Image-Enhanced Endoscopy Is Critical in the Surveillance of Patients with Colonic IBD

Venkataraman Subramanian, MD, DM, MRCP(UK)a,\,*, Raf Bisschops, MD, PhDb

KEYWORDS

- Surveillance
- Ulcerative colitis
- Crohn’s disease
- Chromoendoscopy
- Narrow band imaging
- Autofluorescence
- FICE
- iSCAN

KEY POINTS

- Cancer risk in patients with colonic inflammatory bowel disease (IBD) is high and increases over time. Quality and efficacy of surveillance is variable in routine clinical practice.
- Chromoendoscopy (CE) is recommended by most societies as the preferred test for colorectal cancer (CRC) surveillance in patients with colonic IBD. It has been shown unequivocally to improve dysplasia detection on targeted biopsies.
- Narrow band imaging has not shown superior dysplasia detected on targeted biopsies compared with CE or with white light imaging.

INTRODUCTION

Patients with IBD involving the colon have an increased risk for CRC compared with the general population.1 Cancer in ulcerative colitis (UC) occurs at a younger age and increases with time, approaching 18\% after 30 years of disease.1 This increased risk has prompted both the North American and United Kingdom gastroenterology societies to recommend cancer prevention strategies.2,3

Disclosure Statement: V. Subramanian has no relevant disclosure to make; R. Bisschops is supported by a research grant from FWO-Vlaanderen. R. Bisschops received speaker’s fees from Olympus, Pentax, and Fujifilm Corporation. Both authors contributed to the conception, drafting, critical revision, and final approval of the article.

a Molecular Gastroenterology, Leeds Institute of Biomedical and Clinical Sciences, St James University Hospital, University of Leeds, Leeds LS9 7TF, UK; b Department of Gastroenterology, University Hospital Leuven, Herestraat 49, 3000 Leuven, Belgium

* Corresponding author.

\textit{E-mail address: v.subramanian@leeds.ac.uk}

Gastrointest Endoscopy Clin N Am 24 (2014) 393–403

http://dx.doi.org/10.1016/j.giec.2014.03.010

1052-5157/14 © 2014 Elsevier Inc. Open access under CC BY-NC-ND license.
Surveillance colonoscopies for early detection have been widely adopted to formally evaluate the benefits, risks, and costs of this approach.4–7 Despite surveillance, interval cancer rates are high in these patients. A 2006 Cochrane review found no clear evidence that surveillance colonoscopy prolongs survival in patients with extensive colitis.9 In the same year, a 30-year analysis of surveillance practice from St Mark’s hospital reported that more than 50% of detected cancers were found to be interval cancers.4 These data reflect an era when dysplasia was perceived to be invisible and only detected on random biopsies.9

In the past decade, endoscopic technology and technique has matured, with parallel evidence showing that the vast majority of dysplasia is visible and can be targeted. The long-term effects of surveillance using these new techniques, such as cancer-free survival, are still unknown. In this review, the authors summarize the existing literature on image-enhanced endoscopic techniques for surveillance of long-standing colonic IBD for the detection of dysplasia. They focus on dye-based chromoendoscopic techniques and present electronic-based image-enhanced endoscopic techniques such as narrow band imaging and autofluorescence endoscopy. Confocal laser endomicroscopy, a lesion characterization technology, is described in detail by Kiesslich and Matsumoto in another article in this issue.

SURVEILLANCE TECHNIQUES

Futility of White Light with Random Biopsy

Random mucosal sampling throughout the colon has historically been the mainstay of IBD surveillance colonoscopy. The technique is tedious, expensive, and time consuming, as it requires multiple biopsies to be taken segmentally throughout the colon and processed in separate jars. It has been estimated that at least 33 biopsies are needed to achieve 90% confidence to detect dysplasia if it is present.10 The technique is not only inefficient but also inefficacious. The yield from random biopsy in studies on surveillance colonoscopy using high-definition (HD) endoscopes or other image-enhancement techniques is poor. Table 1 summarizes the dysplasia yield from random biopsies for studies using image-enhanced endoscopic technologies.

