ON FEIGENBAUM'S FUNCTIONAL EQUATION
 $g \circ g(\lambda x)+\lambda g(x)=0$
 M. Campanino, \dagger H. Epstein and D. Ruelle

(Received 15 July 1980)
Numerical studies by M. Feigenbaum have exhibited what appears to be a new codimension 1 bifurcation for maps $f:[-1,1] \mapsto[-1,1]$. Feigenbaum's heuristic approach (see [4,5]) is in the process of being rigorized (see [1, 3, 7]) and extended to diffeomorphisms and flows in several dimensions (see [2, 6]). We refer to [3] for a lucid introduction to the problem. We shall here be concerned only with Feigenbaum's first step, which was to solve the equation

$$
\left.\begin{array}{c}
g \circ g(\lambda x)+\lambda g(x)=0 \tag{1}\\
g:[-1,1] \mapsto[-1,1] \text { even, } g(0)=1 .
\end{array}\right\}
$$

Feigenbaum showed numerically that there is $\lambda=0.39953528 \ldots$ such that eqn (1) has a solution g which behaves like 1 -const. x^{2} at the origin. This has been made rigorous by Lanford [7] who found that eqn (1) has an analytic solution. Lanford first guesses (numerically) a good approximation to g by a polynomial of order 40 . Then he proves by Newton's method that eqn (1) has a solution close to the guessed approximation. This is simple and perfectly rigorous, but involves calculations beyond human ability (they are done by computer). In the present note a method for solving eqn (1) is outlined, which does not involve superhuman calculations (although a small computer was used in fact to do them). The details are in [1]. The solution which we discuss is Feigenbaum's solution, shown in Fig. 1. If numerical computations are to be trusted, Fig. 2 presents another solution h behaving like 1 -const. x^{4} at the origin. Figure 3 shows $x \mapsto h(\sqrt{ } x)^{2}$ which is again a solution, but corresponding to negative λ.

We look for a solution g of eqn (1) satisfying also

$$
\begin{equation*}
g \text { smooth } \ddagger \text { and } g^{\prime \prime}(0)<0 . \tag{2}
\end{equation*}
$$

Our basic idea is that the functional equation for f_{2}

$$
\begin{equation*}
f_{2}(x)=\varphi \circ f_{2}(\lambda x) \tag{3}
\end{equation*}
$$

(where λ, φ are given) is relatively easy to analyze. [This equation just says that the graph of f_{2} is invariant under $(x, y) \mapsto\left(\lambda^{-1} x, \varphi(y)\right)$.] We replace therefore eqns (1), (2) by the problem

$$
\begin{align*}
& f_{1} \circ f_{2}(\lambda x)+\lambda f_{2}(x)=0 \tag{4}\\
& f_{1}=f_{2} \tag{5}\\
& f_{2}:[-1,1] \mapsto[-1,1] \text { smooth, even, } f_{2}(0)=1, f_{2}^{\prime \prime}(0)<0 . \tag{6}
\end{align*}
$$

[^0]

Fig. 1.

Fig. 2.

The solvability of eqn (4) with respect to f_{2} (with $f_{2}(0)=1, f_{2}^{\prime \prime}(0) \neq 0$) requires

$$
\begin{align*}
f_{1}(1)+\lambda & =0 \tag{7}\\
\lambda f_{1}^{\prime}(1)+1 & =0 . \tag{8}
\end{align*}
$$

Modulo eqn (7) we may rewrite eqn (4) as

$$
\begin{equation*}
f_{1} \circ f_{2}(\lambda x)+\lambda f_{2}(x)=f_{1}(1)+\lambda \tag{4a}
\end{equation*}
$$

Fig. 3.
(which is again of the form of eqn 3). We shall try to solve the system, eqns (4a), (5) and (6), adjust λ such that $f_{1}(1)+\lambda=0$, and take $g=f_{1}=f_{2}$. The condition $f_{1}(1)+\lambda=$ 0 shows that λ is not arbitrary: our problem is a non linear eigenvalue problem. Let f_{2} be a solution of eqn (4a) for given f_{1}, λ. Then $x \mapsto f_{2}(k x)$ is again a solution. In view of eqns (5) and (8) we shall lift this ambiguity by choosing the solution f_{2} such that $\lambda f_{2}^{\prime}(1)+1=0$.

Notice that eqn (4a) determines $f_{2}(x)$ for x near 0 in terms of $f_{1}(y)$ for y near $1 \dagger$. In view of these dissimilar roles of f_{1} and f_{2} it is convenient to introduce new variables. Let us write

$$
\begin{gathered}
F(x)=\lambda^{-1}\left[f_{1}(1-x)-f_{1}(1)\right] \\
f_{2}(x)=1-\psi\left(x^{2}\right)
\end{gathered}
$$

Then eqns (4a) and (5) become

$$
\left.\begin{array}{c}
\psi(t)=F \circ \psi\left(\lambda^{2} t\right) \\
G(x) \equiv \lambda^{-1}\left[-\psi\left((1-x)^{2}\right)+\psi(1)\right] \tag{5b}\\
F=G
\end{array}\right\}
$$

where it is assumed that $F(0)=0, F^{\prime}(0)=\lambda^{-2}$. One looks for a solution ψ of eqn (4b) satisfying

$$
\begin{equation*}
2 \lambda \psi^{\prime}(1)=1 \tag{8b}
\end{equation*}
$$

and imposes eqn (5b). If λ is such that

$$
\begin{equation*}
\psi(1)=1+\lambda \tag{7b}
\end{equation*}
$$

we have a solution of the original problem.
\dagger In particular one cannot hope to determine simply from eqn (1) the coefficients of the power series expansion of g at the origin.

