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Starting with the relativistic Boltzmann equation where the collision term is generalized to include
nonlocal effects via gradients of the phase-space distribution function, and using Grad’s 14-moment
approximation for the distribution function, we derive equations for the relativistic dissipative fluid
dynamics. We compare them with the corresponding equations obtained in the standard Israel–Stewart
and related approaches. Our method generates all the second-order terms that are allowed by symmetry,
some of which have been missed by the traditional approaches based on the 14-moment approximation,
and the coefficients of other terms are altered. The first-order or Navier–Stokes equations too get
modified. Significance of these findings is demonstrated in the framework of one-dimensional scaling
expansion of the matter formed in relativistic heavy-ion collisions.

© 2013 Elsevier B.V. Open access under CC BY license.
1. Introduction

Relativistic fluid dynamics finds applications in cosmology, as-
trophysics, and the physics of high-energy heavy-ion collisions.
In cosmology and certain areas of astrophysics, one needs a fluid
dynamics formulation consistent with the General Theory of Rela-
tivity [1]. On the other hand, a formulation based on the Special
Theory of Relativity is quite adequate to treat the evolution of
the strongly interacting matter formed in high-energy heavy-ion
collisions when it is close to a local thermodynamic equilibrium.
The correct formulation of the relativistic dissipative fluid dynam-
ics is far from settled and is currently under intense investiga-
tion [2–9].

In applications of fluid dynamics it is natural to first employ
the zeroth order (in gradients of the hydrodynamic four-velocity,
for example) or ideal fluid dynamics. However, as all fluids are dis-
sipative in nature due to the uncertainty principle [10], the ideal
fluid results serve only as a benchmark when dissipative effects
become important. The first-order dissipative fluid dynamics or the
relativistic Navier–Stokes (NS) theory [11] involves parabolic dif-
ferential equations and suffers from acausality and instability. The
second-order Israel–Stewart (IS) theory [12], with its hyperbolic
equations restores causality but may not guarantee stability [13].

The second-order viscous hydrodynamics has been quite suc-
cessful in explaining the spectra and azimuthal anisotropy of par-
ticles produced in heavy-ion collisions at the Relativistic Heavy Ion
Collider (RHIC) [14,15] and recently at the Large Hadron Collider
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(LHC) [16,17]. However, IS theory can lead to unphysical effects
such as reheating of the expanding medium [18] and to a negative
pressure [19] at large viscosity indicating its breakdown. Further-
more, from comparison to the transport theory it was demon-
strated [6,13] that IS approach becomes marginal when the shear
viscosity to entropy density ratio η/s � 1.5/(4π). With this moti-
vation, the dissipative hydrodynamic equations were extended [7]
to third order, which led to an improved agreement with the ki-
netic theory even for moderately large values of η/s.

It is well known that the approach based on the generalized
second law of thermodynamics fails to capture all the terms in the
evolution equations of the dissipative quantities when compared
with similar equations derived from transport theory [2]. It was
pointed out that using directly the definitions of the dissipative
currents, instead of the second moment of the Boltzmann equa-
tion as in IS theory, one obtains identical equations of motion but
with different coefficients [8]. Recently, it has been shown [9] that
a generalization of Grad’s 14-moment method [20] results in addi-
tional terms in the dissipative equations.

It is important to note that all formulations that employ the
Boltzmann equation make a strict assumption of a local collision
term in the configuration space [8,12]. In other words, within
an infinitesimal fluid element containing a large number of par-
ticles and extending over many interparticle spacings [11], the dif-
ferent collisions that increase or decrease the number of particles
with a given momentum p are all assumed to occur at the same
point xμ . This makes the collision integral a purely local functional
of the single-particle phase-space distribution function f (x, p) in-
dependent of the derivatives ∂μ f (x, p). In kinetic theory, f (x, p)

is assumed to vary slowly over space–time, i.e., it changes neg-
ligibly over the range of interparticle interaction [21]. However,
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Fig. 1. Collisions kk′ → pp′ and pp′ → kk′ occurring at points xμ and xμ −ξμ within
an infinitesimal fluid element of size dR , around xμ , containing a large number of
particles represented by dots.

its variation over the fluid element may not be insignificant; see
Fig. 1. Inclusion of the gradients of f (x, p) in the collision term
will affect the evolution of dissipative quantities and thus the en-
tire dynamics of the system.

In this Letter, we shall provide a new formal derivation of the
dissipative hydrodynamic equations within kinetic theory but us-
ing a nonlocal collision term in the Boltzmann equation. We ob-
tain new second-order terms and show that the coefficients of
the other terms are altered. These modifications do have a rather
strong influence on the evolution of the viscous medium as we
shall demonstrate in the case of one-dimensional scaling expan-
sion.

