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The only notation not self-evident is the following: 
Let Xt be a nondeterministic stationary process with Cram6r repre- 

sentation, 

where 

X,  = e"= dz(.,) 
iv 

E[dz(z) dz(h)l = O, 

= f (~ )  d~, 

f(~) being the power spectrum of X t .  
The related process Xt{a(~), ~(~)} is defined by 

f/ XtIa(~),  ~(o~) } = e~t'~a(~)e i+(~) dz(~) 

where 

o ~ k  

+(o~) = ¢ ( ~ ) ,  o < ~ =< ~- 

= 0 ,  ~ = 0  

= - - ~ ( - - ~ o ) ,  --~ _-__ ~ < 0 ,  

and a(~0) is a real function of ~0. 

* This work was supported by a grant from the National Science Foundation. 
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I. FEEDBACK AND CROSS-SPECTRAL ANALYSIS 

Economic variables are stochastic processes, for which the develop- 
ment of techniques for control involves a number of special problems. 
Whereas the direction of causality in physical systems is generally self- 
evident, for economic systems the direction of causality is usually highly 
debatable. It  should be remembered that it is impossible to make "open 
loop" measurements or to carry out experiments with controlled inputs. 
There has recently been an awakening interest by econometricians into 
the possibility of using cross-spectral methods for analyzing the case in 
which one process {Xt} is "causing" or is intrinsically leading another pro- 
cess {Y~}. Such relationships can be expressed as 

Yt  = X t l a ( x ) ,  9(~)} + Ut (1.1) 

using the notation introduced above, Ut being a stationary process in- 
dependent of Xt .  Such models may be reasonable in the field of micro- 
economics, but in macro-economics there is often also a feedback 
equation, perhaps of the form 

X t  = Yt{b(w) ,  0(~)} + Y r .  (1.2) 

It should be fairly clear that when feedback is present in a system cross- 
spectral methods will be less appropriate. This may be shown more 
exactly by considering further the pair of equations (1.1) and (1.2). 
Assuming E[Ut] = E[Vt] = E[UtVt_,]  = 0, all t, r, they may be re- 
written 

X t  =- Xt{a(w)b(~o),  ~(w) -~ 0(~)} -~ Ut{b(co), 0(~)} + V~ 
( 1 . 3 )  

Yt  = Y , i a ( w ) b ( ~ ) ,  ~,(a~) + 0(~)} + Vt{a(~), ~(w)l "+ U~ 

and if 

for P 

P~ = e "'~ dz,(o.,) 
";r 

= 0, 

= fv(o~), oJ -- k 

= X, Y, U, V, then 

dz~(o~) = [b(o~)e -~°(~) dz~(o~) + dz~(oJ)]/d(o~), o~ > 0 

dzy(w) = [a(w)e -~(~) dz~(~) + dz~(oJ)] /d(~) ,  ~ > 0 
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where 

GRANGER 

A(e )  = 1 - a(e)b(co) e x p [ - i ( 0 ( e )  q-~(e))}  

= g z A - e )  = 

and if C~(e) = c0(e) + iq(oJ) is the power cross-spectrum between 
{X~} and {Yt}, then 

B(~o)f~(e) = b2(e)f~(w) + f~(e) 

B(@fy(e)  = a2(~o)f~(e) + f~(oJ) 

B(co)Co(e) = a(co)f~(e) cos t ( e )  q- b(e)f~ (¢o) cos 0(e) 

B(e)q (e )  = a(e)f~(e) s in , ( e )  - -b(e) f~(e)  sin 0(w), 

where 

= 

B(w) = 1 -ff a2(e)b2(e) - 2a(w) b(~o) cos [~(e) q- 0(¢o)]. 

Thus, the coherence is 

a2(e)J'~2(e) q- b2(e)fi,2(e) + 2a(~o)b(~o)f~(e)f~(o~) 
• oos[ ( o) + 

and the phase-diagram varies as 

, _~(b(e)f~(e) sin O(e) -- a(e)fi,(o~) sin~(w);  
~b(~o) = can \ b(co)f~(w) cos 0(¢0) -t- a(~)fi,(o~) cos ~(e) j "  

The coherence, of eourse, still measures the degree of dependence between 
the processes at each frequency, but, as now no one process is continually 
lagged to the other, the phase diagram is unlikely to provide useful in- 
formation unless the feedback is weak (b(~o) small for all e, a(e) not 
small, say). 

