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Abstract

The strong no loop conjecture states that a simple module of finite projective dimension over an artin
algebra has no non-zero self-extension. The main result of this paper establishes this well known conjecture
for finite dimensional algebras over an algebraically closed field.
© 2011 Elsevier Inc. All rights reserved.
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Introduction

Let Λ be an artin algebra, and denote by modΛ the category of finitely generated right
Λ-modules. It is an important problem in the representation theory of algebras to determine
whether Λ has finite or infinite global dimension, and more specifically, whether a sim-
ple Λ-module has finite or infinite projective dimension. For instance, the derived category
Db(modΛ) has Auslander–Reiten triangles if and only if Λ has finite global dimension; see
[7,8]. One approach to this problem is to consider the extension quiver of Λ, which has vertices
given by a complete set of non-isomorphic simple Λ-modules and single arrows S → T , where S

and T are vertices such that Ext1Λ(S,T ) does not vanish. Then the no loop conjecture affirms that
the extension quiver of Λ contains no loop if Λ is of finite global dimension, while the strong no
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loop conjecture, which is due to Zacharia, strengthens this to state that a vertex in the extension
quiver admits no loop if it has finite projective dimension; see [1,10].

The no loop conjecture was first explicitly established for artin algebras of global dimension
two; see [5]. For finite dimensional elementary algebras (that is, the simple modules are all one
dimensional), as shown in [10], this can be easily derived from an earlier result of Lenzing on
Hochschild homology in [13]. Lenzing’s technique was to extend the notion of the trace of endo-
morphisms of projective modules, defined by Hattori and Stallings in [9,18], to endomorphisms
of modules over a noetherian ring with finite global dimension, and apply it to a particular kind
of filtration for the regular module.

In contrast, up to now, the strong no loop conjecture has only been verified for some special
classes of algebras such as monomial algebras; see [2,10], special biserial algebras; see [14], and
algebras with at most two simple modules and radical cubed zero; see [12]. Many other partial
results can be found in [3,4,6,15,16,20]. Most recently, Skorodumov generalized and localized
Lenzing’s filtration to indecomposable projective modules. This allowed him to prove this con-
jecture for finite dimensional elementary algebras of finite representation type; see [17].

In this paper, we shall localize Lenzing’s trace function to endomorphisms of modules in
modΛ with an e-bounded projective resolution, where e is an idempotent in Λ. The key point
is that every module in modΛ has an e-bounded projective resolution whenever the semi-simple
module supported by e is of finite injective dimension. This enables us to obtain a local version of
Lenzing’s result. As a consequence, we shall solve the strong no loop conjecture for a large class
of artin algebras including finite dimensional elementary algebras over any field, and particularly,
for finite dimensional algebras over an algebraically closed field.

1. Localized trace and Hochschild homology

Throughout, J will stand for the Jacobson radical of Λ. The additive subgroup of Λ generated
by the elements ab − ba with a, b ∈ Λ is called the commutator group of Λ and written as
[Λ,Λ]. One defines then the Hochschild homology group HH0(Λ) to be Λ/[Λ,Λ]. We shall
say that HH0(Λ) is radical-trivial if J ⊆ [Λ,Λ].

To start with, we recall the notion of the trace of an endomorphism ϕ of a projective module
P in modΛ, as defined by Hattori and Stallings in [9,18]; see also [10,13]. Write P = e1Λ ⊕
· · · ⊕ erΛ, where the ei are primitive idempotents in Λ. Then ϕ = (aij )r×r , where aij ∈ eiΛej .
The trace of ϕ is defined to be

tr(ϕ) =
r∑

i=1

aii + [Λ,Λ] ∈ HH0(Λ).

We shall collect some well known properties of this trace function in the following propo-
sition, in which statement (2) is precisely the reason for defining the trace to be an element in
HH0(Λ).

