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a b s t r a c t

We present a new construction of non-classical unitals from a classical unital U in
PG(2, q2). The resulting non-classical unitals are B–M unitals. The idea is to find a non-
standard modelΠ of PG(2, q2)with the following three properties:

(i) points ofΠ are those of PG(2, q2);
(ii) lines ofΠ are certain lines and conics of PG(2, q2);
(iii) the points inU form a non-classical B–M unital inΠ .

Our construction also works for the B–T unital, provided that conics are replaced by certain
algebraic curves of higher degree.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

A classical unital U in the Desarguesian plane PG(2, q2) is the set of all absolute points of a non-degenerate unitary
polarity. Up to a projectivity of PG(2, q2),U consists of all the q3 + 1 points of the non-degenerate Hermitian curveH with
equation yq + y− xq+1 = 0. The relevant combinatorial property ofU, leading to important applications in coding theory,
is thatU is a two-character set with parameters 1 and q+ 1, that is, a line in PG(2, q2)meetsU in either 1 or q+ 1 points. A
unital in PG(2, q2) is defined by this combinatorial property, namely it is a two-character set of size q3 + 1 with parameters
1 and q+ 1.
The known non-classical unitals are the B–M unitals due to Buekenhout and Metz, see [6,21], and the B–T unitals due

to Buekenhout; see [6]. They were constructed in the Desarguesian plane by an ingenious idea, relying on the Bruck–Bose
representation of PG(2, q2) in PG(4, q) and exploiting properties of spreads and ovoids (in particular, quadrics). For q odd, an
alternative construction for special B–M unitals which are the union of q conics sharing a point has been given by Hirschfeld
and Szőnyi [16] and independently by Baker and Ebert [3]. Such B–M unitals are called H–Sz type B–M unitals.
In this paper, we present a new construction for non-H–Sz type B–M unitals. The key idea, as described in the abstract, is

fully realised within PG(2, q2), and it uses only quadratic transformations. This method also works for B–T unitals, provided
that quadratic transformations are replaced by certain birational transformations.
Our notation and terminology are standard. For generalities on unitals in projective planes the reader is referred to [5,

10,11]. Basic facts on rational transformations of projective planes are found in [15, Section 3.3].

2. A non-standard model of PG(2, q2)

Fix a projective frame in PG(2, q2) with homogeneous coordinates (x0, x1, x2), and consider the affine plane AG(2, q2)
whose infinite line `∞ has equation x0 = 0. Then AG(2, q2) has affine coordinates (x, y)where x = x1/x0, y = x2/x0 so that
X∞ = (0, 1, 0) and Y∞ = (0, 0, 1) are the infinite points of the horizontal and vertical lines, respectively.
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Fix a non-zero element a ∈ GF(q2). For m, d ∈ GF(q2) and a ∈ GF(q2)∗, let Ca(m, d) denote the parabola of equation
y = ax2 +mx+ d. Consider the incidence structure Aa = (P ,L)whose points are the points of AG(2, q2) and whose lines
are the vertical lines of equation x = k, together with the parabolas Ca(m, d)wherem, d, k range over GF(q2).

Lemma 2.1. For every non-zero a ∈ GF(q2), the incidence structure Aa = (P ,L) is an affine plane isomorphic to AG(2, q2).
Proof. The birational transformation ϕ given by

ϕ : (x, y) 7→ (x, y− ax2), (1)

transforms vertical lines into themselves, whereas the generic line y = mx + d is mapped into the parabola Ca(m, d).
Therefore, ϕ determines an isomorphism

Aa ' AG(2, q2),

and the assertion is proved. �

Completing Aa with its points at infinity in the usual way gives a projective plane isomorphic to PG(2, q2). Note that the
infinite point Y∞ of the vertical lines of AG(2, q2) is also the infinite point of the vertical lines of Aa.
For q an odd power of 2, a different, yet similar, construction will also be useful in our investigation. The construction

depends on some known facts about Galois fields of even characteristic. Let ε ∈ GF(q2) \GF(q) such that ε2+ ε+ δ = 0, for
some δ ∈ GF(q)\ {1}with Tr (δ) = 1. Here, as usual, Tr stands for the trace function GF(q)→ GF(2). Then ε2q+εq+ δ = 0.
Therefore, (εq + ε)2 + (εq + ε) = 0, whence εq + ε + 1 = 0. Moreover, if q is an odd power of 2, then

σ : x 7→ x2
(e+1)/2

is an automorphism of GF(q).
For anym, d ∈ GF(q2) letD(m, d) denote the plane algebraic curve of equation

y = [((xq + x)ε + x)σ+2 + (xq + x)σ + ((xq + x)ε + x)(xq + x)]ε + bxq+1 +mx+ d (2)
where b is a given element in GF(q2) \ GF(q).
Introduce the incidence structureA′ε = (P

′,L′)whose points are the points of AG(2, q2) andwhose lines are the vertical
lines of equation x = k, together with the curvesD(m, d)wherem, d, k range over GF(q2).