It  should further be noted that as there are six unknown functions 
(a(~o), b(e), ~(co), O(e), f~(e), fv(¢o)) and only four estimated functions 
(f~(e), fy(e) ,  c0(~0), q(e)) it is not possible to estimate the unknown 
functions. Even if the processes {Ut} and {Vt} are assumed to be white 
noise, the estimation problem eannot be solved using spectral methods. 

Thus, consideration of feedback suggests a variety of problems which 
will be considered in this paper: 

(i) How to define feedback and test it if it is occurring in a system• 
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(ii) How to measure the feedback-lag (length of time taken for feed- 
back to occur) and the strength of any feedback. 

(iii) How to consider whether feedback is varying in importance and 
direction with frequency. 

I I .  S O M E  P R E L I M I N A R Y  R E S U L T S  

If the q × 1 vector Xt with 1 

X t  t ~- {Xlt, X 2 t ,  ' ' '  , X q t } ,  

E[X~t] = O, j = 1, . . .  , q, 

is a multivariate, stationary, nondeterministic process, Zashuin (1941) 
has shown that  it may be represented by 

Xt = B ( V ) ~ t  (2.1) 

where B(U) is the matrix 

B(U) -- [Bjk(U)] 

B j k ( U )  = ~ b~kr~U "~, 
m~O 

U being the shift operator defined by 

UX~ = X t _ l ,  

and et is a q X t multivariate white noise vector with mean zero, i.e., 

F.t ! = 16.1t, 62t,  " ' ' ,  Eqt}, E[E3t ] -~- O , j  = 1, " ' ' ,  q;  

E[et~t'] -- Iq ; E[ete~+,] = 0q, s # 0. 

Here, Iq is the unit matrix and 0q the zero matrix, both of the qth order. 
Equation (2.1) may be called the "moving average" representation of 
the process. 

Defining the theoretical autocovariances and power spectral func- 
tions by 

r,k(s) = E[Xs.~+~Xk~] 

F~(~)  = ~ r,k(s)e ~ 

F(~) = [Fjk(~o)], j ,  ]c = 1, . . . ,  q, 

1 M a t r i x  A ~ is t h e  t r a n s p o s e  of m a t r i x  A. 
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it is easy to show that 

F(~o) = B(e '~)B'(e- '~) .  

If the equation in z, I B(z) I = 0, has no roots on or within l zl  = 1, 
we may invert (2.1) to get the "autoregressive" representation 

A ( U )  X, = ~t (2.2) 

where 

If we write (2.2) as 

we have 

A(U)  = B-~(U) = ~ A , U  ~. 
j=0  

AoXt -~ (past values of Xt) = et (2.3) 

X, = Ao1~t + (past Xt) 
(2.4) 

= B0~t -6 (past X,). 

Equation (2.3) will be called the basic representation of the vector pro- 
cess {Xt} and Eq. (2.4) the reduced-form representation. 

I t  is important  to note that  (2.3) is not a unique representation. If 
A is an orthogonal matrix, i.e., a square matrix having the property 
AA'  = Iq, then, if tt is a white noise vector, so is the vector nt defined 
by nt = A~t,  as 

E[ntn't+,] = AE[e,~'t+,]A' = AI~A' = Iq, if s = 0 

= A0aA I = 0q, if s # 0. 

Thus an alternative representation to (2.3) having exactly the same 
form is achieved by premultiplying (or postmultiplying) throughout  by  
any orthogonal matrix, getting 

AAoXt + (past Xt) = " t -  

I t  follows that ,  as any matrix can be written as the product of an or- 
thogonal matrix and a triangular matrix, we lose no generality by assum- 
ing A0 to be a triangular matrix in any basic representation. On the 
other hand, we are unable, in general, to assume A0 = Iq and still retain 
a basic representation having white noise as the residual term. 

Viewing the reduced-form representation (2.4) with regard to predic- 
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tion possibilities, we see that  if given all past values of Xt we can predict 
all of the present X~ apart from the terms B0~t. The determinant of the 
covariance matrix of these terms, 

V = 1 E [ ( B 0 ~ t ) ( B 0 ~ t ) ' l  I 
(2.5) 

= i BoB0' / = i B012, 

is called the total predictive variance of the process [Xtt. We note that  
premultiptying the basic form by any orthogonal matrix A has no effect 
on V a s  t A I  = 1. 

Let us denote the set of q stochastic processes {X,t}, i = 1, . . .  , q, 
by Q and let Q(j)  be the set of processes {X~t}, i = 1, . . .  , j -  1, 
j + 1, . . .  , q, i.e., the set Q excluding {Xj~}, let Q(j, lc) be the set of 
processes Q excluding {X~t} and {X~t}, and so forth. 