1.1. Proposition (Hattori–Stallings). Let P,P ′ be projective modules in modΛ.

(1) If ϕ,ψ ∈ EndΛ(P ), then tr(ϕ + ψ) = tr(ϕ) + tr(ψ).
(2) If ϕ : P → P ′ and ψ : P ′ → P are Λ-linear, then tr(ϕψ) = tr(ψϕ).
(3) If ϕ = (ϕij )2×2 : P ⊕ P ′ → P ⊕ P ′, then tr(ϕ) = tr(ϕ11) + tr(ϕ22).
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(4) If ψ : P → P ′ is an isomorphism and ϕ ∈ EndΛ(P ), then tr(ψϕψ−1) = tr(ϕ).
(5) If ϕ : Λ → Λ is the left multiplication by a ∈ Λ, then tr(ϕ) = a + [Λ,Λ].

Next, we recall Lenzing’s extension of this function to endomorphisms of modules of finite
projective dimension. For M ∈ modΛ, let PM denote a projective resolution of M in modΛ as
follows:

· · · Pi

di
Pi−1 · · · P0

d0
M 0.

For each ϕ ∈ EndΛ(M), one can construct a commutative diagram

· · · Pi

di

ϕi

Pi−1

ϕi−1

· · · P0
d0

ϕ0

M

ϕ

0

· · · Pi

di
Pi−1 · · · P0

d0
M 0

in modΛ. We shall call {ϕi}i�0 a lifting of ϕ to PM . If M is of finite projective dimension, then
one may assume that PM is bounded and define the trace of ϕ by

tr(ϕ) =
∞∑

i=0

(−1)i tr(ϕi) ∈ HH0(Λ),

which is independent of the choice of PM and {ϕi}; see [13], and also [10].
Our strategy is to localize this construction. Let e be an idempotent in Λ. Set

Λe = Λ/Λ(1 − e)Λ.

The canonical algebra projection Λ → Λe induces a group homomorphism

He : HH0(Λ) → HH0(Λe).

For an endomorphism ϕ of a projective module in modΛ, we define its e-trace by

tre(ϕ) = He

(
tr(ϕ)

) ∈ HH0(Λe).

It is evident that this e-trace function has the properties (1) to (4) stated in Proposition 1.1.
We shall state another important property in the following result. For doing so, we recall that the
top of a module in modΛ is the quotient of the module by its Jacobson radical.

1.2. Lemma. Let e be an idempotent in Λ, and let P be a projective module in modΛ whose top
is annihilated by e. If ϕ ∈ EndΛ(P ), then tre(ϕ) = 0.

Proof. We may assume that P is non-zero. Then 1 − e = e1 +· · ·+ er , where the ei are pairwise
orthogonal primitive idempotents in Λ. Let ϕ ∈ EndΛ(P ). By Proposition 1.1(3), we may assume
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that P is indecomposable. Then P ∼= esΛ for some 1 � s � r . By Proposition 1.1(4), we may
assume that P = esΛ. Then ϕ is the left multiplication by some a ∈ esΛes . By Proposition 1.1(5),

tre(ϕ) = He

(
a + [Λ,Λ]) = ā + [Λe,Λe],

where ā = a + Λ(1 − e)Λ. Since a = esaes = (1 − e)a(1 − e) ∈ Λ(1 − e)Λ, we get
tre(ϕ) = 0. �

In order to extend the e-trace function, we shall say that a projective resolution PM of a
module M in modΛ is e-bounded if all but finitely many tops of the terms in PM are annihilated
by e. In this case, if ϕ is an endomorphism of M with a lifting {ϕi}i�0 to PM , then it follows
from Lemma 1.2 that tre(ϕi) = 0 for all but finitely many i. This allows us to define the e-trace
of ϕ by

tre(ϕ) =
∞∑

i=0

(−1)i tre(ϕi) ∈ HH0(Λe).

1.3. Lemma. Let e be an idempotent in Λ. Then the e-trace is well defined for endomorphisms
of modules in modΛ having an e-bounded projective resolution.

