) — oM (@ + 21k M (@ + 277K) |

keZ
<2 @@ +27k) | |§ (@ + 27k) — M (@ + 277K) |
keZ
+2 |0V (@ + 271 ||Gi(@ + 27k) — M (@ + 27K) | =: 213(@) + 2L (@)
keZ

Using the parameter ko = [2e2“0 /7 4+ 1/2] defined in the proof of Lemma 5, we get
Bi@= ) + ).
lki<ko  [kI>ko
Taking into account Lemma 9, we have for the first sum
O <@ =M e gavo ey Y [Bitw + 2k = O (D).
k| <ko \k|<ko

If we combine Remark 2 and (17), then we have for the second sum

—l4+21o ”5(” _ Lee)
> <o(max{pu®), 3¢, T TN 3 o + 2wk s
\k\>k0 \k|>k0

+s<) })(4 2a)g)—1+21082 1+£(l)

= 0 (max{u(),1°°Cy Fr2log

Next, we estimate I ;(w). Since suppﬂ =[—2w1, —2wo] U [2wp, 2w1], then W(w +2mk) =0 as k > 1. So for the sum
I14)(w) we have

I )(w) = Z ]5"7/(@ +27k) || @i + 27wk) — oM (w+ 27k)|.
IkI<1

Thus the application of Lemma 3 yields I4 (@) = O (u(l)). Finally, for cD[ we get

o 1+5(l)
|0/ ()] < 2(I3,1(@) + L41(@)) = O (max{(l), 103 (4Coe20) " 282 7Ty - g

Now let us prove the convergence of the time radii for the scaling functions.

—14+2log, 1 ”)

Theorem 6. |AiL — A2M| O (max{u(),IC, b as | — oc. The parameters are defined by (11).
1

Proof. If the function ¢ is real-valued, then @(t) = ¢(—t). Hence the function |@|? is even. So the time centre top = 0. Then
the square of the time radius Aé = fR t?|@(t)|? dt. Using the property of the Fourier transform ¢’(w) = iw@(w), we obtain

A2 =@m)7 [ 1@ (@) do.
Since the functions ngJ‘, @M are real-valued, we have tO%L =tg,m = 0. So for the squares of the time radii we get

‘p’ /’ o (a))‘ dw and AZM_—/ (w)‘ do.

Then we have

1 T\ 7\
%y = 8%l < o 1@ @) - (G @) |do
R
1 T\’ —i\/
<2_sup|( ) @)+ (¢ )(w)}/l(sﬂf) (@) = (¢M) ()] do.
T weR

R
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Applying the definition of g;ll (8), Lemmas 5, 11, Remarks 1, 2, and the triangle inequality, we establish the boundedness of
the supremum factor

5/ — o’ 0l
Su13|§01l (@) + M ()| < H &) H I M ”C(R)
weR C(R) C(R)
1M e + 19 — @ llee |, 19{IceMlce + 1M~ illcm) el
h 1— & —1lc (1—[|&; —1lc)? C®

—
=0([eM| C(]R))'

Let us show that fR |@1(w)|dw is bounded. In fact, the application of Lemma 3 and (17) yields

/|@(m)|dw< / |@(a))—ﬂ(w)|dw+ / |ﬂ(w)|da)+ / |@1(w)| do
R

|| <4e%?0 || <4e2®0 |w|>4e%°0
- - 200 (1) (4¢200)~++2l0g e 4
200 || & _ M 2o || ., M
< 8e ”(ﬂl [ ||C[_492(u07492wo] +38e ”(ﬂ ||C[—4ez‘”0,4ezw0] + [— 210g 1+8(l) -1
=0(1).
Applying this, Lemmas 5, 11, and Remarks 1, 2 we get the convergence to 0 of the integral
=/
1’ =i’ o' (w) — M (a))q),(w) Di(w)P| (w)
flw,L @ — g™ (w)!dw</’ ale)s @)
P|(w) Df ()
R R
NPT — ||<1>z /|¢z/(w) —" (w)l + o™ (@)1 = Bi(@)| doo
2/llc / _
+ 1(w)|dw
o107 ) 7@
R
< ;( / @ (@) — M ()] do + / 3 (@) — M’(w)|dw)
1—1J—1lic
lw]<Co lw]>Co
11— @l /A/ /
+— | oM (w)|dw+ O(| P
R
= —l+21log, 1D 4
13— ™ llci—co.col 241,
1-1®—1|c (l—||d5,—1||c)(l—210g21+—€(’)—1)
—I+2log, 10
0(I#1—1lc) + 0 (][ o) = 0 (max{u).ic,™ ™ < }). o
7. Convergence of time and frequency radii for the wavelet functions
—14+2log, 1*£0 1+e0)