For any one of the processes in the set Q, say {X~t], we can form an 
optimum linear predictor using only those processes belonging to some 
subset J of Q by defining 

P.[J] = E E j c J, (2.6) 
j k=l  

and choosing the coefficients ajk so that  the prediction error variance 

V~.[J] = E [ ( X ~ , -  P~t[J]) 2] (2.7) 

is a minimum. Thus, P,~t[J] is the bes~ (in a least-squares sense) predictor 
of X~ available to us if we restrict ourselves to using only the past values 
of the set of processes {Xj~}, j C J .  Clearly, the better the prediction, 
the lower will be the value of VdJ],  and thus 

2 0 < V¢[J] ~ o~i 

where rr,. 2 = E[X~t]. V~[J] = 0 if and only if the process X~t is deter- 
ministic. 

I I I .  D E F I N I T I O N S  OF C A U S A L I T Y  A N D  F E E D B A C K  

We shall initially restrict ourselves to vector stochastic processes 
having basic representation 

A0Xt = (past Xt) + ~t, 

where ~t is white noise and A0 is a diagonal matrix. As explained above, 
this is a restrictive assumption, but the class of such processes is impor- 
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rant because each process { X , } ,  i = 1, . . .  , q, is now "caused" only by 
past values of X t .  The removal of this assumption is discussed below. 
We note that  for such processes (3.1) can be written 

where 

with 

Xt = (past Xt) + Bo~t, 

BoBo' = V = [Vi61s] 

~i~ = O, i ~ j 

= 1 ,  i = j .  

Thus, V~ will be the prediction error variance of the process {X,} if 
all processes in the set Q are used, i.e., 

tL = E [ ( X ~ . ~ -  P.[Q])~], 

and the total prediction variance is given by 

v = I t  v i .  

Using the notation of the previous section, we shall define causality of 
the process {Xst} by the process {Xkt} within the set Q if 

Vj[Q(lc)] - V,[Q] > O. 

Such a causality will be denoted by 

ixk,l  ~ [x~.,/. 

If 

V,[Q(k)] - V~[Q] = o, 

there is no causality, denoted by IXkt} ~ {Xjt}. Thus, we say that  the 
process {Xk,} is causing the process {Xot/ if we are better able to predict 
Xst  using past values of Xkt than if we do not use these values. 2 

If we find {Xk,} ~ {Xst} and {Xst} ~ {X~,}, i.e., we have both Vs[Q(/~) ] 
- Vs[Q] > 0 and Vk[Q(j)] - Vk[Q] > O, we say that  direct feedback 
is present and denote this by 

This definition of causality agrees with that proposed by Wiener (1956). 
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Two other types of feedback will also be distinguished: 
(i) If V~[Q(j)] - V~[Q] > 0, we say that  there is "internal feedback." 
(ii) If causality chains are found of the type {X~} ~ IX , }  ~ {X~t} 
{Xkt} we may talk of "indirect feedback." 

Strictly speaking, we should always indicate the basic set O of proc- 
esses within which we are working whenever the causality or feedback 
notation is used. A possible notation is: 

{x , , }  ~ {x~,} I Q. 
The reason why we nmst be careful on this point is because it is possible, 
for instance, tha t  there exists a stochastic process I Yt} outside of Q 
such that  

and 

but 

I Y,} ~ {x,,} I R 

{x,,} ~ [ x A  I Q, 

where R is the set Q plus the process { Yt}. in  such a case we are finding 
causality within Q due to the indirect causality via I Y~} in the larger 
set R. Putt ing this another way, causality is found in Q between XT~ 
and X jr because Xk~ contains information about the missing process 
Yt which itself contains information about X;~. However, whenever 
the basic set of processes Q within which we are working is clearly evi- 
dent the generalized notation will not be used. 

IV. TIME-LAGS CONNECTEI) WITH CAUSALITY AND FEEDBACK 

Suppose that  we have a set Q of stochastic processes and that  a 
causality has been found between two of them IX~,} ~ { X / ,  so that  we 
have optimum linear predictors P,t[QJ, PjdQ(lc)] and prediction error 
variances Vj[Q], V~[Q (k) ] associated with them and having the property 
v,[Q(~)] > v,[0]. 