We may reformulate the problem as that of finding a fixed point F of the map Φ_{λ} : $F \mapsto \Psi \mapsto G$ where Ψ is defined by

$$
\begin{equation*}
\Psi(t)=F\left(\Psi\left(\lambda^{2} t\right)\right), \Psi(0)=0, \Psi^{\prime}(0)=1 \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
G(x)=\lambda^{-1}\left[\Psi(\alpha)-\Psi\left(\alpha(1-x)^{2}\right)\right] \tag{10}
\end{equation*}
$$

where α is determined by

$$
2 \alpha \lambda \Psi^{\prime}(\alpha)=1
$$

[in this notation $\psi(t)=\Psi(\alpha t)$]. Finally determine λ such that $\Psi(\alpha)=1+\lambda$.
From eqn (9) and the assumed smoothness one gets formulae such as

$$
\begin{gathered}
\Psi^{\prime}(t)=\prod_{n=1}^{\infty}\left(\lambda^{2} F^{\prime}\left(\Psi\left(\lambda^{2 n} t\right)\right)\right. \\
\frac{\Psi^{\prime \prime} \cdot(t)}{\Psi^{\prime}(t)}=\sum_{n=1}^{\infty} \lambda^{2 n} \Psi^{\prime}\left(\lambda^{2 n} t\right) \cdot \frac{F^{\prime \prime}\left(\Psi\left(\lambda^{2 n} t\right)\right)}{F^{\prime}\left(\Psi\left(\lambda^{2 n} t\right)\right)} \\
(S \Psi)(t)=\sum_{n=1}^{\infty} \lambda^{4 n}\left[\Psi^{\prime}\left(\lambda^{2 n} t\right)\right]^{2}(S F)\left(\Psi\left(\lambda^{2 n} t\right)\right)
\end{gathered}
$$

where $S f=\left(f^{\prime \prime} \mid f^{\prime}\right)^{\prime}-1 / 2\left(f^{\prime \prime} \mid f^{\prime}\right)^{2}$ is the Schwarzian derivative. These formulae give a good control on Ψ. Notice that these formulae require the knowledge of F only on the range of $t \mapsto \Psi\left(\lambda^{2} t\right), t \in[0, \alpha]$. For the purpose of finding fixed points of Φ_{λ}, it will thus be possible to consider functions F on $[0, A]$ with A smaller than 1 .

The strategy will now be the following. We choose an interval J of values of λ and for each $\lambda \in J$ define a nonempty set \mathscr{M}_{λ} of functions f on some interval $[0, A]$ such that $\Phi_{\lambda} \mathcal{M}_{\lambda} \subset \mathscr{M}_{\lambda}$ and Φ_{λ} is a contraction on \mathscr{M}_{λ} with respect to some metric d. The map Φ_{λ} has thus a unique fixed point F_{λ} in the closure of \mathscr{M}_{λ}. Uniqueness implies continuity of $\lambda \mapsto F_{\lambda}$ and thus of $\lambda \mapsto \Psi(\alpha)-1-\lambda$. Finally one checks that $\Psi(\alpha)-1-\lambda$ has different signs at both ends of the interval J. Therefore there is at least one $\lambda \in J$ for which $\Psi(\alpha)=1+\lambda$, and this yields a solution of our original problem, eqn (1). A priori, F_{λ} is only in the closure of $\mathscr{\mu}_{\lambda}$, there may thus be an annoying loss of differentiability. A little miracle occurs however which saves the situation: \mathscr{M}_{λ} contains analytic functions, and Φ_{λ} is analyticity improving. The fixed point F_{λ} is thus real analytic, and the same is true of the solution g of eqn (1).

Implementing the details of the above program is real work (see Ref. [1]), and involves in particular numerical computations. Here we give only general indication. The interval J is chosen as $[\sqrt{ }(0.152), \sqrt{ }(0.165)]$. Then A is chosen as a function of λ (piecewise constant and $\leqq 0.261$). The set \mathscr{M}_{λ} is convex and defined in terms of a set $\mathcal{M}_{\lambda}^{\prime}$ such that $F \in \mathcal{M}_{\lambda} \Leftrightarrow\left(F^{\prime \prime} \mid F^{\prime}\right) \in \mathcal{M}_{\lambda}^{\prime}$ (notice that if $s=\left(F^{\prime \prime} \mid F^{\prime}\right)$, then $F(x)=$ $\left.\int_{0}^{x} \mathrm{~d} y \lambda^{-2} \exp \int_{0}^{y} s(z) \mathrm{d} z\right)$. The convex set $\mathcal{M}_{\lambda}^{\prime}$ consists of the C^{1} functions on $[0, A]$ such that