Proof. Let M be a module in modΛ having an e-bounded projective resolution

PM : · · · Pi

di
Pi−1 · · · P0

d0
M 0.

Fix ϕ ∈ EndΛ(M). We first show that tre(ϕ) is independent of the choice of a lifting of ϕ

to PM . By Proposition 1.1(1), it suffices to prove, for any lifting {ψi}i�0 of the zero endo-
morphism of M , that

∑∞
i=0(−1)i tre(ψi) = 0. Indeed, let hi : Pi → Pi+1 be morphisms such that

ψ0 = d1h0 and ψi = di+1hi + hi−1di . By Proposition 1.1, tre(ψi) = tre(di+1hi) + tre(hi−1di) =
tre(di+1hi) + tre(dihi−1), for all i � 1.

On the other hand, by assumption, there exists some m � 0 such that the top of Pi is annihi-
lated by e, for every i � m. By Lemma 1.2, tre(dm+1hm) = 0 and tre(ψi) = 0 for all i � m. This
yields

∞∑

i=0

(−1)i tre(ψi) = tre(ψ0) +
m∑

i=1

(−1)i tre(ψi)

= tre(d1h0) +
m∑

i=1

(−1)i
(
tre(di+1hi) + tre(dihi−1)

)

= (−1)m tre(dm+1hm)

= 0.

Next, we verify that tre(ϕ) is independent of the choice of the e-bounded projective resolu-
tion PM . Suppose that M has another e-bounded projective resolution
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P ′
M : · · · P ′

i

d ′
i

P ′
i−1 · · · P ′

0

d ′
0

M 0.

Considering ϕ, we get morphisms ui : Pi → P ′
i with i � 0 such that d ′

0u0 = ϕd0 and d ′
iui =

ui−1di for i � 1. Similarly, considering the identity map 1M , we obtain maps vi : P ′
i → Pi with

i � 0 such that d0v0 = d ′
0 and divi = vi−1d

′
i for i � 1. Observe that {viui}i�0 and {uivi}i�0 are

liftings of ϕ to PM and P ′
M , respectively. By Proposition 1.1(2),

∞∑

i=0

(−1)i tre(uivi) =
∞∑

i=0

(−1)i tre(viui). �

The following result says that the e-trace function is additive in some generalized Grothendieck
group defined in [10].

1.4. Proposition. Let e be an idempotent in Λ. Consider a commutative diagram

0 L
u

ϕ
L

M
v

ϕ
M

N

ϕ
N

0

0 L
u

M
v

N 0

in modΛ with exact rows. If L,N have e-bounded projective resolutions, then so does M and
tre(ϕM

) = tre(ϕL
) + tre(ϕN

).

Proof. Assume that L and N have e-bounded projective resolutions as follows:

PL : · · · Pi

di
Pi−1 · · · P0

d0
L 0

and

PN : · · · P ′
i

d ′
i

P ′
i−1 · · · P ′

0

d ′
0

N 0.

By the Horseshoe lemma, there exists in modΛ a commutative diagram

· · · Pi

di

qi

Pi−1

qi−1

· · · P0
d0

q0

L

u

0

· · · Pi ⊕ P ′
i

d ′′
i

pi

Pi−1 ⊕ P ′
i−1

pi−1

· · · P0 ⊕ P ′
0

d ′′
0

p0

M

v

0

· · · P ′
i

d ′
i

P ′
i−1 · · · P ′

0

d ′
0

N 0

with exact rows, where qi = (1
0

)
, pi = (0,1) for all i � 0. In particular, the middle row is an

e-bounded projective resolution of M which we denote by PM . Choose a lifting {fi}i�0 of ϕ

L
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to PL and a lifting {gi}i�0 of ϕ
N

to PN . It is well known; see, for example, [19, p. 46] that there
exists a lifting {hi}i�0 of ϕ

M
to PM such that

0 Pi

qi

fi

Pi ⊕ P ′
i

pi

hi

P ′
i

gi

0

0 Pi

qi
Pi ⊕ P ′

i

pi
P ′

i 0

is commutative, for every i � 0. Since hiqi = qifi and gipi = pihi , we may choose to write
hi as a (2 × 2)-matrix whose diagonal entries are fi and gi . By Proposition 1.1(3), tre(hi) =
tre(fi) + tre(gi). Hence, tre(ϕM) = tre(ϕN) + tre(ϕL). �

In the sequel, Se will stand for the semi-simple Λ-module eΛ/eJ . The following observation
is essential in our investigation.