Define the ]c-truncated optimum linear predictor of X jr as 

p~Q(k) ~=I t ~ r  
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where the coefficients a ,  are chosen to minimize 

V~[Q; k, r] = E[(Zjt - Pet[Q; k, r])2], 

Vj[Q; k, r] being the minimum thus achieved. 
If now, we find that  

V~[Q(k)] = Vj[Q; k, r] > v,[q], 

then there is a causality lag of at least r time units. V~[Q; k, r] will be a 
nondecreasing sequence as T increases, and the least value of r(r0) 
such that  

V~[Q; k, ro - 1] = V~[Q; k, r0] < VAQ; k, ro + 1] 

will be called the integer causality lag of the causality {Xkt} ~ (X~}. 
We are saying here that  if the causality IXk~} ~ {Xj~} occurs, but that  

we do not worsen our prediction of Xi~ by not using any of the terms 
Xk~, X~.t_l, " .  , Xk.~_r+~, then the causality lag must be at least r 
units. 

The true causality lag may be r0 -t- a tirae units, where 0 _-< a ~ 1, 
as the discrete processes being considered may be samples from con- 
tinuous stochastic processes and the causality need not occur exactly at  
one of the sampling points. To introduce such sophistication would not 
appear to be worthwhile in practice, but this point will be discussed again 
later when there is a possibility of a causality lag of less than one time 
unit occurring (see Section VII) .  

If the integer causality lags of {Xkt} ~ {Xjt} and {X;t} ~ {Xkt} are 
r0 and r~ respectively, we shall call r0 + rl the integer feedback lag. 

V. STRENGTH OF CAUSALITY AND FEEDBACK 

Using the notation of the previous two sections, we define the strength 
of the causality {X~,} ~ {Xjt} as 

C(k,j)  -= 1 Yi[Q] (5.1) 
V~[Q(k)] 

and the strength of the feedback {Xk~} ~=* {Xit} is defined as 

( Vi[Q] ~ 1  Vk[Q] ~ (5.2) 
s ( k , j )  = c ( k , j ) c ( j ,  k) = 1 v ~ ] \  v T ~ ) ] ] "  

These quantities have the properties 

0 <= C(k,j) <= 1, 0 <= S(k , j )  <- 1 
s(lc,  j )  = s ( j ,  l~). 
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The quantities measuring strength are chosen so that  C(lc, j) = 0 
when {Xkt} # *  {X~t} and S(lc, j )  = 0 when there is no feedback between 
the two processes. Although these measures have useful properties, it 
must be emphasized that  they are arbitrarily-chosen measures and that  
various alternative measures could be proposed. 

To indicate how these measures of strength or importance are related 
to alternative measures such as coherence and information, we consider 
the ease when q = 2, i.e., the set Q contains only the two processes 
{Xlt} and {X2t}. Suppose that  f l ( e ) ,  f2(e) are the power spectra of these 
processes and C(e)  is the coherence between them. 

For the ease q = 2, V~[Q(2)] will be the minimum prediction error 
variance of Xlt when only past values of X~t are used, and V~[Q] will 
be the minimum prediction error variance of Xlt when past values of 
both X~t and X2, are used. I&_[Q(1)] and V2[QJ are similarly defined, 
and V = Iq[Q]V2[Q] is the minimum total prediction variance. 
Kolmogoroff (1939) has shown that  

J: 1 log f~(e) de log Iq[Q(2)] = ~ ~- 

and 

log V2[Q(1)] = ~ 

and Whittle (1955) has shown that  

log f2(e) de, 

log V = log VI[Q] 3- log V2[Q] 

Thus, 

where 

_ 1 log [f~(e)f2(~o)(1 -- C(e ) ) ]  de. 
2~r 

log VI[Q] 3- log V2[Q] = log V~[Q(2)] 3- log V2[Q(1)] - I 

I = - 2 S  log ( i  - c ( e ) )  de, (5.3) 
7r 

has been defined by Gel'fand and Yaglom (1959) as the average amount  
of information per unit of time contained in [Xlt} about {X2~} and vice- 
versa. Substituting from (5.1) into this equation, we have 

log (1 -- C(1, 2)) 3- log (1 -- C(2, 1)) = - I  
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o r  

1 + S (1 ,2 )  -- C(1,2) -- C(2, 1) = e -I  (5.4) 

Thus, in the case of two variables, the important  quantities of strength 
of feedback, information, and coherence are connected by Eqs. (5.3) 
and (5.4). In the case of q variables, similar equations exist if coherence 
is replaced by partial coherence, and a new concept of "part ial  informa- 
t ion" is introduced. 

