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The differentiation of uncommitted cells into specialized adipocytes occurs through a cascade of transcriptional
events culminating in the induction and activation of the nuclear receptor PPARγ, the central coordinator of fat
cell function. Since the discovery of PPARγ, two decades ago, our views of how this molecule is activated have
been significantly refined. Beyond the cell, we also now know that diverse signals and regulators control
PPARγ function in a fat-depot specificmanner. The goal of this article is to review the latest in our understanding
of the early and late transcriptional events that regulate adipocyte development and their potential impact on
energy storage and expenditure in different fat depots. This article is part of a Special Issue entitled: Modulation
of Adipose Tissue in Health and Disease.

© 2013 The Author. Published by Elsevier B.V. Open access under CC BY-NC-ND license.
1. Introduction

Obesity is a major risk factor for metabolic disorders such as insulin
resistance, diabetes, cardiovascular and liver disease. Excess weight
and obesity are caused by an imbalance between energy input and its
output, that results in excessive adipose tissue expansion, secondary
to hyperplasia of adipocyte precursor cells and hypertrophy [1]. In
the past several years, a series of key molecular players that influence
adipose tissue mass have been identified and renewed emphasis has
been placed on understanding the mechanistic principles that govern
the development of these tissues and orchestrate energy homeostasis.
Humans and rodents have two major anatomically distinct types of
adipose tissues, white and brown. These tissues derive from different
cell lineages and exert opposite roles on lipid metabolism. While
white fat stores energy, brown fat dissipates it by using lipids as fuel
for thermogenesis. Furthermore, white fat is not uniform. Distinct
white fat depots exhibit a range of features, including different develop-
mental gene signatures, adipokine repertoire, lipid storage capacity and
variable susceptibility to inflammation. Given that these distinctive
features influence the onset of the metabolic syndrome, it seems that
dulation of Adipose Tissue in

.V. Open access under CC BY-NC-ND license.
an in depth understanding of the mechanisms that control different
fat tissue types and depots is critical for designing strategies to prevent
and treat obesity and its complications.

2. Types of adipose tissues and depots

2.1. White adipose tissue

White adipose tissue is the primary site of energy storage. Adipo-
cytes, specialized cells devoted to the accumulation of triglycerides,
store excess of nutrients as fat so that fatty acidsmay be released during
energy demand in times of scarcity. Morphologically, mature white fat
cells are characterized by an unilocular lipid droplet surrounded by a
thin cytoplasmic rim containing only a few mitochondria. Fat cells are
extremely plastic, able to rapidly expand in size and number, and as a
result fat tissue of individuals with high body mass index represents
the second largest organ in the body after the skin. Developmentally,
fat tissue has been believed to originate from the mesoderm, however
recent studies have shown that fat tissue present in the face has a
neuro-ectodermal origin [2] and that the vasculature represents the
primary source of fat cell precursors [3,4]. Despite similar morphologi-
cal appearance of white fat tissue in every part of the body, there are
major regional differences spanning from distinct gene expression pro-
files to distinct adipokine production. Microarray molecular analyses
have confirmed that both human and mouse white fat tissues from dif-
ferent anatomical locations differ in a large number of expressed genes,
including developmental patterning genes [5–7]. It was recently shown
that the homeobox gene Hoxc13 is exclusively expressed in gluteal
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subcutaneous fat of both men and women and that its depot-selective
expression is maintained in ex vivo cultures of preadipocytes and in
differentiated adipocytes. These data suggest that different fat depots
may be characterized by defined homeobox codes that identify
them in specific locations of the body. Someof themolecular differences
present in distinct depots manifest as distinct lipolytic capacity and
differential responsiveness to sex hormones. It is now evident that
gender-specific fat distribution exists: it has been demonstrated that
men have increased propensity to expand their intra-abdominal fat
depot, assuming an apple shaped phenotype, while women mostly
enlarge the size of depots in the gluteal, hip and femoral area, giving
rise to the characteristic pear shaped body conformation. These
regional- and gender-specific differences in fat accumulation are partic-
ularly relevant given that increased fat in the subcutaneous region is
associated with lower risk to develop the metabolic syndrome com-
pared with increased fat deposition in the intra-abdominal area [8].