1.5. Lemma. Let e be an idempotent in Λ. If Se is of finite injective dimension, then the e-trace
is defined for every endomorphism in modΛ.

Proof. Suppose that Se is of finite injective dimension n. Let M be a module in modΛ with a
minimal projective resolution

PM : · · · Pi Pi−1 · · · P0 M 0.

For each i > n, we have HomΛ(Pi, Se) = ExtiΛ(M,Se) = 0, and hence e annihilates the top
of Pi . This shows that PM is e-bounded. Therefore, tre(ϕ) is defined for every endomorphism ϕ

of M . �
Remark. If Λ is of finite global dimension, then we recover Lenzing’s trace function by taking
e to be the identity of Λ.

Now, we are able to describe the Hochschild homology group HH0(Λe) in case Se is of finite
injective dimension.

1.6. Theorem. Let Λ be an artin algebra, and let e be an idempotent in Λ. If Se is of finite
injective dimension, then HH0(Λe) is radical-trivial.

Proof. Suppose that Se is of finite injective dimension. By Lemma 1.5, the e-trace is defined for
every endomorphism in modΛ. Let x ∈ Λ be such that x̄ = x + Λ(1 − e)Λ lies in the radical
of Λe, which is (J + Λ(1 − e)Λ)/Λ(1 − e)Λ. Hence, x̄ = ā for some a ∈ J . Let r > 0 be such
that ar = 0, and consider the chain

0 = Mr ⊆ Mr−1 ⊆ · · · ⊆ M1 ⊆ M0 = Λ,

of submodules of Λ, where Mi = aiΛ, i = 0, . . . , r . Let ϕ0 : Λ → Λ be the left multiplication
by a. Since ϕ0(Mi) ⊆ Mi+1, we see that ϕ0 induces morphisms ϕi : Mi → Mi , i = 1, . . . , r , such
that
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0 Mi+1

ϕi+1

Mi

ϕi

Mi/Mi+1

0

0

0 Mi+1 Mi Mi/Mi+1 0

commutes. By Proposition 1.4, tre(ϕi) = tre(ϕi+1), for i = 0,1, . . . , r − 1. Applying Proposi-
tion 1.1(5), we get

ā + [Λe,Λe] = He

(
a + [Λ,Λ]) = He

(
tr(ϕ0)

) = tre(ϕ0) = tre(ϕr ) = 0,

that is, x̄ = ā ∈ [Λe,Λe]. �
Taking e to be the identity of Λ, we recover the following well known result; see, for example,

[13].

1.7. Corollary. If Λ is an artin algebra of finite global dimension, then HH0(Λ) is radical-trivial.

Let Λ be a finite dimensional algebra over a field of characteristic zero. If Λ is of finite
global dimension, then all the Hochschild homology groups HHi (Λ) with i � 1 vanish; see [13].
However, in the situation as in Theorem 1.6, even if Λ is of finite global dimension, Λe may be
of infinite global dimension with non-vanishing higher Hochschild homology groups.

Example. Let Λ = kQ/I , where k is a field, Q is the quiver

1
α

γ

2

β

4
δ

3

ε

and I is the ideal in the path algebra kQ generated by αβ − γ δ,βε, δε, εα. It is easy to see that
Λ is of finite global dimension. Let e be the sum of the primitive idempotents in Λ associated
to the vertices 1,2,3. By Theorem 1.6, HH0(Λe) is radical-trivial. On the other hand, Λe is a
Nakayama algebra of infinite global dimension, and a direct computation shows that HH2(Λe)

does not vanish; see [11].