VI. TESTS FOR CAUSALITY AND FEEDBACK 

The previous sections of this chapter have~ been chiefly concerned 
with the theoretical aspects of causality and feedback, and we have been 
able to assume that  we have available knowledge of all past values of the 
processes belonging to the set Q. In practice, of course, we will have 
only the past values of [X,] over a finite time interval of N units, i.e., 
x l ,  x~, • • , xn .  Thus we are forced to use approximate linear predictors 
of the type 

P.~,[J] -- E ~ apkx~,t-k, p C J (6.1) 
p ~ 1  

which, for sufficiently large m~, j C J, will be an approximation to 
PTt[J] defined in Eq. (2.6). Although it is more general to put  no limit 
on the truncation values mj ,  we shall henceforth take all the m / s  to be 
equal, i.e., m3' = m, j C J,  and denote the resulting approximate linear 
predictor/~j~[J, m]. This will be an optimum predictor if the coefficients 
a~1~ are chosen so that 

5r 

? j I J ,  m]  - N - m 

is minimized, Vj[J , /n]  being the resulting minimum value. In general, 
E[?~[J,  roll > V:[J], but  

lim E[I?~-[J, roll = Vj[J], 

and so if we choose m sufficiently large the approximate linear optimum 
predictor will be a good approximation of the true opt imum predictor. 

( ' Gaussian, some if  it is assumed that  all the processes (X¢t}, ? C Q, are 
results due to Whittle (1953) provide a test for causality. He proves 
that  under the null hypothesis of no causality {X~:~} ~ {Xj~}, the statistic 

[ 
= ( N  - q - , )log  L 
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is distributed as chi-squared with m degrees of freedom. 3 Thus, if 
l?;[Q(k), m]/i2j[Q, m] becomes too large the null hypothesis of no 
causality will be rejected. If, and only if, both causalities {Xkt} ~ { X j t l ,  

IXj~} ~ {X~t} are found, it can be said that  feedback exists between the 
two processes. 

The same test may be used to find the causality lag. Suppose that  
the null hypothesis {X~t} ~ { X j t l  has been rejected and that  a pre- 
t runcated approximate linear opt imum predictor of Xjt is found, 

PE (k) i=i i ~ r  

being an approximation to the predictor introduced in section 7.4, with 
the coefficients minimizing 

N 

- P i t ] ,  
] V  - -  "nT. t = m +  l 

I?~[ ] being the minimum. 
The null hypothesis tha t  the integer causality lag is at least T q- 1 

units is tested by forming the statistic 

F I?j[Q, m; k, *]1 ~,: = ( N -  q -  re) lOg. L- ~j[~-m-] ' 

which, if the null hypothesis is true, will be distributed as ehi-squared 
with T - 1 degrees of freedom. If  the null hypothesis is rejected, the 
integer causality lag will be v units or less. 

How important  is the assumption that  {Xt} is a Gaussian vector 
process is uncertain. No equivMent test for nonnormal data exists at 
present, but  the test given is like]y to be appropriate asymptotically as 
N -+ ~ .  The question of whether economic series may be considered to 
be Gaussian, possibly after " d e c o n t a m i n a t i o n , "  is debatable and con- 
siderably more research is required before a more definite statement can 
be made. 

VII. REMOVING THE BASIC ASSUMPTION OF SECTION III 

The previous four sections have all been based on the assumption 
that  the vector process/Xtl can be represented by 

A0X~ = (past Xt) ÷ *t, (7.1) 

.~ If the simplifying ~ssumption m~ = m, M1 j, had not been made, the test 
statistic should be 

g,~ = (n -- q - M/q)  log~ (I?[Q(k), m]/~?[Q, m]) 
where M = ~-~4~ m~, , and ~2 is distributed as chi-squared with mk degrees of 
freedom under the null hypothesis. 
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where ~t is white noise and A0 is a diagonal matrix. Using the terms since 
introduced, the assumption can be restated as assuming all causality 
lags occurring in the system to be of at least one time unit. For certain 
economic series such as monthly production data, such an assumption 
may be a realistic one, but it is certainly not so for all economic series. I t  
will be the object of this section to study the effect of removing this 
assumption. 

First, however, a test of whether or not the assumption holds for a 
given set of processes will be considered. Suppose that,  using the nota- 
tion of the previous section, an approximate optimum linear predictor of 
xst is found for all j = 1, . . .  , q, involving all the processes in the set 
Q, i.e., 

Dj ,[Q,m]  = ~ ~ a p k x p , , _ k ,  for each j =  1 , . . - , q .  
p=l k=l 

Now, forming the estimated prediction error series 

~st = x , t  - Pst[Q, m] (7.2) 

f o r j  = 1 , . . . ,  q and t = m q- 1, . . . ,  N, we need to consider two 
possible sources of error in our approach: 

(i) m has not been chosen sufficiently large, so that  one or more of 
the approximate predictors Pst[Q, m], j = 1, . . .  , q, are not good ap- 
proximations of the true optimum predictors P~t[Q], j = 1, . .  • , q; 

(ii) The assumption that  A0 is a diagonal matrix in representations 
such as (7.1) is untrue. 