2. Nonlocal collision term

Our starting point is the relativistic Boltzmann equation for the
evolution of the phase-space distribution function, pμ∂μ f = C[ f ],
where the collision term C[ f ] is required to be consistent with the
energy–momentum and current conservation. Traditionally C[ f ] is
also assumed to be a purely local functional of f (x, p), indepen-
dent of ∂μ f . This locality assumption is a powerful restriction [12]
which we relax by including the gradients of f (x, p) in C[ f ]. This
necessarily leads to the modified Boltzmann equation

pμ∂μ f = Cm[ f ] = C[ f ] + ∂μ

(
Aμ f

) + ∂μ∂ν

(
Bμν f

) + · · · , (1)

where Aμ and Bμν depend on the type of the collisions (2 ↔ 2,

2 ↔ 3, . . .).
For instance, for 2 ↔ 2 elastic collisions,

C[ f ] = 1

2

∫
dp′ dk dk′ W pp′→kk′( fk fk′ f̃ p f̃ p′ − f p f p′ f̃k f̃k′), (2)

where W pp′→kk′ is the collisional transition rate, f p ≡ f (x, p) and

f̃ p ≡ 1 − r f (x, p) with r = 1,−1,0 for Fermi, Bose, and Boltzmann

gas, and dp = g dp/[(2π)3
√

p2 + m2 ], g and m being the degen-
eracy factor and particle rest mass. The first and second terms
in Eq. (2) refer to the processes kk′ → pp′ and pp′ → kk′ , re-
spectively. These processes are traditionally assumed to occur at
the same space–time point xμ with an underlying assumption
that f (x, p) is constant not only over the range of interparti-
cle interaction but also over the entire infinitesimal fluid element
of size dR , which is large compared to the average interparti-
cle separation [11]; see Fig. 1. Eq. (1) together with this crucial
assumption has been used to derive the standard second-order
dissipative hydrodynamic equations [8,12,22]. We, however, em-
phasize that the space–time points at which the above two kinds
of processes occur should be separated by an interval |ξμ| � dR
within the volume d4 R . It may be noted that the large number of
particles within d4 R collide among themselves with various sep-
arations ξμ . Further, ξμ is independent of the arbitrary point xμ
at which the Boltzmann equation is considered, and is a function
of (p′,k,k′). Of course, the points (xμ − ξμ) must lie within the
past light-cone of the point xμ (i.e., ξ2 > 0 and ξ0 > 0) to ensure
that the evolution of f (x, p) in Eq. (1) does not violate causality.
With this realistic viewpoint, the second term in Eq. (2) involves
f (x − ξ, p) f (x − ξ, p′) f̃ (x − ξ,k) f̃ (x − ξ,k′), which on Taylor ex-
pansion at xμ up to second order in ξμ , results in the modified
Boltzmann equation (1) with

Aμ = 1

2

∫
dp′ dk dk′ ξμW pp′→kk′ f p′ f̃k f̃k′ ,

Bμν = −1

4

∫
dp′ dk dk′ ξμξν W pp′→kk′ f p′ f̃k f̃k′ . (3)

In general, for all collision types (2 ↔ 2,2 ↔ 3, . . .), the mo-
mentum dependence of the coefficients Aμ and Bμν can be made
explicit by expressing them in terms of the available tensors pμ

and the metric gμν ≡ diag(1,−1,−1,−1) as Aμ = a(x)pμ and
Bμν = b1(x)gμν + b2(x)pμpν , in the spirit of Grad’s 14-moment
approximation. Eq. (1) forms the basis of our derivation of the
second-order dissipative hydrodynamics.

3. Hydrodynamic equations

The conserved particle current and the energy–momentum ten-
sor are expressed as [21]

Nμ =
∫

dp pμ f , T μν =
∫

dp pμpν f . (4)

The standard tensor decomposition of the above quantities results
in

Nμ = nuμ + nμ,

T μν = εuμuν − (P + Π)	μν + πμν, (5)

where P , n, ε are respectively pressure, number density, en-
ergy density, and 	μν = gμν − uμuν is the projection oper-
ator on the three-space orthogonal to the hydrodynamic four-
velocity uμ defined in the Landau frame: T μνuν = εuμ . For
small departures from equilibrium, f (x, p) can be written as f =
f0 + δ f . The equilibrium distribution function is defined as f0 =
[exp(βu · p − α) + r]−1 where the inverse temperature β = 1/T
and α = βμ (μ being the chemical potential) are defined by the
equilibrium matching conditions n ≡ n0 and ε ≡ ε0. The scalar
product is defined as u.p ≡ uμpμ . The dissipative quantities, viz.,
the bulk viscous pressure, the particle diffusion current and the
shear stress tensor are