2.2. Brown fat

In response to beta-adrenergic stimuli, brown fat oxidizes lipids
for thermogenic purposes. Smaller mammals, such as rodents, need
brown fat to maintain their temperature during exposure to cold
atmospheric conditions and so do human newborns who have little
insulating white fat to protect them from low temperatures right after
birth. The view that brown fat existed only in these conditions has
undergone a dramatic change. In fact in adult humans, there are sub-
stantial amounts of cells containingmolecular and functional footprints
of brown fat especially in the neck and supraclavicular regions. These
areas can be identified by PET scan as regions of high glucose uptake
in a variety of patients, including in those exposed to thyroid replace-
ment therapy or to cold temperatures [9–11]. These recent data impli-
cate the existence of “brown fat-like” tissue in adult humans and have
revamped the field of brown fat biology.

Brown fat cells are characterized by multilocular lipid content and
by a high number of mitochondria. Brown fat burns lipids as fuel and
uses UCP1, an inner mitochondrial membrane protein, to uncouple
oxidative phosphorylation from ATP production causing the dissipation
of energy as heat. The importance of UCP1 in vivo has been demonstrat-
ed through knock-out experiments showing that mice lacking UCP1
develop obesity at thermoneutrality [12]. The developmental origin of
brown fat tissue was recently uncovered via elegant fate cell mapping
analyses. Through these studies it was shown that brown fat has a dis-
tinct origin compared to white fat, and that it derives specifically from a
population of Myf5+ precursor cells [13]. This muscle-like origin had
been previously suspected since the analysis of gene signatures of
brown and white fat tissues had shown a closer resemblance of
brown fat to muscle than to white fat [14].

2.3. Brite/beige fat

In addition to white and brown fat cells, a new type of fat cell,
called brite (short for brown in white) or beige, has been recently
identified. It has been long established that subcutaneous white fat
tissue is quite heterogeneous, with multilocular cells typically found
in brown fat, interspersed between classic white unilocular fat cells
[15]. These multilocular cells have been observed in white fat cells
also in response to treatment with the antidiabetic drugs TZDs [16].
Immunostaining analyses have revealed that, although these “brown-
like” cells express the characteristic brown fat marker UCP1, they are
Myf5−, suggesting that they derive froma population of cell precursors
distinct from that that gives rise to brown fat. To further define the
molecular identity of the cells present in regions of browning within
white fat tissue, the Spiegelman group embarked in a purification effort
to clone and characterize these brite/beige cells. Through this approach,
a population of cells, which express low UCP1 levels in the basal state,
but can be induced to express it in response to cAMP stimulation, was
identified [17]. Furthermolecular characterization bymicroarray analy-
sis revealed that these cells express unique gene signatures, suggesting
that brite/beige cells are a new and distinct cell type. Among the brite/
beige-selective genes, the cell surface markers CD137 and TMEM26
were identified and used to detect brite/beige cells in mouse white fat
tissues [17] and were shown to be expressed also in UCP1 positive
human fat tissues [17,18]. Interestingly, UCP1 positive depots obtained
from adult donors with thyroid cancer showed the coexistence of both
classical brown and some brite/beige cell signatures [8], while UCP1
positive biopsies of healthy subject exposed to cold or obtained
post-mortem from children mainly expressed beige-selective genes
with nearly undetectable levels of classic brown fat markers [17,18].

It is now established that the number of the UCP1 positive cells in
white fat tissue seems to be regulated not only by cold temperature,
beta-adrenergic stimulation and drugs such as TZDs, but also by hor-
mones and secreted peptides, as demonstrated by the browning effects
observed after administration of the myokine irisin [17,19], FGF21 [20]
and after treatment with the cardiac natriuretic peptide ANP, activated
by p38 [21]. There are currently a number of hypotheses on how brite/
beige cells arise in white fat tissue. Both trans-differentiation of white
adipose tissue cells [22] and proliferation of brite/beige precursors
embedded in white fat in response to various stimuli have been
proposed. Recent analyses of transgenic and knock-out mouse models
have shown that browning of adipose tissue occurs more often than
anticipated, pointing to novel molecular mechanisms regulating brow-
ning of white tissue [23–27]. The evidence that certain stimuli not only
increase brown fat tissue but also induce browning of white fat and in-
crease energy expenditure has become an area of intense investigation
for therapeutic purposes.