The possibility of complication (i) occurring can be investigated by 
testing for serial correlation in any of the series {~s~}. Various tests for 
serial correlation are available, the best known being that  by Durbin 
and Watson (1950). 

If these tests indicate that  the m chosen is sufficiently large (or if new 
predictors and error series with m larger have been constructed) the basic 
assumption of (ii) can be investigated by testing for correlation between 
any two error series {~Jt}, {~} considered as independent samples. Any 
of the usual tests for correlation will suffice, but generally, since N - v~ 
will be large, one of the quick and easy tests will be appropriate. If any 
correlation coefficient is found that  is significantly nonzero, the assump- 
tion that  A0 is diagonal will have to be rejected. 

Once the assumption that  A0 is diagonal is rejected, the problems of 
defining and testing for causality and feedback become not merely more 
difficult but  perhaps impossible. This is shown by considering a simple 
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example. Suppose that  the set Q consists of the two processes {Xt}, 
{Yt} only, and that  there is a causality {Xt} ~ {Yt} but no feedback, 
and let the causality lag be exactly one time unit. Suppose now that  
instead of sampling the processes at times t = 1, 2, . . -  the sampling 
had taken place at times t = 1, 3, 5, . . . .  In this case, the time lag is 
now twice the causality lag. Let the processes sampled at  twice the 
original time unit be denoted by {Xr}, {Y~}, and suppose further that  
the original representation of the processes {Xt}, {Yt} was 

3=1 
(7.3) 

Y, = ~X,-I us ~ b~Yt_j ~- 7' 

which, incidentally, has a causality lag of exactly one time unit. The 
representation for the new processes would be 

X~, = aoXr-(1/2) + ~ a/Xr_j  + er 

i=1 (7.4) 

Yr = ~Xr-(i/2) + boYr-(1/2) + ~ b/Yr_j  ~ ~ 

if one could define Xr-(~/2), Yr-(~/2), but 

XT--1 /2  = e"'°e -~'/2 dz(~) 

and 

and so 

- ,~/2  /'~'~ d - ~ 3 ~  e ~ 3e 
3=o 

Xr_o/2 ) E ~ d~Xr__~ , 
j~O 

and the representation becomes 

XT = ~ a/'X~._j + e~.' 
j ~ l  

Yr = ~'XT + ~ b/'Yr-~ + ~r', 
3=I 

(7.5) 

i.e., A0 is no longer diagonal. 
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These steps have several important implications concerning the prob- 
lems of defining and testing for causality. For the original processes 
represented by (7.3), we cannot "predict" Xt any better by knowing Y t ,  
but this is not true for the new processes, as Yr contains information 
about X~.-(1/2) which can be used to better "predict" X r .  Similarly, if we 
know all past XT and Yf ,  we could better "predict" YT if we also knew 
Xf  than ff we did not, as Xr  contains information about Xr-(i/2) • Hence, 
the definitions of causality and feedback using the idea of linear pre- 
dictors are no longer appropriate. Due to the lack of uniqueness of the 
general representation (7.1) when A0 is not diagonal, it seems unlikely 
that causality can be defined or tested for when the causality lag is less 
than tile time lag. In brief, the data are unsuitable for the problem being 
considered when A0 is not a diagonal matrix. 

In such a case, the only appropriate method of analysis would seem 
to be that of classical model-building, and we are brought face-to-face 
with the usual problems of identification, simultaneous equation estima- 
tion, and interpretation. However, it must be emphasized that the 
preceding techniques have little in common with model-building meth- 
ods, being based on a different philosophy. The techniques, given certain 
assumptions, are entirely general, whereas model-building attempts to 
use all the a priori knowledge and economic theory that is available. 

In Section IX below, the possibility of causality strength and causality 
lag varying with frequency is considered. It  is plausible that causality 
lag decreases with increasing frequency, and that by suitably filtering 
out high frequencies the resulting data will have a causality lag longer 
than the time unit. Clearly, no general rules can be laid down about such 
a method of making data suitable for causality testing, and each par- 
ticular set of data will have to be dealt with in the light of available a 
priori knowledge or theory. 

