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ON FEIGENBAUM'’S FUNCTIONAL EQUATION
g°g(Ax)+Ag(x)=0

M. CampaNINo,T H. EpsTEIN and D. RUELLE

(Received 15 July 1980)

NUMERICAL STUDIES by M. Feigenbaum have exhibited what appears to be a new
codimension 1 bifurcation for maps f:[—1, 1] = [—1, 1]. Feigenbaum’s heuristic ap-
proach (see [4, 5]) is in the process of being rigorized (see [1, 3, 7]) and extended to
diffeomorphisms and flows in several dimensions (see [2, 6]). We refer to [3] for a
lucid introduction to the problem. We shall here be concerned only with Feigenbaum’s
first step, which was to solve the equation

g°8Ax)+Ag(x)=0 } )
g:[-1,1]—=>[-1,1] even, g(0)=1.

Feigenbaum showed numerically that there is A =0.39953528. .. such that eqn (1) has
a solution g which behaves like 1-const. x* at the origin. This has been made rigorous
by Lanford[7] who found that eqn (1) has an analytic solution. Lanford first guesses
(numerically) a good approximation to g by a polynomial of order 40. Then he proves
by Newton’s method that eqn (1) has a solution close to the guessed approximation.
This is simple and perfectly rigorous, but involves calculations beyond human ability
(they are done by computer). In the present note a method for solving eqn (1) is
outlined, which does not involve superhuman calculations (although a small computer
was used in fact to do them). The details are in [1]. The solution which we discuss is
Feigenbaum’s solution, shown in Fig. 1. If numerical computations are to be trusted,
Fig. 2 presents another solution h behaving like 1-const. x* at the origin. Figure 3
shows x — h(~/x)* which is again a solution, but corresponding to negative A.
We look for a solution g of eqn (1) satisfying also

g smoothi and g"(0) < 0. 2)

Our basic idea is that the functional equation for f,
fAx) = @ f(Ax) 3)
(where A, ¢ are given) is relatively easy to analyze. [This equation just says that the

graph of f, is invariant under (x, y) > (A7'x, ¢(y)).] We replace therefore eqns (1), (2)
by the problem

fiefa(AX) + Af(x) =0 )
fi=1 3]
f2:[= 1,11 [—1,1] smooth, even, f,(0) =1, f'(0) < 0. (6)

tPermanent address: Istituto Matematico *“G. Castelnuovo”, Universita degli Studi di Roma, Piazzale A.
Moro, 00100 Rome, Italy.

$We shall later take g(x) of class C® as a function of x’. There exist many C' solutions. In particular, the
existence of a solution which behaves like 1-const |x|'** is established in [3] for small €, and suitable A(e).
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Fig. 2.

The solvability of eqn (4) with respect to f, (with f,(0) =1, f3(0) # 0) requires

AD+A=0 ™)
Ai(h)+1=0. 8

Modulo eqn (7) we may rewrite eqn (4) as

fre f(Ax) + Afo(x) = fi(1) + A (4a)
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Fig. 3.

(which is again of the form of eqn 3). We shall try to solve the system, eqns (4a), (5)
and (6), adjust A such that f;(1)+ A =0, and take g = f, = f>. The condition f;(1)+ A =
0 shows that A is not arbitrary: our problem is a non linear eigenvalue problem. Let f,
be a solution of eqn (4a) for given f,, A. Then x — f,(kx) is again a solution. In view of
eqns (5) and (8) we shall lift this ambiguity by choosing the solution f, such that
Afi(H+1=0.

Notice that eqn (4a) determines f,(x) for x near 0 in terms of f|(y) for y near 11. In
view of these dissimilar roles of f, and f, it is convenient to introduce new variables.
Let us write

F(x)=A""[fi1 —x) = fL(1)]
fa(x) = 1= y(x?).

Then eqns (4a) and (5) become

() = F o p(A%t) (4b)
G(x)=A""[— (1 = x)) + (1))

where it is assumed that F(0) =0, F'(0) = A 2 One looks for a solution ¢ of eqn (4b)
satisfying
20’ =1 (8b)

and imposes eqn (5b). If A is such that
y()=1+2a (7b)
we have a solution of the original problem.