3. Regulators of adipocyte differentiation and fat tissues function

3.1. Terminal differentiation regulators

3.1.1. PPARγ
Adipocyte differentiation in either white or brown fat is under the

control of the transcription factor PPARγ. PPARγ's role in adipogenesis
was discovered in the early nineties [28], when PPARγ was identified
as the transcription factor binding to the fat specific enhancer present
in the adipocyte fatty acid binding protein aP2 promoter [29]. In vitro
gain of function studies subsequently demonstrated that ectopic
expression of PPARγ is sufficient to confer the fat differentiation pheno-
type and to induce the expression of critical adipose tissue specific
genes [28]. PPARγ has the typical nuclear receptor structure, character-
ized by a DNA bindingmotif, a ligand binding region and two activation
domains, one ligand-independent located at the N-terminus, and the
other at the C terminus functioning in response to agonists. PPARγ
heterodimerizes with the nuclear receptor RXR and is able to activate
transcription by binding to response elements characterized by direct
repeats of the sequence 3′-PuGG/TTCA-5′ separated by 1 nucleotide,
also called DR1. PPARγ’s ligand binding pocket is large and can accom-
modate awide array of ligands [30]. In the absence of agonists, PPARγ is
bound to corepressors, such as NCor [31]. These repressive complexes
are readily displaced after ligand binding, which results in PPARγ to un-
dergo conformational changes to recruit coactivator complexes [32].
Recent advances in technology have permitted the global mapping of
PPARγ targets via a systematic approach involving deep sequencing of
adipocytes. These studies have confirmed that PPARγ controls lipid
storage and allowed the identification of PPARγ targets at a genome-
wide level [33–35]. Although PPARγ was discovered almost twenty
years ago, its role as a central orchestrator of adipocyte function has
remained uncompromised.

Regulation of PPARγ beyond ligand activation has been well docu-
mented. Modulation of CDK5-mediated phosphorylation levels of
PPARγ at serine 273 by the partial agonists MRL24 has been shown to
regulate selective PPARγ target genes, such as adiponectin and adipsin,
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contributing to insulin sensitization,without altering PPARγ function on
differentiation [36]. In addition, PPARγ's binding to coregulators that are
necessary to induce the typical genes of white and brown fat can be
modulated pharmacologically. For example, chronic treatment of mice
with PPARγ synthetic ligands such as TZDs causes the induction of
brown specific genes leading to browning of white adipose tissue [37].
It has been shown that TZD treatment affects the levels of PPARγ
sumoylation at residues K107 and K395, via regulation of FGF21 [38],
and PPARγ acetylation levels at lysines 268 and 293 through the control
of SIRT1. PPARγ deacetylationwas shown to regulate adipokine produc-
tion, similarly to the effects observed by modulating CDK5-mediated
phosphorylation at serine 273, and led to corepressor/coactivator
exchange, causing the release of NCor binding and increasing PPARγ's
ability to recruit the coactivator PRDM16. These SIRT1 mediated effects
led to the induction of brown fat specific markers, such as UCP1, and
browning of white fat tissue in vivo [25]. It is now clear that both the
induction andmodulation of PPARγ impacts energymetabolism (Fig. 1).

3.1.2. The CCAAT/enhancer-binding proteins
This family of transcription factors consists of several members,

including C/EBPα, β, δ and CHOP. C/EBPα, β and δ proteins contain a
DNA binding region and a leucine zipper dimerization domain. C/EBPβ
and δ are rapidly induced after hormonal stimuli that induce differ-
entiation and have been shown to participate in the early phases of
adipogenesis. Although C/EBPβ expression has been shown to be suffi-
cient to induce differentiation in vitro even in the absence of classic
differentiation inducers, an analysis of C/EBPβ knock-out mice has
demonstrated that C/EBPβ is not necessary for the formation of fat
mass. Reduction in adipose tissue is only observed when both C/EBPβ
and δ are genetically ablated (reviewed in Ref. [1]). C/EBPα is expressed
at later stages of differentiation and participates in a positive feedback
loop with PPARγ to sustain adipocyte maturation. Although C/EBPα
appears to be partly required tomaintain insulin sensitivity, its absence
does not appear to severely affect adipocyte differentiation in vitro [39].