Π = −	αβ

3

∫
dp pα pβδ f ,

nμ = 	μν

∫
dp pνδ f ,

πμν = 	
μν
αβ

∫
dp pα pβδ f . (6)

Here 	
μν
αβ = [	μ

α 	ν
β + 	

μ
β 	ν

α − (2/3)	μν	αβ ]/2 is the traceless
symmetric projection operator. Conservation of current, ∂μNμ = 0
and energy–momentum tensor, ∂μT μν = 0, yield the fundamental
evolution equations for n, ε and uμ

Dn + n∂μuμ + ∂μnμ = 0,

Dε + (ε + P + Π)∂μuμ − πμν∇(μuν) = 0,

(ε + P + Π)Duα − ∇α(P + Π) + 	α
ν ∂μπμν = 0. (7)
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We use the standard notation A(α Bβ) = (Aα Bβ + Aβ Bα)/2, D =
uμ∂μ , and ∇α = 	μα∂μ . For later use we introduce X 〈μ〉 = 	

μ
ν Xν

and X 〈μν〉 = 	
μν
αβ Xαβ .

Conservation of current and energy–momentum implies van-
ishing zeroth and first moments of the collision term Cm[ f ] in
Eq. (1), i.e.,

∫
dp Cm[ f ] = 0 = ∫

dp pμCm[ f ]. Moreover, the arbi-
trariness in ξμ requires that these conditions be satisfied at each
order in ξμ . Retaining terms up to second order in derivatives
leads to three constraint equations for the coefficients (a,b1,b2),
namely ∂μa = 0,

∂2(b1〈1〉0
) + ∂μ∂ν

(
b2

〈
pμpν

〉
0

) = 0,

uα∂μ∂ν

(
b2

〈
pμpν pα

〉
0

) + uα∂2(b1nuα
) = 0, (8)

where we define 〈· · ·〉0 = ∫
dp (· · ·) f0. It is straightforward to show

using Eq. (8) that the validity of the second law of thermodynam-
ics, ∂μsμ � 0, enforces a further constraint |a| < 1, on the collision
term Cm[ f ].

In order to obtain the evolution equations for the dissipative
quantities, we follow the approach as described by Denicol, Koide
and Rischke (DKR) in Ref. [8]. This approach employs directly the
definitions of the dissipative currents in contrast to the IS deriva-
tion which uses the second moment of the Boltzmann equation.
The comoving derivatives of the dissipative quantities can be writ-
ten from their definitions, Eq. (6), as

Π̇ = −	αβ

3

∫
dp pα pβδ ḟ ,

ṅμ = 	μν

∫
dp pνδ ḟ ,

π̇μν = 	
μν
αβ

∫
dp pα pβδ ḟ , (9)

where, Ẋ = D X . Comoving derivative of the nonequilibrium part
of the distribution function, δ ḟ , can be obtained by writing the
Boltzmann equation (1) in the form,

δ ḟ = − ḟ0 − 1

u.p
pμ∇μ f + 1

u.p
Cm[ f ]. (10)

To proceed further, we take recourse to Grad’s 14-moment ap-
proximation [20] for the single-particle distribution in orthogonal
basis [8]

f = f0 + f0 f̃0
(
λΠΠ + λnnα pα + λππαβ pα pβ

)
. (11)

The coefficients (λΠ,λn, λπ ) are functions of (n, ε,β,α). Us-
ing Eqs. (9)–(11) and introducing first-order shear tensor σμν =
∇〈μuν〉 , vorticity ωμν = (∇μuν − ∇νuμ)/2 and expansion scalar
θ = ∂ · u, we finally obtain the following evolution equations for
the dissipative fluxes defined in Eq. (6):

Π̇ = − Π

τ ′
Π

− β ′
Πθ − τ ′

Πnn · u̇ − l′Πn∂ · n − δ′
ΠΠΠθ

− λ′
Πnn · ∇α + λ′

Πππμνσ
μν + ΛΠ u̇ u̇ · u̇

+ ΛΠωωμνω
νμ + (8 terms), (12)