+In particular one cannot hope to determine simply from eqn (1) the coefficients of the power series
expansion of g at the origin.
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We may reformulate the problem as that of finding a fixed point F of the map ®,:
F— ¥+> G where V¥ is defined by

W(t) = F(¥(A*), ¥(0)=0, V') =1 )
and
G(x) = A""[¥(a) — ¥(a(l - x))] (10)

where « is determined by
20V (a) =1

[in this notation () = ¥(at)]. Finally determine A such that ¥(a)=1+ A.
From eqn (9) and the assumed smoothness one gets formulae such as

¥ty = [] A\ F (P 2"1))
n=1

F”(‘I’(A 2nt))
F'(¥(A™r))

= 5: /\2n\1,1(/\2nt) .
n=1
(S¥)) = i AT AHE(SF)(P (A1)
n=1

where Sf = (f"/f"Y —1/2(f"/f'V* is the Schwarzian derivative. These formulae give a
good control on ¥. Notice that these formulae require the knowledge of F only on the
range of t— W(A%), t €[0, a]. For the purpose of finding fixed points of ®,, it will
thus be possible to consider functions F on [0, A] with A smaller than 1.

The strategy will now be the following. We choose an interval J of values of A and
for each A €J define a nonempty set .4, of functions f on some interval [0, A] such
that ®,#, C M, and ®, is a contraction on ., with respect to some metric d. The map
®, has thus a unique fixed point F, in the closure of /,. Uniqueness implies
continuity of A +> F, and thus of A — ¥(«)-1-A. Finally one checks that ¥(a)-1-A
has different signs at both ends of the interval J. Therefore there is at least one A €J
for which ¥(a) =1+ A, and this yields a solution of our original problem, eqn (1). A
priori, F, is only in the closure of /(,, there may thus be an annoying loss of
differentiability. A little miracle occurs however which saves the situation: 4,
contains analytic functions, and ®, is analyticity improving. The fixed point F, is thus
real analytic, and the same is true of the solution g of eqn (1).

Implementing the details of the above program is real work (see Ref. [1]), and
involves in particular numerical computations. Here we give only general indication.
The interval J is chosen as [1/(0.152), +/(0.165)]. Then A is chosen as a function of A
(piecewise constant and = 0.261). The set #, is convex and defined in terms of a set
M, such that Fe M, (F'/FYe M} (notice that if s =(F"/F"), then F(x)=
J& dyA2exp [¢ s(2)d2). The convex set .} consists of the C' functions on [0, A] such
that

L -0 -1 ~xP S s =T - e(l—x) - el - %)

s'(x)+s(xP=0 (11)
—s'x)=L (12)
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where I, L5, ¢;, ¢;, L are given as piecewise constant functions of A, 0=¢, =1,
0=c¢; =1, I, + <. It turns out that if F € #,, then G"/G’ satisfies eqn (11) on [0,1]
(not just [0, A]). In particular, G"/G'=0 and G"’/G'=0. Since G'(0) = A2, we have
G'20,G"=0, G"=0o0n[0,1]. The metric d on A, is given by the following norm on
M

sl = sup |(1—x)"s(x).
0=x=A

As to the analyticity character of ®,, one shows that if F € #, and

1/dY —2pn-
F(G) F(x)‘é)\ ‘B*' for x€[0,1], n =1

with B = 1.8, then

1 d\ -2 0n-
m(a) G(X)‘ =A 2B ! for x E[O’l]’ nzl

with B < B.

TueoreM. There is at least one number A €[\/(0.152), \/(0.165)] for which the
functional equation

geg(Ax)+Agx)=0,g0)=1

has an even smooth solution on [—1,1]. The solution found has the following further
properties

g"(0)y<0
gD+A=0,Ag'(N+1=0
g(x)=0,2"(x)=0, g"(x)z 0 on [0,1]

i(as) 20

=208 forxe[-1,1],n=1.
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