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ON FEIGENBAUM’S FUNCTIONAL EQUATION 
g o g(h) + hg(x) = 0 

M. CAMPANINO,~ H. EPSTEIN and D. RUELLE 

(Received 15 July 1980) 

NUMERICAL STUDIES by M. Feigenbaum have exhibited what appears to be a new 

codimension 1 bifurcation for maps f : [ - 1, l] H [ - 1, 11. Feigenbaum’s heuristic ap- 

proach (see [4, 51) is in the process of being rigorized (see [l, 3, 71) and extended to 

diffeomorphisms and flows in several dimensions (see [2, 61). We refer to [3] for a 

lucid introduction to the problem. We shall here be concerned only with Feigenbaum’s 

first step, which was to solve the equation 

g 0 g(hx) + hg(x) = 0 
g:[- l,l]H[- l,l] even, g(O)= 1. 1 

(1) 

Feigenbaum showed numerically that there is A = 0.39953528.. . such that eqn (1) has 

a solution g which behaves like 1-const. x2 at the origin. This has been made rigorous 

by Lanford [7] who found that eqn (1) has an analytic solution. Lanford first guesses 

(numerically) a good approximation to g by a polynomial of order 40. Then he proves 
by Newton’s method that eqn (1) has a solution close to the guessed approximation. 

This is simple and perfectly rigorous, but involves calculations beyond human ability 

(they are done by computer). In the present note a method for solving eqn (1) is 

outlined, which does not involve superhuman calculations (although a small computer 

was used in fact to do them). The details are in [l]. The solution which we discuss is 

Feigenbaum’s solution, shown in Fig. 1. If numerical computations are to be trusted, 

Fig. 2 presents another solution h behaving like I-const. x4 at the origin. Figure 3 

shows x I+ am which is again a solution, but corresponding to negative A. 

We look for a solution g of eqn (1) satisfying also 

g smooth+ and g”(0) < 0. (2) 

Our basic idea is that the functional equation for f2 

f2b) = cp c f20x) (3) 

(where A, cp are given) is relatively easy to analyze. [This equation just says that the 

graph of f2 is invariant under (x, y) ++ (A-lx, cp(y)).l We replace therefore eqns (l), (2) 

by the problem 

fl 0f2W) + Af2b) = 0 

fl = f2 

f2: [- l,l] I+= [- l,l] smooth, even, f2(0) = 1, f;'(O) < 0. 

(4) 

(3 

(6) 

tPermanent address: Istituto Matematico “G. Castelnuovo”, UniversitB degli Studi di Roma, Piazzale A. 
Moro, 00100 Rome, Italy. 

*We shall later take g(x) of class C’ as a function of x2. There exist many C’ solutions. In particular, the 
existence of a solution which behaves like I-const (x/‘+~ is established in [3] for small E, and suitable A(E). 
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Fig. 1. 

1 
Fig. 2. 

The solvability of eqn (4) with respect to f2 (with f?(O) = 1, f;‘(O) # 0) requires 

f,(l)+A =o 

Afi(l) + 1 = 0. 

Modulo eqn (7) we may rewrite eqn (4) as 

f, Of2(hX) + U,(x) = f,(l) + A 

(7) 

(8) 

(44 
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Fig. 3. 

(which is again of the form of eqn 3). We shall try to solve the system, eqns (4a), (5) 

and (6), adjust A such that f,(l) + A = 0, and take g = f, = f2. The condition f,(l) + A = 

0 shows that A is not arbitrary: our problem is a non linear eigenvalue problem. Let f2 

be a solution of eqn (4a) for given f,, A. Then x if* is again a solution. In view of 

eqns (5) and (8) we shall lift this ambiguity by choosing the solution f2 such that 

Af;(l)+ 1 = 0. 

Notice that eqn (4a) determines f*(x) for x near 0 in terms of f,(y) for y near 1 t. In 

view of these dissimilar roles of f, and fi it is convenient to introduce new variables. 

Let us write 

F(x)=A-‘Lf,(l -x)-fdl)l 

f*(x) = 1 - W). 