Lemma 2.2. The incidence structure A′ε = (P
′,L′) is an affine plane isomorphic to AG(2, q2).

Proof. The argument in the proof of Lemma 2.1 works also in this case, provided that ϕ is replaced by the birational
transform γ defined by

γ : (x, y) 7→ (x, y+ [((xq + x)ε + x)σ+2 + (xq + x)σ + ((xq + x)ε + x)(xq + x)]ε + bxq+1). �

The idea to use a non-standard model of PG(2, q2) arising from a quadratic transformation, as in our approach, goes back
to [19] where inherited arcs and ovals in non-Desarguesian planes were studied. This idea was also used by Jha and Johnson,
see [17,18], in investigating certain translation ovals of generalized André planes.

3. The construction

Before presenting our construction we recall the equations of B–M unitals and B–T unitals in PG(2, q2).

Proposition 3.1 (Baker and Ebert[4], Ebert [8,10]). For a, b ∈ GF(q2), the point-set

Ua,b = {(1, x, ax2 + bxq+1 + r)|x ∈ GF(q2), r ∈ GF(q)} ∪ {Y∞}

is a B–M unital in PG(2, q2) if and only if Ebert’s discriminant condition is satisfied, that is for odd q,
(i) 4aq+1 + (bq − b)2 is a non-square in GF(q),
and for q even,

(ii) b 6∈ GF(q) and Tr (aq+1/(bq + b)2) = 0.
Conversely, every B–M unital has a representation as Ua,b.

Proposition 3.2. With the above notation,
(i) Ua,b is classical if and only if a = 0;
(ii) Ua,b is a H–Sz type B–M unital if and only a(q+1)/2 ∈ GF(q2) \ GF(q) and b ∈ GF(q).
Proof. This is a direct corollary of [10, Theorems 1 and 12]. �

Proposition 3.3. Let q = 2e, where e > 1 is an odd integer. In the above notation, the point-set

Uε = {(1, x, [((xq + x)ε + x)σ+2 + (xq + x)σ + ((xq + x)ε + x)(xq + x)]ε + r) | x ∈ GF(q2), r ∈ GF(q)} ∪ {Y∞}, (3)

is a B–T unital in PG(2, q2). Conversely, every B–T unital may be represented as Uε for some choice of ε.
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Proof. From [9,10], the point-set

Uε = {(1, s+ tε, (sσ+2 + tσ + st)ε + r)|r, s, t ∈ GF(q)} ∪ {Y∞} (4)

is a B–T unital and, conversely, every B–T unital has such an equation. Let x = s+ tε. Then, t = xq+ x and s = x+ (xq+ x)ε.
Substituting t and s in (4) gives the result. �

If b ∈ GF(q2) \ GF(q) then, from Proposition 3.2, the point-set

Ub = {(1, x, bxq+1 + r)|x ∈ GF(q2), r ∈ GF(q)} ∪ {Y∞} (5)
is a classical unital in PG(2, q2). As pointed out in Section 2,Ub can be regarded as a point-set in the projective closure of
Aa and, for q even, also as a point-set of the projective closure of A′ε . The question arises whetherUb is still a unital in these
planes. Our main result, stated in the following two theorems, shows that the answer is positive.

Theorem 3.4. Let a ∈ GF(q2)∗, b ∈ GF(q2)\GF(q). If (a, b) satisfies Ebert’s discriminant condition, thenUb is the non-classical
B–M unital U−a,b in the projective closure of Aa. Conversely, every non-H–Sz type B–M unital is obtained in this way.
Proof. Let P = (ξ , η) an affine point in Aa. This point, viewed as an element of AG(2, q2), has coordinates x = ξ and
y = η + aξ 2. From (5),

Ub = {(1, ξ ,−aξ 2 + bξ q+1 + r) | ξ ∈ GF(q2), r ∈ GF(q)} ∪ {Y∞}. (6)

This shows thatUb and U−a,b coincide inAa. Since (−a, b) also satisfies Ebert’s discriminant condition, U−a,b is a B–M unital
in the projective closure of Aa. By Proposition 3.2, U−a,b is a non-H–Sz type B–M unital. �

Theorem 3.5. Let q = 2e, with e > 1 an odd integer. ThenUε is a non-classical B–T unital in the projective closure of A′ε .