Theorem 7. |A?ﬁ | = 0 (max{u(),IC, <, |A2¢L - AZW,V,| = 0 (max{u(l), (4e2@0)~HH2log ==y 45| 5 00, The
1

1
parameters are defined by (11).

Proof. The equality (10) shows that W,L is even. The function W is also even. Therefore WoyT = Wopm = 0 and tO‘/sz =
1

toym = 1/2. The mask m,L is a real-valued function. Therefore, using the structure of (10) and applying Lemmas 1, 5, and
Theorem 3 we get for the frequency radii

syl () ()5 )5

<Pl [ o0’ (%) - @) (%) o+ Nomt ) = @)L [ o2 (%) o
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= 0(|a%; — Ay ) + 0191~ 1ic) + O (Jmi ~ ¥ )
1

F(l)
= 0 (max{u(l),IC, ~2log; D).

Going on to the time radii we use the identity A2 = fR 21f 1> dt — tof, and the following elementary formulas (abc)’ =
a’bc +ab’c + abc’, || = 1. In the sequel, we omit the argument w.

27T|A2‘//[L - Azwm| = '/-(wlL )2 - (W/)z

—_ —_ —_ —_
<+ L [ I =9
R

M o~ o o —
< w/’ L/(pl +mit 901 imlj_(plj__mM/(pM_mM(pM/_,r_imM(plv[’
WL + 9™ e A
< ’f(um,ﬂ im | / o =+ =] [
R

-/ —/ — =
el 1o =7+ mi —m¥ ) [ 17 i)
R R

Iy + oM
C(R)
= s+ I+ Iy + Is)).

4
We claim that
- = . —7 v Vi
e P e O I R L P I
R
are bounded and
T L
J L e P | o e L P
R R

tend to 0 as [ — oo. Indeed, the scheme of the proof is the same for these cases, and we already used it in Theorems 3
and 6. Let us give a brief explanation. First, we note that multiplication and division by nonvanishing functions (in our case,
@, are these functions) are continuous operations with respect to the supremum norm. Then we use lemmas stating the

convergence of the new functions (such as m;, m;, &, &/, @1, @) to the corresponding Meyer functions (mM, mM' 1,0,

W W, respectively). For example Lemmas 2, 5, 11 are employed to estimate ||m, L mM/||c In the case of the integrals
Jr |gol — (le and [ |g01 — goM |, we additionally apply (17) and (18), respectively. By the definition of the Meyer scaling

function, le(pM| and [ |pM’ l(pM| are bounded.
Therefore the application of Lemmas 3, 5, the estimate (17), and the proof of Theorem 3 yields

—1+2log, 1+e() 1+€(1)

Is; = 0 (& — 1]ic) + O ((4e2*) ") = 0 (max{ (1), (4e%0) 2102

Using the definition of mll, Lemmas 11, 5, and 2, we get

_ 1te)
o= 0(|®{] )+ O(I& — 1lic) + O ([mj —m™'| ) = O (max{s(t). (4e2e0) 2% =y

From the proof of Theorem 6 it follows that

—142log, 1 8(” })

I7; = 0(max{u(),IC,
Finally, using Lemmas 5 and 1, we get

1+F(I)
Isi=0(|&;— 1lic) + O (|m —mM| .) = O (max{u (), (4e*>)~ 2t4log;

Thus collecting the estimates we obtain

|A12ﬁlj_ _ A]sz| _ O(max{u(l), (4€2w0) [+2log, 1+e(l) }) -
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