ṅ〈μ〉 = −nμ

τ ′
n

+ β ′
n∇μα − λ′

nωnνω
νμ − δ′

nnnμθ

− l′nΠ∇μΠ + l′nπ	μν∂γ π
γ
ν + τ ′

nΠΠ u̇μ

− τ ′
nππμν u̇ν − λ′

nπnνπ
μν + λ′

nΠΠnμ

+ Λnu̇ω
μν u̇ν + Λnω	

μ
ν ∂γ ωγ ν + (9 terms), (13)
π̇ 〈μν〉 = −πμν

τ ′
π

+ 2β ′
πσμν − τ ′

πnn〈μu̇ν〉 + l′πn∇〈μnν〉

+ 2λ′
πππ

〈μ
ρ ων〉ρ + λ′

πnn〈μ∇ν〉α − τ ′
πππ

〈μ
ρ σ ν〉ρ

− δ′
πππμνθ + Λπ u̇ u̇〈μu̇ν〉 + Λπωω

〈μ
ρ ων〉ρ

+ χ1ḃ2π
μν + χ2u̇〈μ∇ν〉b2 + χ3∇〈μ∇ν〉b2. (14)

The “8 terms” (“9 terms”) involve second-order, linear scalar (vec-
tor) combinations of derivatives of b1, b2. All the terms in the
above equations are inequivalent, i.e., none can be expressed as
a combination of others via equations of motion [23]. All the co-
efficients in Eqs. (12)–(14) are obtained as functions of hydrody-
namic variables. For example, some of the transport coefficients
related to shear are

τ ′
π = βπ̇ τπ , β ′

π = ãβπ/βπ̇ ,

βπ̇ = ã + b2

3ηã

[〈
(u.p)3〉

0 − m2n
]
,

βπ = 4

5
P + 1

15
(ε − 3P ) − m4

15

〈
(u.p)−2〉

0, (15)

where ã = (1 −a). The rest of the coefficients will be given in [24].
Retaining only the first-order terms in Eqs. (12)–(14), and using

DKR values of bulk viscosity ζ , thermal conductivity κ and shear
viscosity η, we get the modified first-order equations for bulk pres-
sure Π = −τ ′

Πβ ′
Πθ = −ãζθ , heat current nμ = β ′

nτ
′
n∇μα and shear

stress tensor πμν = 2τ ′
πβ ′

πσμν = 2ãτπβπσμν = 2ηãσμν . Thus the
nonlocal collision term modifies even the first-order dissipative
equations. This constitutes one of the main results in the present
study.

If a, b1 and b2 are all set to zero, Eqs. (12)–(14) reduce to those
obtained by DKR [8] with the same coefficients. Otherwise coeffi-
cients of all the terms occurring in the DKR equations get modi-
fied. Furthermore, our derivation results in new terms, for instance
those with coefficients Λku̇ , Λkω (k = Π,n,π ), which are absent
in [8] as well as in the standard Israel–Stewart approach [12].
Hence these terms have also been missed so far in the numeri-
cal studies of heavy-ion collisions in the hydrodynamic framework
[14,16,25]. Indeed Eqs. (12)–(14) contain all possible second-order
terms allowed by symmetry considerations [23]. This is a conse-
quence of the nonlocality of the collision term Cm[ f ]. However,
we note that a generalization of the 14-moment approximation is
also able to generate all these terms as shown recently in Ref. [9].

4. Numerical results

To demonstrate the numerical significance of the new dissipa-
tive equations derived here, we consider evolution of a massless
Boltzmann gas, with equation of state ε = 3P , at vanishing net
baryon number density in the Bjorken model [26]. The new terms,
namely u̇ · u̇, ωμνω

νμ , ωμν u̇ν , 	
μ
ν ∂γ ωγν , u̇〈μu̇ν〉 and ω

〈μ
ρ ων〉ρ

containing acceleration and vorticity do not contribute in this case.
However, they are expected to play an important role in the full 3D
viscous hydrodynamics.

In terms of the coordinates (τ , x, y, η) where τ = √
t2 − z2 and

η = tanh−1(z/t), the initial four-velocity becomes uμ = (1,0,0,0).
In this scenario Π = 0 = nμ and the equation for π ≡ −τ 2πηη

reduces to

π

τπ
+ βπ̇

dπ

dτ
= βπ

4

3τ
− λ

π

τ
− ψπ

db2

dτ
, (16)

where the coefficients are
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Fig. 2. Time evolution of (a) temperature, shear pressure, inverse Reynolds num-
ber and parameters (b1,b2) normalized to their initial values, and (b) anisotropy
parameter P L/P T . Initial values are τ0 = 0.9 fm/c, T0 = 360 MeV, η/s = 0.16,
π0 = 4η/(3τ0). Units of b2 are GeV−2. The curve labeled DKR is obtained by setting
a = b1 = b2 = 0 in Eqs. (16) and (17).