Then eqns (4a) and (5) become 

i,b(t) = F 0 $(A?) (4b) 

G(x) = A -‘[- J/(( 1 - x)‘) + $(l)] 
F=G I 

(5b) 

where it is assumed that F(0) = 0, F’(0) = A-‘. One looks for a solution + of eqn (4b) 

satisfying 

2A$‘(l) = 1 (gb) 

and imposes eqn (5b). If A is such that 

G(l)= l+A (7b) 

we have a solution of the original problem. 

‘iIn particular one cannot hope to determine simply from eqn (1) the coefficients of the power series 
expansion of g at the origin. 
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We may reformulate the problem as that of finding a fixed point F of the map @A: 

F I+ q H G where ? is defined by 

‘P(t) = F(‘P(A*t)), W(0) = 0, V(0) = 1 (9) 

and 

G(x) = A-‘[‘P(a) - V(cu(l -x)*)1 

where (Y is determined by 

(10) 

[in 

2ah*‘(cy) = 1 

this notation $(t) = q(d)]. Finally determine A such that q(a) = 1 + A. 

From eqn (9) and the assumed smoothness one gets formulae such as 

V(t) = fj (A*F’(‘P(A*“t)) 
II=1 

(Sq)(t) = “g A4n[‘4”(A2”t)]2(SF)(‘P(A2nt)) 

where Sf = (f”/f’)‘- 1/2(f”/f’)* is the Schwarzian derivative. These formulae give a 

good control on V’. Notice that these formulae require the knowledge of F only on the 

range of t I+ T(A*t), t E [0, a]. For the purpose of finding fixed points of @‘A, it will 

thus be possible to consider functions F on [0, A] .with A smaller than 1. 

The strategy will now be the following. We choose an interval .I of values of A and 

for each A E J define a nonempty set Jt, of functions f on some interval [0, A] such 

that QJt* C _I& and @* is a contraction on JJr with respect to some metric d. The map 

@‘r has thus a unique fixed point FA in the closure of Jtr. Uniqueness implies 

continuity of A I-+ FA and thus of A -q(a)-l-h. Finally one checks that q(a)-1-A 

has different signs at both ends of the interval J. Therefore there is at least one A E J 

for which W(a) = 1 + A, and this yields a solution of our original problem, eqn (1). A 

priori, FA is only in the closure of A,,, there may thus be an annoying loss of 

differentiability. A little miracle occurs however which saves the situation: J& 

contains analytic functions, and @‘r is analyticity improving. The fixed point F* is thus 

real analytic, and the same is true of the solution g of eqn (1). 

Implementing the details of the above program is real work (see Ref. [l]), and 

involves in particular numerical computations. Here we give only general indication. 

The interval J is chosen as [d(O.152), ~‘(0.1631. Then A is chosen as a function of A 

(piecewise constant and d 0.261). The set J& is convex and defined in terms of a set 

JUL such that FE .&e(F”/F’) E Jl; (notice that if s = (P/F’), then F(x) = 

Jo” dyh-* exp J{ s(z)dz). The convex set .A: consists of the C’ functions on [0, A] such 

that 

s’(x) + s(x)* s 0 (11) 

- s’(x) 5 L (12) 



ON FEIGENBAUM’S FUNCTIONAL EQUATION 129 

where I,, f3, c,, c3, L are given as piecewise constant functions of A, 0s cl 5 I,, 
0 9 c3 5 13, I, + 1x -=c 1. It turns out that if F E &, then G”/G’ satisfies eqn (11) on [O,ll 
(not just [0, A]). In particular, G”/G’ 5 0 and G”‘/G’ 5 0. Since G’(0) = A-‘, we have 
G’ 2 0, G” 2 0, G”’ 5 0 on [O,l]. The metric d on _& is given by the following norm on 
“‘44:: 

llsll = ,$$ I(1 - x)-‘s(x)l. 

As to the analyticity character of @A, one shows that if FE A, and 

with B 2 1.8, then 

with B < B. 

THEOREM. There is 
functional equation 

has an even smooth 
properties 

g”(0) < 0 

g(1) + A = 0, hg’(1) + 

at least one number A E [g/(0.152), q/(0.165)] for which the 

g 0 g(Ax) + Ag(x) = 0, g(0) = 1 

solution on [- l,l]. The solution found has the following further 

l=O 

g’(x) 25 0, g”(x) 5 0, g”‘(x) 2 0 on [O,l] 

I+!($)’ I g(x) 5 K’(l.8)“~’ for x E [- l,l], n 2 1. 
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