A further question that can be mentioned is whether or not instan- 
taneous causality or feedback occurs in economic systems. It  is the 
author's personal belief that instantaneous feedback does not occur, and 
so one can always, by sampling the processes sufficiently often, make all 
causality lags not less than the time unit. If this view is true, an implica- 
tion is that much of the work on feedback and feedback control which 
is available in the field of electrical engineering cannot be applied to 
economics. 
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VIII .  C A L C U L A T I O N S  INVOLVED IN T E S T I N G  FOR F E E D B A C K  

The main calculations involved in testing for a causality {X~t} ~ {Xj~} 
m'e the formation of the approximate linear predictors of the type 

P,,[Q, m] = k ~ a~,x~,t_, 
p = l  r = l  

and of the resuidng prediction error variance, 
N 

1 ~ (x;, - G [ Q ,  ~1)= f%[O, m] = rain N--~ ~=,,~+~ 

together with the corresponding quantities when Q is replaeed by Q(k). 
The equations for a> when ~-he prediction error varimlee is minimized 

are asymptotically the same as 

u, = Ma, (8.1) 

where a is the qm X 1 vector of the unknown eoeffieients, i.e., 

a' = [al', a2', ""  , a / ]  

with (8.2) 

a /  : [ a a ,  a,u, - " ,  a{.,] 

and Va, M are q.~n X 1 and qm X qm matrices of the estimated cross- and 
autoeovarianees, i.e., 

u, ' =  [~5~, . ; , , - - - ,  G ]  
with (8.3) 

t A a ,~ ~,~ = b,~(1),  ~;,(2),  . . . ,  ~;~(,~)]; 

~¢Ill M12 Mia "'" Miq ~ 

M = I (8.4) 

M~I M,~2 Mqa . . .  "M~j,~, 
r ~  • A where M,, = [u,.,(lc - i)], i.e., the matrix with ~r,(k - i) in the i th row 

• / and ~:th co!unto. Here ,*,-.d c -- ~,) is the estimate of the eross-eovarianee, 

1 1 
"~ - -  2Cri Xs,~--r Xr~ E Xs~ 
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where 

E[~r~(~)] = ~ . ( ~ )  = E[X.X~, ,_~]  

assuming E[Zrt] = O, all r, t. (These quantities already appear in the 
cross-spectral computer programs and so need not be reprogrammed.) 

Thus, the coefficients in a are found by forming 

a = M - ~ i  (8.5)  

and, once these are known, I?[Q, m] is formed by 
N 

1 E (xjt  -- P~t[Q, m]) 2. (8.6) 
V[Q, m] - N - m t=,~+l 

To find I~[Q(/~), m], the same matrices are involved except that all 
components involving the parameter k are removed, e.g., 

! ! 
a t = [al !,a2 ! , . . . , a ~ _ l , a k + l , . . . , a q ' ] ,  etc. 

Clearly, the calculations will invariably be sufficiently complicated 
that a high-speed electronic computer will need to be used. 

The only decisions that must be made before computation starts are 
the size of q and m. The size of q will almost certainly be determined 
by the economic system being considered, and the size of k will almost 
certainly be limited by the ability of the computer being used to invert 
large matrices. A value for m of at least 10 or 12 is recommended, al- 
though experience may indicate that a larger value is required or that a 
smaller value is sufficient. 

IX. CAUSALITY AND FEEDBACK VARYING WITH FREQUENCY 

One of the important features of spectral and cross-spectral analysis 
is that it provides ways of observing how certain quantities vary with 
frequency. Just as it is possible for the strength of the relationship be- 
tween two series (coherence) and the phase-lag to vary with frequency, 
so also is it possible that the strength of causality (and thus of feedback) 
and the causality lag to change with frequency. A simple (and highly 
unreal) example will perhaps help to show this. Consider two stock ex- 
changes in some country, one of major importance (A) and the other of 
lesser importance (B). Clearly, B will be likely to follow all the fluctu- 
ations, both long-run and short-run, of A, and so we have A ~ B. How- 
ever, A will be unlikely to be affected by the short-run fluctuations of B, 
but may be concerned by the long-run fluctuations. Thus, if a subscript L 
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denotes the low-frequency component and a subscript H the high fre- 
quency component, we may have 

BL ~ AL 

Bx ~* A . .  

Thus, in this example, feedback will only occur in the low frequency 
range. 