The need to adopt image-enhanced techniques with targeted lesion detection is underscored by the low yield and unknown clinical significance from dysplasia found on random biopsies. Van den Broek and colleagues20 published a retrospective analysis of the yield of dysplasia and clinical significance of dysplasia detected in random biopsies. Of 466 colonoscopies involving 167 patients done in a 10-year period from 1998 to 2008, dysplasia was detected by random biopsy only in 5 colonoscopies involving 4 patients. Only in one of these patients did protocolectomy confirm the presence of advanced neoplasia.

Superiority of Chromoendoscopy with Targeted Biopsy

The British Society of Gastroenterology21 and the European Crohn’s and Colitis organization22 have specified chromoendoscopy (CE) as the preferred modality for surveillance in patients with colonic IBD. CE refers to the topical application of dyes (indigo carmine23 or methylene blue24) to improve detection and delineation of surface abnormalities by pooling into mucosal crevices. Its application enhances the detection of subtle mucosal abnormalities to improve the yield of surveillance,16 compared with white light inspection alone. Both indigo carmine and methylene blue have been widely used and shown to be effective. CE was first shown to be useful in the detection of flat adenomas in the sporadic setting and in patients with familial polyposis.
Table 1
Yield of dysplasia from random biopsies in prospective endoscopic studies involving surveillance colonoscopy with image-enhanced endoscopy for colonic IBD in the last 10 years

<table>
<thead>
<tr>
<th>Study Author, Year</th>
<th>Country</th>
<th>Image-Enhanced Modality Used</th>
<th>Number of Patients</th>
<th>Number of Random Biopsies with Dysplasia</th>
<th>Total Number of Random Biopsies</th>
<th>Mean Number of Random Biopsies per Episode of Dysplasia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kiesslich et al, 11 2003</td>
<td>Germany</td>
<td>Methylene blue chromoendoscopy</td>
<td>165</td>
<td>2 (in white light arm only)</td>
<td>5098</td>
<td>2549</td>
</tr>
<tr>
<td>Matsumoto et al, 12 2003</td>
<td>Japan</td>
<td>Indigo carmine chromoendoscopy</td>
<td>57</td>
<td>3</td>
<td>702</td>
<td>234</td>
</tr>
<tr>
<td>Rutter et al, 13 2004</td>
<td>United Kingdom</td>
<td>Indigo carmine chromoendoscopy</td>
<td>100</td>
<td>0</td>
<td>2904</td>
<td></td>
</tr>
<tr>
<td>Kiesslich et al, 14 2007</td>
<td>Germany</td>
<td>Methylene blue chromoendoscopy</td>
<td>153</td>
<td>2 (in white light arm only)</td>
<td>2854</td>
<td>1427</td>
</tr>
<tr>
<td>Dekker et al, 15 2007</td>
<td>Netherlands</td>
<td>Narrow Band Imaging (first generation)</td>
<td>42</td>
<td>1</td>
<td>1522</td>
<td>1522</td>
</tr>
<tr>
<td>Van den Broek et al, 16 2008</td>
<td>Netherlands</td>
<td>Autofluorescence endoscopy</td>
<td>50</td>
<td>2</td>
<td>1992</td>
<td>996</td>
</tr>
<tr>
<td>Marion et al, 17 2008</td>
<td>USA</td>
<td>Methylene blue chromoendoscopy</td>
<td>102</td>
<td>3</td>
<td>3264</td>
<td>1088</td>
</tr>
<tr>
<td>Van den Broek et al, 18 2011</td>
<td>Netherlands</td>
<td>Narrow Band Imaging (second generation)</td>
<td>48</td>
<td>3</td>
<td>1580</td>
<td>527</td>
</tr>
<tr>
<td>Ignjatovic et al, 19 2012</td>
<td>United Kingdom</td>
<td>Narrow Band Imaging (second generation)</td>
<td>112</td>
<td>1</td>
<td>2707</td>
<td>2707</td>
</tr>
</tbody>
</table>
syndromes; during the past decade, studies have also shown CE to augment the visualization of dysplasia in UC.