Proof. We use the same argument as in the preceding proof. The point P = (ξ , η) of A′ε , viewed as an element of AG(2, q
2),

has coordinates x = ξ and

y = η + [((ξ q + ξ)ε + ξ)σ+2 + (ξ q + ξ)σ + ((ξ q + ξ)ε + ξ)(ξ q + ξ)]ε + bξ q+1.

From (5),

Ub = {(1, ξ , [((ξ q + ξ)ε + ξ)σ+2 + (ξ q + ξ)σ + ((ξ q + ξ)ε + ξ)(ξ q + ξ)]ε + r) | ξ ∈ GF(q2), r ∈ GF(q)} ∪ {Y∞}.

By Proposition 3.3 we have thatUb andUε coincide in A′ε and the assertion follows. �

3.1. An alternative proof of Theorem 3.4

The above proofs of Theorems 3.4 and 3.5 depend on the explicit equations for B–M and B–T unitals, as given in
Propositions 3.1 and 3.3. Here we provide a direct proof of Theorem 3.4. Without loss of generality, we assume that q ≥ 3.
LetH be the set of all points in AG(2, q2) of the affine Hermitian curve C of equation

yq − y+ (b− bq)xq+1 = 0, b 6∈ GF(q), (7)
Then,H ∪ {Y∞} is a classical unital in PG(2, q2). We prove thatH ∪ {Y∞} is also a unital in the projective closure of Aa.
We first need the following lemma.

Lemma 3.6. For every m, d ∈ GF(q2), the parabola Ca(m, d) andH have either 1 or q+ 1 points in AG(2, q2).
Proof. The number of solutions (x, y) ∈ GF(q2)× GF(q2) of the system{

yq − y+ (b− bq)xq+1 = 0
y− ax2 −mx− d = 0

(8)

gives the number of points in common of H and Ca(m, d). To solve this system, recover the value of y from the second
equation and substitute it in the first. The result is

aqx2q + (b− bq)xq+1 +mqxq − ax2 −mx+ dq − d = 0. (9)

Consider now GF(q2) as a vector space over GF(q), fix a basis {1, ε} with ε ∈ GF(q2) \ GF(q), and write the elements in
GF(q2) as a linear combination with respect to this basis, that is, z = z0 + z1ε, with z ∈ GF(q2) and z0, z1 ∈ GF(q). Thus, (9)
becomes an equation over GF(q). We investigate separately the even q and odd q cases.
For q even, ε may be chosen as in Section 2. With this choice of ε, (9) becomes

(a1 + b1)x20 + [(a0 + a1)+ ν(a1 + b1)]x
2
1 + b1x0x1 +m1x0 + (m0 +m1)x1 + d1 = 0. (10)

We shall represent the the solutions (x0, x1) of (10) as points of the affine plane AG(2, q) over GF(q) arising from the vector
space GF(q2). In fact, (10) turns out to be the equation of a (possibly degenerate) affine conic Ξ of AG(2, q). Actually, Ξ is
either an ellipse or is a single point. To prove this, we have to show that it has no point at infinity; that is, we need to prove
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that the points P = (x0, x1, 0)with

(a1 + b1)x20 + [(a0 + a1)+ ν(a1 + b1)]x
2
1 + b1x0x1 = 0, (11)

do not lie in PG(2, q). This is the case if and only if (11) admits only the trivial solution over GF(q). A necessary a sufficient
condition for this is

Tr
(
(a1 + b1)[(a0 + a1)+ ν(a1 + b1)]

b21

)
= 1. (12)

In our case, (12) holds as it follows directly from Ebert’s discriminant condition; see [5, page 83]. Therefore, Ξ is either an
ellipse or it consists of a single point; hence, Ca(m, d)meetsH in either 1 or q+ 1 points.
For q odd, an analogous argument is used. For this purpose, as in [10], choose a primitive element β of GF(q2) and let

ε = β(q+1)/2. Then, εq = −ε and ε2 is a primitive element of GF(q). With this choice of ε, (9) becomes