3.2. Depot-selective factors

3.2.1. PGC1α1
The peroxisome proliferator-activated receptor-gamma coactivator

1 alpha 1 (PGC1α1) is considered a critical metabolic coactivator
(reviewed in Ref. [40]). It was originally identified in 1998 as a PPARγ
interacting protein in brown fat and shown to be highly inducible
after cold exposure [41]. It has been now demonstrated that PGC1α1
is one of four different isoforms generated by alternative promoter
usage and splicing of the PGC1α gene [42]. Since its discovery,
PGC1α1 has been implicated in regulation of metabolism in a variety
of tissues including liver, skeletal muscle and heart, in cooperation
with several transcriptional factors. PGC1α1 ectopic expression infibro-
blast induces a plethora of brown fat specific genes including those
involved inmitochondrial and peroxisomal function and in thermogen-
esis [43,44]. Both global and fat tissue specific deletion of PGC1α1 have
confirmed its role in vivo in the regulation of adaptive thermogenesis
[45,46]. Recent studies have demonstrated that PGC1α1 plays a critical
role, not only in brown fat tissue, but also in the regulation of white
adipose depots browning, as shown by the effect observed after admin-
istration of FGF21 on PGC1α1 protein levels and stability in white fat
tissue and by the decreased levels of browning in PGC1α1 conditional
fat depot knock-out mice [46]. The evidence accumulated so far indi-
cates that PGC1α1 is a central regulator of energy metabolism and
suggests that its induction in brown or white fat tissues could be thera-
peutically exploited.

3.2.2. PRDM16
In a search for specific brown fat regulators, Seale and colleagues

identified PRDM16 via a genome wide screen of transcriptional
regulators expressed in brown fat tissue and cell lines. Through
gain-of-function experiments it was demonstrated that PRDM16
induces the expression of brown fat specific genes via physical inter-
action and functional cooperation with PPARγ and PPARα and their
coactivators PGC1α1 and β [47]. The role of PRDM16 in driving the
thermogenic programs also in vivo has been demonstrated via the
generation of transgenic mice expressing PRDM16 in fat tissues.
These mice developed brown-like adipocytes selectively in their
subcutaneous adipose depot. In addition they displayed an overall
improved metabolic profile as demonstrated by increased energy
expenditure and improved glucose tolerance in response to high fat
feeding [23]. Conversely, mice haplo-insufficient for PRDM16 showed
reduced white fat browning in response to beta-adrenergic stimuli.
Interestingly, knock-down studies performed in primary brown fat
cell cultures demonstrated that the reduction in PRDM16 levels caused
cells to assume an elongatedmorphology, resembling that of myocytes,
to have reduced thermogenic gene expression levels and to increase the
expression of muscle specific genes, implicating PRDM16 as a critical
regulator of brown fat cell identity via controlling the switch between
brown fat and skeletal muscle cell fate [13,48].

3.2.3. Ebf2
Early B cell factors (Ebfs) have beenpreviously shown to be involved

in adipocyte differentiation via regulation of PPARγ [49–51]. Recent
studies by the Seale group [52] have identified a more specific brown
fat selective role for one family member, Ebf2, in the determination
and maintenance of brown fat cell identity. Through genetic studies it
was demonstrated that Ebf2−/− embryos at E18.5 d.p.c. have reduced
brown fat size, decreased mitochondrial density and loss of expression
of brown fat genes, such as PRDM16, UCP1 and CIDEA, due to cell auton-
omous defects of primary brown fat preadipocytes. Functional in vitro
studies demonstrated that norepinephrine-dependent respiration of
cells obtained from Ebf2−/+ mice is uncoupled, indicating a central
role of Ebf2 for the respiratory function of brown adipocytes.

3.3. Commitment/early differentiation regulators

3.3.1. ZFP423
To identify novel molecular determinants of the fat cell lineage,

Gupta and colleagues screened the expression levels of 1800 transcrip-
tion factors in fibroblastic cell lines with different differentiation
propensities and found that Zfp423, a zinc finger protein previously
shown to regulate brain development, was expressed at higher levels
in preadipocytes than in non-adipogenic fibroblasts. To test the role of
this factor in inducing the commitment of cells to the adipocyte lineage,
Zfp423 was ectopically expressed in NIH3T3 fibroblasts and shown to
activate PPARγ expression therebypromoting adipocyte differentiation.
Conversely, knock-down of Zfp423 in 3T3-L1 preadipocytes reduced
PPARγ expression levels, affecting the differentiation capacity of these
cells. Mechanistic studies revealed that Zfp423 regulates PPARγ expres-
sion through the amplification of the BMP signaling pathway. In vivo
analysis of Zfp423 in embryos obtained from Zfp423-deficient mouse
showed impaired differentiation of brown and white fat, supporting
the notion that Zfp423 plays a critical role as a transcriptional regulator
of preadipocyte determination of both brown andwhite fat depots [53].
Recently, analysis of murine adipose progenitor of the brown andwhite
fat lineage labeled via expression of GFP from the Zfp423 genetic locus
identified committed preadipocytes in endothelial and perivascular
cells, suggesting that committed brown and white adipocytes may
independently go through a pericyte lineage [4].