Table 2 lists the published studies comparing pancolonic CE with WLE for detection of dysplasia in colonic IBD. A meta-analysis of the available data in 2011 and an updated one in 2013 that included 6 studies with 665 patients confirmed the superiority of CE with targeted biopsy to standard WLE with random biopsy. A 6% increase in the yield of dysplasia was noted in the most recent analysis, leading to a number needed to treat of 16 to detect an additional patient with dysplasia if using CE with targeted biopsy. Compared with white light, the use of CE added almost 11 minutes to the total procedure time, which also included the time spent on random biopsies.

Improvements in detection and visualization of dysplasia in patients with IBD have led to an increase in their local endoscopic resection, without the need for colectomy, all emphasizing the importance of careful and complete surveillance colonoscopies in these high-risk patients. Although CE is increasingly recommended for this purpose, it has yet to be widely adopted as standard of care in clinical practice. Some of the reasons for this may be because CE is perceived as time consuming and often messy. These and perhaps additional factors like differences in application technique (spray catheter vs foot pump), dye contact time, operator experience, and interpretation of staining are the important training ingredients to broadly implement CE into routine clinical practice. Picco and colleagues have shown excellent interobserver agreement among nonexpert endoscopists in the detection and interpretation of lesions detected by CE and the suggested steps toward training a unit to implement CE.

High-Definition Electronic Image-Enhanced Endoscopy (Virtual Chromoendoscopy)

CE with indigo carmine or methylene blue has been well demonstrated and is now incorporated into surveillance guidelines. However, the perceived increased effort, skill, time, and cost of CE have motivated studies on electronic-based image-enhanced endoscopy or dyeless virtual CE. Three different systems are commercially available: Narrow Band imaging (NBI, Olympus, Tokyo, Japan), Fujinon Intelligent Color Enhancement (FICE, Fujifilm, Tokyo, Japan), and i-scan (Pentax, Tokyo, Japan). The basic principle of all these enhancement techniques is to filter the classical white light images to enhance superficial structural and vascular changes in the mucosa. In case of NBI, an optical filter is placed in front of the excitation white light source to narrow the wavelength to 30-nm bandwidths in the blue (415 nm) and green (540 nm) regions of the spectrum. Superficial mucosal structures (pit patterns) and microvasculature are enhanced using a narrow band light because it has more shallow tissue penetration and is mostly absorbed by hemoglobin in the vessels.

In contrast to NBI, the FICE and i-scan techniques do not use a physical filter but a postprocessing spectrum analysis software to enhance the image features and characteristics. The video processor disintegrates the different red green blue components of the white light image. Each component is then independently converted along its tone curve, followed by resynthesis of the 3 components to reconstruct a new digital image. In theory, the number of possible combinations is endless, but each system comes with readily available filters. For example, the FICE system has 10 available filters, which can be activated by a push of the button and can be changed on the numeric key path of the processor’s keyboard. Pentax has 3 major i-scan presets with standardized surface, tone, and contrast enhancement that come as a factory setting.