A conceptually simple way of considering the possibility of causality 
and feedback changing with frequency is as follows: 

Let F~[ ], j = 1, . . .  , m, be a set of mutually exclusive filters such 
that if {Xt} is a stationary process with Cram6r representation, 

X ~  = e ' '~ d z ( ~ ) ,  
7r 

then 

F , [ x , ]  = 
7r 

where g~(~o) is the real function 

g~(~)e ''~ dz(~) 

1 (J 1)~r _ - _< ~ < ~ ,  
g J ( ~ )  m '  m m 

= 0 elsewhere 

Thus, applying the filter F[ ] cuts out all frequencies except in the band 

and leaves the phase angle unaltered. 
Let F / [ ]  be a set of symmetric, moving-average filters approxi- 

mating the set F:[ ]. If the new time series vector {Yt(j)} is formed 
from the original vector {xtl by 

Sj[xt] = Yt(j), 

we can study the causality strengths and lags for the frequency band by 
carrying out the techniques introduced in the previous sections on the 
data yt(j). Similarly, other frequency bands can be studied by using 
yt(j) for the other j's. 
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Such a procedure will not be studied in_ any further detail here as the 
amount of computation required would be considerable in practice, and 
would be superimposed on what is already likely to be a very large 
amount of computation. However, if an intensive study of feedback 
within a certain group of economic series is required, the suggested tech- 
nique should provide useful and interesting information, always re- 
membering that  all results will depend to a certain amount on the par- 
ticular filters F / [  ] that  are chosen. 

Although the procedure outlined above is intrinsically reasonable, 
it has connected with it certain formidable theoretical problems, i t  is 
not possible to justify the technique theoretically by considering the 
perfect ease when information of all the past and the actual filters F~[ ] 
are available. This is because the resulting process Y t ( j )  = F~[X~]  will 
have a frequency set of finite measure for which its spectrmn is zero. 
Wherever this occurs, the process is deterministic, i.e. prediction can be 
made perfectly and so the definition of causality via prediction becomes 
of no use. In practice such problems have little consequence since no 
finite moving average filter F / [  ] can produce a process Yt having zero 
spectrum over a set with finite measure unless the input process Xs in 
the definition of Yt, i.e., 

Yt  = F / [ X t ] ,  

is already deterministic. 

x .  SUMMARY AND CONCLUSIONS 

The main results of this paper can be summarized as follows: 
(i) If feedback is present in a system of processes the coherence 

diagram will still provide useful information but the phase-diagram is 
unlikely to do so. (Section I.) 

(ii) We say that,  given a set of processes IX~t}, j = 1, - . .  , q, there 
is causality of { X ~ t l  by {X~tl if we can better predict X~ using past 
values of Xkt than if we do not use these values. (Section HI.) 

(iii) If {X,t I causes {Xkt} and also I X , ~ }  causes {X jr}, we say thab 
feedback is present. (Section III .)  

(iv) If causality {X~t} ~ IX~} is found, but we cannot better predict 
X ~ t  using the values X k , t - ~  , X l ,  t-2 , " " " , X~, t -~-  than if we did not use 
these values, we say that  there is a causality lag of at least ~ units. A 
measure of causality strength can be defined. (Sections IV and V.) 
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(v) If we assume all processes to be Gaussian, a test for causality is 
available. The test is likely to be appropriate asymptotically for non- 
Gaussian processes. (Section VI.) 

(vi) When any causality lag is less than the time unit involved in the 
processes, no appropriate way of defining or testing for causality is sug- 
gested. (Section VII.) 

(vii) It is possible that causality and feedback vary with frequency. 
(Section VII). 

If the tests for causality are found to be efficient in practice, the theory 
proposed in this chapter should prove useful in testing many currently 
important economic hypotheses and theories, in model building, and in 
suggesting control methods for the economy. 

One essential assumption involved in the techniques here proposed is 
that of stationarity. Several methods of removing trends in mean are 
available but the effects of more complicated nonstationarities are not 
known at present. The definitions of causality, feedback, lags, etc., are 
easily generalized to the nonstationary case by the use of nonstationary 
predictors, but the effect on the tests involved is likely to prove more 
difficult to determine. 

Clearly, the basic assumption of this paper is that the future is caused 
by the past. It is possible to propose that the future is also caused by 
the expected future, but as the expectation must be based on past and 
present knowledge, the basic assumption still holds true. 

More research is required into the field of feedback problems, par- 
ticularly with respect to how feedback varies with frequency. Economic 
theory occasionally suggests that the direction of causality between two 
series will be different for the long-run and the short-run. In such a case, 
the over-all method will indicate a (spurious?) feedback. The method 
suggested in this paper for investigating the variation with frequency is 
clumsy, and it is to be hoped that a better and more direct method can 
be evolved, possibly as a generalization of the spectral method. 

Finally, it should be emphasized that the "causality" defined in this 
paper is strictly only a second-moment causality. For nonnormal 
processes the true causality may be more complicated. However, just as 
"second-moment" prediction is a useful method, so is "second-moment" 
causality and feedback. 

RECEIVED: September 24, 1962 
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