(b1 + a1)ε2x21 + 2a0x0x1 + (a1 − b1)x
2
0 +m0x1 +m1x0 + d1 = 0. (13)

The discussion of the (possibly degenerate) affine conic Ξ of Eq. (13) may be carried out exactly as in the even order case.
The points P = (x0, x1, 0) ofΞ at infinity are determined by

(b1 + a1)ε2x21 + 2a0x0x1 + (a1 − b1)x
2
0 = 0,

and this equation has only the trivial solution over GF(q), since Ebert’s discriminant condition implies that 4aq + (bq − b)2
is non-square in GF(q). �

Lemma 3.6 together with [14, Theorem 12.16] have the following corollary.

Theorem 3.7. The point-set H ∪ {Y∞} is a unital in the projective closure of Aa.

To show thatH ∪{Y∞} is a non-classical unital in the projective closure ofA, we rely on some elementary facts on algebraic
curves.

Lemma 3.8. The points of H in Aa lie on the absolutely irreducible affine plane curve C ′ of equation

ηq − η + (b− bq)ξ + aqξ 2q − aξ 2 = 0.

Proof. The plane curveC ′ is absolutely irreducible, see [15, Lemma 12.1]. If P = (ξ , η) is a point ofH inAa, then P , regarded
as a point of AG(2, q2), has coordinates x, ywith x = ξ, y = η + aξ 2. Since (x, y) satisfies (7),

(η + aξ 2)q − η − aξ 2 + (b− bq)ξ = 0

holds. This implies that P = (ξ , η) is a point of C ′. �

Theorem 3.9. The point-set H ∪ {Y∞} is a non-classical unital in the projective closure of Aa.
Proof. Assume, on the contrary, thatH coincides in Aa with the point-set of a non-degenerate affine Hermitian curveD ′.
Then, C ′ and D ′ have at least q3 common points. Since degC ′ = 2q and degD ′ = q + 1 and 2q(q + 1) < q3, Bézout’s
theorem, see [15, Theorem 3.13], implies that C ′ andD ′ share a common component. This contradicts Lemma 3.8. �

Finally, we prove thatH ∪ {Y∞} is a B–M unital in the projective closure of Aa. Our proof relies on the Ebert–Wantz group-
theoretic characterization of B–M unitals of a Desarguesian plane: A unitalU of PG(2, q2) is a B–M unital if, and only if,U
is preserved by a linear collineation group of order q3(q− 1)which is the semidirect product of a subgroup S of order q3 by
a subgroup R of order q − 1. Moreover, S is Abelian if, and only if,U is a H–Sz type B–M unital; see [12] and [10, Theorem
12]. For more results on the collineation group of a B–M unital, see [1,2].

Theorem 3.10. In the projective closure of Aa, the point-set H ∪ {Y∞} is a non-Sz–H type B–M unital.
Proof. A straightforward computation shows that for any point P = (u, v) ∈ H in Aa and for any λ ∈ GF(q)∗, the affinities

αu,v : (ξ , η) → (ξ + u, η − 2auξ + uq(b− bq)ξ + v),

βλ : (ξ , η) → (λξ, λ2η)
(14)

ofAa preserveH . The group S of the linear collineations αu,v with P = (u, v) ranging overH is a non-Abelian group of order
q3. Write R for the group of the linear collineations βλ as λ ranges on GF(q)∗. It turns out that the group G generated by all
these collineations has order q3(q− 1) and is the semidirect product S o R, and the assertion follows from the Ebert–Wantz
characterization. �

Remark 3.11. Theorem 3.9 may also be proved without using algebraic geometry. The idea is to write the equation of the
tangent parabolas Ca(m, d) at the points of the classical unitalH ∪ {Y∞} and use Thas’ characterization [23] involving the
feet of a point on a unital. If P = (w, z) ∈ H then the unique tangent parabola toH at P has equation

y = ax2 +
(
−2aw + (b− bq)wq

)
x− zq + aw2. (15)
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For q odd, Theorem 3.10 can also be shown by replacing group theoretic arguments with some geometric characterizations
results depending on Baer sublines, due to Casse, O’Keefe, Penttila and Quinn; see [7,22] and [10, Theorem 11].