$$
\begin{align*}
& \frac{1}{1-x}-l_{1}(1-x)-l_{3}(1-x)^{3} \leqq-s(x) \leqq \frac{1}{1-x}-c_{1}(1-x)-c_{3}(1-x)^{3} \\
& s^{\prime}(x)+s(x)^{2} \leqq 0 \tag{11}\\
& -s^{\prime}(x) \leqq L \tag{12}
\end{align*}
$$

where $l_{1}, l_{3}, c_{1}, c_{3}, L$ are given as piecewise constant functions of $\lambda, 0 \leqq c_{1} \leqq l_{1}$, $0 \leqq c_{3} \leqq l_{3}, l_{1}+l_{3}<1$. It turns out that if $F \in \mathcal{M}_{\lambda}$, then $G^{\prime \prime} / G^{\prime}$ satisfies eqn (11) on $[0,1]$ (not just $[0, A]$). In particular, $G^{\prime \prime} / G^{\prime} \leqq 0$ and $G^{\prime \prime \prime} / G^{\prime} \leqq 0$. Since $G^{\prime}(0)=\lambda^{-2}$, we have $G^{\prime} \geqq 0, G^{\prime \prime} \leqq 0, G^{\prime \prime \prime} \leqq 0$ on $[0,1]$. The metric d on \mathcal{M}_{λ} is given by the following norm on $\mathcal{M}_{\lambda}^{\prime}:$

$$
\|s\|=\sup _{0 \leq x \leq A}\left|(1 \quad x)^{-1} s(x)\right|
$$

As to the analyticity character of Φ_{λ}, one shows that if $F \in \mathcal{M}_{\lambda}$ and

$$
\left|\frac{1}{n!}\left(\frac{\mathrm{d}}{\mathrm{~d} x}\right)^{n} F(x)\right| \leqq \lambda^{-2} B^{n-1} \text { for } x \in[0,1], n \geqq 1
$$

with $B \geqq 1.8$, then

$$
\left|\frac{1}{n!}\left(\frac{\mathrm{d}}{\mathrm{~d} x}\right)^{n} G(x)\right| \leqq \lambda^{-2} \tilde{B}^{n-1} \text { for } x \in[0,1], n \geqq 1
$$

with $\tilde{B}<B$.

Theorem. There is at least one number $\lambda \in[\sqrt{ }(0.152), \sqrt{ }(0.165)]$ for which the functional equation

$$
g \circ g(\lambda x)+\lambda g(x)=0, g(0)=1
$$

has an even smooth solution on $[-1,1]$. The solution found has the following further properties

$$
\begin{aligned}
& g^{\prime \prime}(0)<0 \\
& g(1)+\lambda=0, \lambda g^{\prime}(1)+1=0 \\
& g^{\prime}(x) \leqq 0, g^{\prime \prime}(x) \leqq 0, g^{\prime \prime \prime}(x) \geqq 0 \text { on }[0,1] \\
& \left|\frac{1}{n!}\left(\frac{\mathrm{d}}{\mathrm{~d} x}\right)^{n} g(x)\right| \leqq \lambda^{-1}(1.8)^{n-1} \text { for } x \in[-1,1], n \geqq 1 .
\end{aligned}
$$

REFERENCES

1. M. Campanino and H. Epstein: On the existence of Feigenbaum's fixed point. To appear.
2. P. Collet, J.-P. Eckmann and H. Koch: Period doubling bifurcations for families of maps on \mathscr{R}^{n}. To appcar.
3. P. Collet, J.-P. Eckmann and O. E. Lanford: Universal properties of maps on an interval. Comm. Math. Phys. 76, 211 (1981).
4. M. J. Feigenbaum: Quantitative universality for a class of nonlinear transformations. J. Statist. Phys. 19 (1978), 25-52.
5. M. J. Feigenbaum: The universal metric properties of nonlinear transformations. J. Statist. Phys. 21 (1979), 669-706.
6. J. J. Feigenbaum: The transition to aperiodic behavior in turbulent systems. Commun. Math. Phys. 77, 65 (1981).
7. O. E. Lanford: Remarks on the accumulation of period-doubling bifurcations. pp. 340-342 In Mathematical problems in theoretical Physics Lecture Notes in Physics No. 116, pp. 340-342. Springer-Verlag, Berlin (1980).
I.H.E.S., Bures-sur-Yvette

France

[^0]: \dagger Permanent address: Istituto Matematico "G. Castelnuovo", Università degli Studi di Roma, Piazzale A. Moro, 00100 Rome, Italy.
 \ddagger We shall later take $g(x)$ of class C^{3} as a function of x^{2}. There exist many C^{1} solutions. In particular, the existence of a solution which behaves like 1 -const $|x|^{1+\epsilon}$ is established in [3] for small ϵ, and suitable $\lambda(\epsilon)$.