βπ̇ = ã + b2(ε + P )

ãβη
, βπ = 4

5
ãP , ψ = 9(ε + P )

5ãβη
,

λ = 38

21
ã −

(
b1β

5
− 8b2

7β

)
ε + P

ãη
. (17)

For comparison we quote the IS results [12]: βπ = 2P/3, λ = 2.
The coupled differential equations (7), (8) and (16) are solved si-
multaneously for a variety of initial conditions: temperature T =
360 or 500 MeV corresponding to typical RHIC and LHC energies,
and shear pressure π = 0 or π = πNS = 4η/(3τ0) corresponding to
isotropic and anisotropic pressure configurations. Since the nonlo-
cal effects embodied in the Taylor expansion (1) are not large, the
initial a, b1, b2 are so constrained that the corrections to first-order
and second-order terms remain small; recall also the additional
constraints |a| < 1 and Eq. (8).

Fig. 2(a) illustrates the evolution of these quantities for a choice
of initial conditions. T decreases monotonically to the crossover
temperature 170 MeV at time τ � 10 fm/c, which is consis-
tent with the expected lifetime of quark–gluon plasma. Param-
eter a is constant whereas b1 and b2 vary smoothly and tend
to zero at large times indicating reduced but still significant
presence of nonlocal effects in the collision term at late times.
This is also evident in Fig. 2(b) where the pressure anisotropy
P L/P T = (P − π)/(P + π/2) shows marked deviation from IS, con-
trolled mainly by a. At late times P L/P T is largely unaffected by
the choice of initial values of b1, b2. Although the shear pres-
sure π vanishes rapidly indicating approach to ideal fluid dynam-
ics, the P L/P T is far from unity. Faster isotropization for initial
a > 0 may be attributed to a smaller effective shear viscosity
(1 − a)η in the modified NS equation, and conversely. Fig. 2(b)
also indicates the convergence of the Taylor expansion that led to
Eq. (1).

Fig. 3 shows the evolution of P L/P T for isotropic initial pres-
sure configuration, at various η/s for the LHC energy regime.
Compared to IS, DKR leads to larger pressure anisotropy. Further,
with small initial corrections (10% to first-order and � 20% to the
second-order terms) due to a, b1, b2, the nonlocal hydrodynam-
ics (solid lines) exhibits appreciable deviation from the (local) DKR
theory. The above results clearly demonstrate the importance of
the nonlocal effects, which should be incorporated in transport cal-
culations as well. Comparison of nonlocal hydrodynamics to non-
local transport theory would be illuminating.
Fig. 3. Time evolution of P L/P T in IS [12], DKR (a = b1 = b2 = 0), and the present
work, for isotropic initial pressure configuration (π0 = 0). The scaling (η/s)IS =
9/10(η/s) ensures that all the results are compared at the same cross section [8].

In a realistic 2 + 1 or 3 + 1 D calculation, one has to choose the
thermalization time and the freeze-out temperature together with
suitable initial conditions for hydrodynamic velocity, energy den-
sity, shear pressure as well as for the nonlocal coefficients a, b1,
b2 to fit dN/dη and pT spectra of hadrons, and then predict, for
example, the anisotropic flow vn for a given η/s. Nonlocal effects
(especially via a) will affect the extraction of η/s from fits to the
measured vn . It may also be noted that although (local) viscous
hydrodynamics explains the gross features of π− and K − spectra
for the (0–5)% most central Pb–Pb collisions at

√
sNN = 2.76 TeV,

it strongly disagrees with the measured p̄ spectrum [27]. Further
the constituent quark number scaling violation has been observed
in the v2 and v3 data for p̄, at this LHC energy [28]. The above dis-
crepancies may be attributed partly to the nonlocal effects which
can have different implications for two- and three-particle correla-
tions and thus affect the meson and baryon spectra differently.

5. Summary

To summarize, we have presented a new derivation of the
relativistic dissipative hydrodynamic equations by introducing
a nonlocal generalization of the collision term in the Boltzmann
equation. The first-order and second-order equations are modified:
new terms occur and coefficients of others are altered. While it is
well known that the derivation based on the generalized second
law of thermodynamics misses some terms in the second-order
equations, we have shown that the standard derivation based on
kinetic theory and 14-moment approximation also misses other
terms. The method presented here is able to generate all possible
terms to a given order that are allowed by symmetry. It can also
be extended to derive third-order hydrodynamic equations.
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