4. Absolutely irreducible curves containing all points of a B–M unital in PG(2, q2)

Let a ∈ GF(q2)∗ and b ∈ GF(q2) \ GF(q). If (a, b) satisfies Ebert’s discriminant condition, then the absolutely irreducible
plane curve Γa,b of PG(2, q2)with affine equation

yq − y− aqx2q + ax2 + (b− bq)xq+1 = 0 (16)

contains all points of the B–M unital U−a,b. We prove some properties of Γa,b.

Theorem 4.1. The curve Γa,b is birationally equivalent over GF(q2) to a non-degenerate Hermitian curve.

Proof. The birational map (x, y)→ (x, y− ax2) transforms Γa,b into the Hermitian curve C of equation (7). �

Theorem 4.2. Γa,b is the unique plane curve ofminimumdegreewhich contains all the points of the B–Munital U−a,b in PG(2, q2).

Proof. LetΨ be a plane curve of PG(2, q2) of degree d ≤ 2q that is not necessarily absolutely irreducible andwhich contains
all points of U−a,b. Obviously, Γa,b and Ψ have at least q3 + 1 common points. From Bézout’s theorem [15, Theorem 3.13],
Γa,b is a component of Ψ . Since deg Γa,b ≥ deg Ψ , this is only possible when they coincide. �

Remark 4.3. In 1982, Goppa introduced a general construction technique for linear codes from algebraic curves defined
over a finite field; see [13]. In the current literature, these codes are called algebraic geometry.
The parameters of linear codes arising from a Hermitian curve by Goppa’s method were computed in [20]. These codes

turn out to perform very well, when compared with Reed-Solomon codes of similar length and dimension.
In [10], Ebert raised the question whether the parameters of the codes arising from Γa,b by Goppa’s construction were

close to maximum distance separable codes.
Since the algebraic-geometric codes are determined by the function fields of the related algebraic curves and the function

fields of two birationally equivalent plane curves are isomorphic, Theorem 4.1 implies that the algebraic-geometry codes
arising from the Hermitian curve C and those arising from the curve Γa,b are the same.

5. B–M unitals and cones of PG(3, q2)

Wepresent another way to construct a non-classical B–M unital using a Hermitian curve and a suitable cone of PG(3, q2).
Let x0, x1, x2, x3 denote homogeneous coordinates in PG(3, q2). Consider the Hermitian curveH = {(1, t, btq+1+ r)|t ∈

GF(q2), r ∈ GF(q)} ∪ {Y∞} and the map φ : H 7→ PG(3, q2) which transforms the point P(1, t, btq+1 + r) into the point
φ(P) = (1, t, t2, btq+1 + r) and Y∞ = (0, 0, 1) into φ(Y∞) = (0, 0, 0, 1).
The map φ is injective; thus, the set φ(H) consists of q3 + 1 points lying on the cone C represented by x0x2 = x21. The

point Q (0, 0, 1,−a), where a ∈ GF(q2)∗, does not lie on the cone C; hence, the projection ρ from Q to the plane π : x2 = 0
is well defined. The point φ(Y∞) is on π thus we get ρ(0, 0, 0, 1) = (0, 0, 0, 1).
For any (t, r) ∈ GF(q2)× GF(q), set Pt,r = (1, t, btq+1 + r). The line Pt,rQ has point-set

{(1, t, t2 + λ, btq+1 + r − λa)|λ ∈ GF(q2)} ∪ {(0, 0, 0, 1)}

and intersects the plane π at ρ(Pt,r) = (1, t, 0, at2 + btq+1 + r). We are going to show that no 2-secant lines of φ(H) pass
through Q . Let Pt1,r1(1, t1, t

2
1 , bt

q+1
1 + r1) and Pt2,r2(1, t2, t

2
2 , bt

q+1
2 + r2) be two distinct points of φ(H). The line Pt1,r1Pt2,r2

is the point-set

{(λ+ 1, t1 + λt2, t21 + λt
2
2 , b(t

q+1
1 + λtq+12 )+ r1 + λr2)|λ ∈ GF(q2)} ∪ {Pt2,r2}.

If the point Q were on the line Pt1,r1Pt2,r2 then λ = −1, t1 − t2 = 0 and t
2
1 − t

2
2 6= 0, which is impossible. Therefore,

|ρ(φ(H))| = q3 + 1 and it is possible to choose homogeneous coordinates for the plane π in such a way as ρ(φ(H)) turns
out to be the set

{(1, t, at2 + btq+1 + r)|t ∈ GF(q2), r ∈ GF(q)} ∪ {P∞};

that is, ρ(φ(H)) is a non-classical B–M unital in π .
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