3.3.2. ZNF638
Using a candidate gene approach based on sequence homology

with the transcriptional coactivator PGC1α1, our group identified
the zinc finger protein ZNF638 as a novel regulator of adipocyte dif-
ferentiation [54]. ZNF638 is a large multidomain protein containing
an RS region and multiple RRM domains, which are motifs shared



Fig. 1. Schematic depiction of the transcriptional regulators that affect the differentiation ofwhite, beige and brown adipocytes. The red curved lines indicate protein–protein interactions.
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with PGC1α1. In addition, ZNF638 contains a putative DNA binding
domain, two zinc fingers and an acidic repeat. ZNF638 is induced
transiently during early phases of adipocyte differentiation and via
gain-of-function studies we demonstrated that ZNF638 is able to
stimulate pluripotent mesenchymal cells to acquire the molecular
and morphological features of adipocytes. Interaction studies revealed
that ZNF638 physically binds to early regulators of PPARγ expression,
C/EBPβ and δ. This finding was supported by chromatin IP studies
indicating that ZNF638 can be found bound to the PPARγ promoter at
the C/EBP responsive element in combination with C/EBPs, during the
early phases of differentiation. Immunostaining studies of ZNF638
revealed that this protein is localized in the nucleus in a punctuated
pattern, reminiscent of speckles, which are nuclear bodies considered
to be storage areas of splicing factors [55]. Whether ZNF638 has the
competency of regulating alternative splicing in addition to transcrip-
tion, thereby contributing to differentiation by generation of fat
depot-selective isoforms, remains to be determined.

3.3.3. Evi1
To identify novel upstreammodulators of PPARγ in white fat tissue,

Ishibashi and colleagues tested the role of Evi1, a member of the PR
domain-containing family, closely related to the brown fat program
regulator PRDM16, in adipocyte differentiation. They showed that
Evi1 mRNA levels are increased in preadipocytes at the onset of differ-
entiation and that forced expression of Evi1 in non-adipogenic cells
led to their conversion into adipocytes. Loss of Evi1 function in
preadipocytes suppressed adipocyte differentiation. Interestingly,
overexpression of Evi1 in myoblast cells was able to force their conver-
sion into adipocytes [56]. Mechanistically, Evi1 appears to stimulate
adipogenesis through induction of PPARγ2 levels via physical interac-
tion with C/EBPβ. In vitro functional assays combined with adipose
tissue expression data suggested that Evi1 may play a role specifically
in white fat tissue, where Evi1 expression is higher compared to
brown fat, suggesting that PRDM16 and Evi1 may regulate similar pro-
cesses in adipogenesis, respectively in brown and white fat lineages. It
remains to be established whether Evi1 plays a role in browning of
white adipose tissues, a process in which PRDM16 has been shown to
be critically involved. Whether the balance between the levels of Evi1
and PRDM16 in white adipose tissue determines the expression of
white or brown fat programs downstream of these two factors remains
to be determined.

3.3.4. Zfp521
To answer the question ofwhat factors control cell fate choices, Kang

and colleagues took a candidate gene approach. Given the known
involvement of the zincfinger protein Zfp423 in adipose determination,
they investigated the role of Zfp521, a close paralog of Zfp423.
Overexpression of Zfp521 caused inhibition of adipogenesis, whereas
its genetic ablation enhanced it. Zfp521 functions by binding to early B
cell factor 1 (Ebf1) and by inhibiting the expression of Zfp423. Interest-
ingly, Ebf1 was shown to bind to an intronic enhancer of Zfp521 and to
repress Zfp521 expression. In vivo analysis of Zfp521 function reveled
that embryos with genetic ablation of Zfp521 have increased
interscapular brown adipose tissue and subcutaneouswhite adipocytes,
suggesting a role for this factor in both depots [57].

3.3.5. TCF7L1
Cristancho and colleagues recently demonstrated that regulators

of cell structure organization can control early events in adipocyte
differentiation. Forced expression of the transcriptional repressor factor
7-like 1 (TCF7L1), which is normally induced by cell contact in
adipogenic cell lines, is sufficient to commit non-adipogenic fibroblasts
to the adipogenic fate. Conversely, depletion of TCF7L1 inhibited differ-
entiation, demonstrating a role for TCF7L1 as an adipogenic competency
factor. The mechanisms of TCF7L1's function involve the silencing of
genes involved in cell structure which occurs after the addition of
adipogenic stimuli [58]. These data indicate a role of TCF7L1 as a compe-
tency factor in adipogenesis.