2. Main results

The main objective of this section is to apply the previously obtained result to solve the strong
no loop conjecture for finite dimensional algebras over an algebraically closed field.

We start with an artin algebra Λ and a primitive idempotent e in Λ. We shall say that Λ is
locally commutative at e if eΛe is commutative and that Λ is locally commutative if it is locally
commutative at every primitive idempotent. Moreover, e is called basic if eΛ is not isomorphic
to any direct summand of (1 − e)Λ. In this terminology, Λ is basic if and only if its primitive
idempotents are all basic.

2.1. Proposition. Let Λ be an artin algebra, and let e be a basic primitive idempotent in Λ such
that Λ/J 2 is locally commutative at e + J 2. If Se is of finite projective or injective dimension,
then Ext1 (Se, Se) = 0.
Λ
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Proof. Firstly, assume that Se is of finite injective dimension. For proving that Ext1Λ(Se, Se) = 0,
it suffices to show that eJ e/eJ 2e = 0. Let a ∈ eJ e. Then a + Λ(1 − e)Λ ∈ [Λe,Λe] by Theo-
rem 1.6. Since e is basic, eΛ(1 − e)Λe ⊆ eJ 2e. This yields an algebra homomorphism

f : Λe → eΛe/eJ 2e : x + Λ(1 − e)Λ 
→ exe + eJ 2e.

Thus, a + eJ 2e = f (a + Λ(1 − e)Λ) lies in the commutator group of eΛe/eJ 2e. On the other
hand, eΛe/eJ 2e ∼= (e + J 2)(Λ/J 2)(e + J 2), which is commutative. Therefore, a + eJ 2e = 0,
that is, a ∈ eJ 2e. The result follows in this case.

Next, assume that Se is of finite projective dimension. Let D be the standard duality between
modΛ and modΛop. Then D(Se) is a simple Λop-module of finite injective dimension, which
is supported by the primitive idempotent eo corresponding to e. Since eo is basic such that the
quotient of Λop modulo the square of its radical is locally commutative at the class of eo, we
have Ext1Λop(D(Se),D(Se)) = 0, and consequently, Ext1Λ(Se, Se) = 0. �
Remark. In particular, Proposition 2.1 establishes the strong no loop conjecture for basic artin
algebras Λ such that Λ/J 2 is locally commutative.

Now we specialize the preceding result to finite dimensional algebras over a field.

2.2. Theorem. Let Λ be a finite dimensional algebra over a field k, and let S be a sim-
ple Λ-module of k-dimension one. If S is of finite projective or injective dimension, then
Ext1Λ(S,S) = 0.

Proof. Let e be a primitive idempotent in Λ which does not annihilate S. Then Λ admits a
complete set {e1, . . . , en} of orthogonal primitive idempotents with e = e1. We may assume that
e1Λ, . . . , erΛ, with 1 � r � n, are the non-isomorphic indecomposable projective modules in
modΛ. Then

Λ/J ∼= Mn1(D1) × · · · × Mnr (Dr),

where Di = EndΛ(eiΛ/eiJ ) and ni is the number of indices j with 1 � j � n such that ejΛ ∼=
eiΛ, for i = 1, . . . , r. Observe that S is a simple Mn1(D1)-module, and hence S ∼= D

n1
1 . Since

S is one dimensional over k, it is one dimensional over D1. In particular, n1 = 1. That is, e is a
basic primitive idempotent. Moreover, eΛe/eJe ∼= Se ∼= k. Thus, for x1, x2 ∈ eΛe, we can write
xi = λie+ai , where λi ∈ k and ai ∈ eJ e, i = 1,2. This yields x1x2 −x2x1 = a1a2 −a2a1 ∈ eJ 2e.