3.3.6. TLE3
Through a high throughput screen for novelmodulators of adipocyte

differentiation, Villanueva and colleagues identified the Groucho family
member TLE3 [59]. TLE3 expression was shown to be increased during
adipocyte differentiation and by PPARγ agonists. Through gain- and
loss-of-function studies it was demonstrated that TLE3 is able to regu-
late adipocyte differentiation. Mechanistically, TLE3 forms a transcrip-
tional complex with PPARγ and synergistically cooperates with it at
PPARγ target gene promoters. Interestingly, TLE3 also inhibits Wnt
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target gene expression and reverses β-catenin-dependent repression of
adipocyte genes, suggesting that TLE3 is a dual-function switch that
facilitates the adipogenic program through the formation of both active
and repressive transcriptional complexes. Transgenic mice expressing
TLE3 in adipose tissue revealed that TLE3 expression in vivo ameliorates
high-fat-diet-induced insulin resistance. Given that TLE3 is expressed at
higher levels inWAT relative to BAT, it is possible that TLE3 may have a
depot-selective function, specifically in white adipocytes.

3.3.7. Histone H3K9 methyltransferase G9a
Recent genome wide studies of histone methylation profiling

in preadipocytes performed by Wang and colleagues identified the
histone methyltransferase (HMT) G9a as a mediator of repressive epi-
genetic marks [60]. It was shown that H3K9me2 is selectively enriched
at the PPARγ locus and its levels and those of G9a are decreased during
adipogenesis, concomitantly to the increase in PPARγmRNA levels. Loss
of H3K9me2 through G9a deletion led to enhanced chromatin opening
thereby facilitating the binding of the early adipogenic regulator C/EBPβ
to the PPARγ promoter. Interestingly, while G9a repressed PPARγ
expression, it positively affected Wnt10a, a known inhibitor of adipo-
cyte differentiation. In vivo, deletion of G9a in mouse adipose tissues
led to an increase in adipogenic gene expression programs and in the
amount of epididymal, inguinal and brown fat depots.

4. Summary, open questions and future directions

In the last few years, adipose cell and tissue biology has flourished
with remarkable discoveries. These discoveries have led to the elucida-
tion of new pathways and molecules that control the early events
guiding adipocyte differentiation and have provided evidence that fat
tissues throughout the body, despite their appearance, are not equal
and should be thought of as distinct depots. The evolution of thinking
on this latter point is critical. If adipose tissue is inherently distinct
based on its developmental origin and ability to respond to hormonal
stimulation, then approaches to study it should take this into account.
In this article we reviewed some of the novel factors influencing differ-
entiation of adipocytes and contributing to fat depot formation. With
the expansion of the adipose tissue biology field, there are many new
unanswered questions. For example, given the pathological link
between enlargement of specific adipose depots and development of
the metabolic syndrome, a pressing question is related to the identity
of depot-specific drivers of fat accumulation. This issue is particularly
relevant if strategies to combat obesity aiming at finding ways of
controlling the balance between fat accumulation and lipid oxidation
for thermogenic purposes are desired. Anchoring experiments around
upstream regulators andmodulators of PPARγ function could be a fruit-
ful strategy to better define themechanisms that control selective depot
expansion. In time, thesemay reveal potential targets to control or pre-
vent fat deposition in a depot-selective manner.

Another open question is whether brite/beige cells arise from the
proliferation of beige precursor embedded in white fat tissue or if there
is intrinsic plasticity inwhite fat cells allowing their transdifferentiation
into beige in response to select physiological cues or pharmacological
stimuli. This is a relevant question not only from a developmental biol-
ogy prospective but also because a clear answer defines how beige cells
can be exploited to transform white fat depots from storage sites to
energy burning furnaces. Current data indicate that beige cells share
features with surrounding white fat cells but in addition express
markers of brown fat. Lineage tracing will be necessary to definitively
establish the origin of these brite/beige fat cells.

One potential antiobesity therapeutic intervention could consist of
inducing/stimulating the “browning” ofwhite adipose tissue. It remains
to be assessed whether the induction of UCP1 protein in white fat is
sufficient to increase the overall basal temperature to levels that are
therapeutically exploitable and whether the heat production described
in some of the animalmodels inwhich “browning” has been observed is
supplemented by muscle [61]. If we want to determine which tissue
ultimately to target for future antiobesity intervention, understanding
the distinction between these different thermogenic sources is critical.
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