Therefore, eΛe/eJ 2e is commutative, and so is (e+J 2)(Λ/J 2)(e+J 2). Now the result follows
immediately from Proposition 2.1. �
Remark. A finite dimensional algebra over a field is called elementary if its simple modules
are all one dimensional over the base field, or equivalently, it is isomorphic to an algebra given
by a quiver with relations; see [1]. It is well known that a finite dimensional algebra over an
algebraically closed field is Morita equivalent to an elementary algebra. In this connection, The-
orem 2.3 establishes the strong no loop conjecture for finite dimensional elementary algebras
over any field, and consequently, for finite dimensional algebras over an algebraically closed
field.
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We shall extend our results further. For this purpose, some more terminology is needed. From
now on, let Λ stand for a finite dimensional elementary algebra over a field k, which is isomorphic
to an algebra given by a quiver with relations. To simplify the notation, assume that Λ = kQ/I ,
where Q is a finite quiver, kQ is the path algebra of Q over k, and I is an admissible ideal in
kQ. Recall that I is admissible if (kQ+)n ⊆ I ⊆ (kQ+)2 for some n � 2, where kQ+ is the ideal
in kQ generated by the arrows. Consider ρ = λ1p1 + · · · + λrpr ∈ I, where the pi are distinct
paths in Q from one fixed vertex to another, and the λi are non-zero scalars in k. We say that
ρ is a minimal relation for Λ if

∑
i∈Ω λipi /∈ I for any Ω ⊂ {1, . . . , r}. Observe that a minimal

relation in this sense does not necessarily lie in a minimal set of generators of I . For instance,
a path p in Q is a minimal relation for Λ if and only if p ∈ I . Moreover, a path p in Q is said to
be non-zero in Λ if p /∈ I ; and free in Λ if p is not a summand of any minimal relation for Λ.

Now, let σ = α1α2 · · ·αr be an oriented cycle in Q, where the αi are arrows. We denote by
supp(σ ) the set of vertices occurring as starting points of α1, . . . , αr , and define the idempotent
supporting σ to be the sum of all primitive idempotents in Λ associated to the vertices in supp(σ ).
Furthermore, the cyclic permutations of σ are the oriented cycles σ1 = σ , σ2 = α2 · · ·αrα1, . . . ,

and σr = αrα1 · · ·αr−1. Now, we say that σ is cyclically non-zero (respectively, cyclically free)
in Λ if each of σ1, . . . , σr is non-zero (respectively, free) in Λ. For example, a loop in Q is always
cyclically free in Λ.

2.3. Theorem. Let Λ = kQ/I with Q a finite quiver and I an admissible ideal in kQ, and let σ

be an oriented cycle in Q with supporting idempotent e in Λ. If σ is cyclically free in Λ, then Se

is of infinite projective and injective dimensions.

Proof. Suppose that σ is cyclically free in Λ. If σ is a power of a shorter oriented cycle δ,
then it is easy to see that δ is also cyclically free in Λ and supp(δ) = supp(σ ). Hence, we may
assume that σ is not a power of any shorter oriented cycle. It is then well known that the cyclic
permutations σ1, . . . , σr of σ , where σ1 = σ , are pairwise distinct.

For any x ∈ kQ, denote by x̄ its class in Λ and by x̃ the class of x̄ in Λe. Let W be the
vector subspace of Λe spanned by the classes p̃, where p ranges over the paths in Q different
from σ1, . . . , σr . Then, there exist paths p1, . . . , pm in Q different from σ1, . . . , σr such that
{p̃1, . . . , p̃m} is a k-basis of W . We claim that {σ̃1, . . . , σ̃r , p̃1, . . . , p̃m} is a k-basis of Λe. Indeed,
it clearly spans Λe. Assume that

r∑

i=1

λiσ̃i +
m∑

j=1

νj p̃j = 0̃, λi, νj ∈ k.

That is,
∑r

i=1 λiσ̄i + ∑m
j=1 νj p̄j ∈ Λ(1 − e)Λ. Then

r∑

i=1

λiσ̄i +
m∑

j=1

νj p̄j =
s∑

l=1

μlq̄l, μl ∈ k,

where q1, . . . , qs are some distinct paths in Q passing through a vertex not in supp(σ ). Fix some
t with 1 � t � r . Letting εt be the trivial path in Q associated to the starting point at of σt , we
get
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ρ =
r∑

i=1

λi(εtσiεt ) +
m∑

j=1

νj (εtpj εt ) −
s∑

l=1

μl(εtqlεt ) ∈ I.

Note that the non-zero elements of the εtσiεt , εtpj εt , εtqlεt ∈ kQ are distinct oriented cycles
from at to at . If λt �= 0, then λt (εtσt εt ), that is λtσt , would be a summand of a minimal non-
zero summand ρ′ of ρ with ρ′ ∈ I . By definition, ρ′ is a minimal relation for Λ, contrary to
the hypothesis that σ is cyclically free in Λ. Therefore, λt = 0. This shows that λ1, . . . , λr are
all zero, and consequently, so are ν1, . . . , νm. Our claim is established. Suppose now that σ̃ ∈
[Λe,Λe]. Then

σ̃ =
n∑

i=1

ηi(ũi ṽi − ṽi ũi ), (1)

where ηi ∈ k and ui, vi ∈ {σ1, . . . , σr ,p1, . . . , pm}. For each 1 � i � n, we see easily that uivi /∈
{σ1, . . . , σr} if and only if viui /∈ {σ1, . . . , σr}, and in this case, ũi ṽi − ṽi ũi ∈ W . Therefore,
Eq. (1) becomes

σ̃ =
∑

ηij (σ̃i − σ̃j ) + w, (2)

where ηij ∈ k and w ∈ W . Let L be the linear form on Λe, which sends each of σ̃1, . . . , σ̃r to 1
and vanishes on W . Since σ = σ1, applying L to Eq. (2) yields 1 = 0, a contradiction. Therefore,
the class of σ̃ in HH0(Λe) is non-zero. Since σ̃ lies in the radical of Λe, by Theorem 1.6, Se is
of infinite projective and injective dimensions. �
Example. Let Λ = kQ/I , where Q is the following quiver

1

α

ε
2

γ

β

3
δ

μ

4
ν

and I is the ideal in kQ generated by αβ, δγ,βε, εβ, νδ, νμ,μν,γμ, αγ δβαγ − εγ . It is easy
to see that the oriented cycle βαγ δ is cyclically free in Λ. By Theorem 2.3, one of the simple
modules S1, S2, S3 is of infinite projective dimension, and one is of infinite injective dimension.

2.4. Corollary. Let Λ = kQ/I , where Q is a finite quiver and I is an admissible ideal in kQ. If
Q contains an oriented cycle which is cyclically free in Λ, then Λ is of infinite global dimension.

An admissible ideal I in kQ is called monomial if it is generated by some paths. In this case,
every minimal relation for Λ is a multiple of a path in Q. Therefore, an oriented cycle in Q

is cyclically free in Λ if and only if it is cyclically non-zero in Λ. This yields the following
consequence, which can also be derived from some results stated in [11].

2.5. Corollary. Let Λ = kQ/I , where Q is a finite quiver and I is a monomial ideal in kQ.
If Q contains an oriented cycle which is cyclically non-zero in Λ, then Λ is of infinite global
dimension.
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Example. Consider Λ = kQ/I , where Q is the quiver

1
α

2
β

and I is the ideal in kQ generated by αβ . It is easy to see that Λ is of global dimension two.
Observe that Q contains an oriented cycle βα which is non-zero but not cyclically non-zero in Λ.

To conclude, we would like to draw the reader’s attention to the following even stronger
version of the strong no loop conjecture.

2.6. Extension Conjecture. Let S be a simple module over an artin algebra. If Ext1(S,S) is
non-zero, then Exti (S, S) is non-zero for infinitely many integers i.

This conjecture was originally posed in [14] under the name of extreme no loop conjecture. It
remains open except for monomial algebras and special biserial algebras; see [6,14].
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