Because all these techniques are standardly available and can be simply activated by pushing a button, they have the appeal to overcome the technical drawbacks of
<table>
<thead>
<tr>
<th>Author, Year</th>
<th>Country</th>
<th>No. of Endoscopists</th>
<th>Dye</th>
<th>Study Design</th>
<th>Inclusion Criteria</th>
<th>No. of Patients</th>
<th>No. with Dysplasia</th>
<th>Was CE Better<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Kiesslich et al, 2003</td>
<td>Germany</td>
<td>Multiple</td>
<td>MB</td>
<td>Randomized 1:1</td>
<td>Long-standing UC >8 y</td>
<td>165</td>
<td>18</td>
<td>Y</td>
</tr>
<tr>
<td>Matsumoto et al, 2003</td>
<td>Japan</td>
<td>Single</td>
<td>IC</td>
<td>Prospective cohort, WLE followed by CE</td>
<td>Pancolitis >5 y</td>
<td>57</td>
<td>12</td>
<td>Y</td>
</tr>
<tr>
<td>Rutter et al, 2004</td>
<td>UK</td>
<td>Single</td>
<td>IC</td>
<td>Prospective cohort, WLE followed by CE</td>
<td>Long-standing extensive UC</td>
<td>100</td>
<td>7</td>
<td>Y</td>
</tr>
<tr>
<td>Kiesslich et al, 2007</td>
<td>Germany</td>
<td>Multiple</td>
<td>MB</td>
<td>Randomized 1:1</td>
<td>Long-standing UC >8 y</td>
<td>153</td>
<td>15</td>
<td>Y</td>
</tr>
<tr>
<td>Marion et al, 2008</td>
<td>USA</td>
<td>Multiple</td>
<td>MB</td>
<td>Prospective cohort, WLE followed by CE</td>
<td>Extensive UC or Crohn's colitis involving >1/3 of colon</td>
<td>102</td>
<td>22</td>
<td>Y</td>
</tr>
<tr>
<td>Günther et al, 2011</td>
<td>Germany</td>
<td>Multiple</td>
<td>IC</td>
<td>Subdivided retrospectively into 50 patients in each group</td>
<td>Extensive UC >8 y or colonic Crohn's colitis >10 y</td>
<td>100</td>
<td>2</td>
<td>N</td>
</tr>
<tr>
<td>Hlavaty et al, 2011</td>
<td>Slovakia</td>
<td>Multiple</td>
<td>IC</td>
<td>Retrospective analysis based on consent for WLE alone or WLE followed by CE</td>
<td>Pancolitis >8 y or left sided colitis >15 y</td>
<td>45</td>
<td>6</td>
<td>Y</td>
</tr>
<tr>
<td>Picco et al, 2013</td>
<td>USA</td>
<td>Multiple</td>
<td>IC</td>
<td>Prospective cohort WLE followed by CE</td>
<td>Long standing extensive UC >8 y</td>
<td>75</td>
<td>16</td>
<td>Y</td>
</tr>
</tbody>
</table>

^a Detection by CE was significantly (*P*<.05) better than by WLE.

Abbreviations: IC, indigo carmine; MB, methylene blue; N, no; Y, yes.
dye-based CE. In non-IBD settings, the diagnostic accuracy of NBI, FICE, and i-scan in discriminating neoplastic from nonneoplastic lesions is comparable to dye-based CE, and at least this aspect of the technique seems to have a short learning curve.

To date, the only electronic image-enhanced endoscopic technique to be assessed for diagnostic accuracy in IBD, however, has been using NBI. Five randomized trials using NBI compared with CE (n = 2) or white light imaging (n = 3) did not show superiority in the detection of neoplastic lesions in long-standing colitis. Dekker and colleagues showed no diagnostic advantage in a tandem colonoscopic study that compared the first-generation NBI system to standard-resolution WLE for the detection of colitis-associated neoplasia. NBI detected 52 visible lesions in 17 patients (8 neoplastic), compared with 28 visible lesions in 13 patients (7 neoplastic) during WLE inspection. Two more trials comparing HD-NBI to WLE also found no significant difference in the detection of neoplastic lesions when using NBI. Van den Broek and colleagues performed a tandem colonoscopy study and found 13 of 16 (81%) neoplastic lesions using HD-NBI compared with 11 of 16 (69%) neoplastic lesions using HD-WLE. Random biopsy protocol yielded no significant additional neoplasia; in a total of 1590 random biopsies, 3 demonstrated low-grade dysplasia of which 2 were found in the proximity of dysplasia associated lesion or mass lesions. Ignjatovic and colleagues assessed the diagnostic yield of HD-NBI compared with WLE in a randomized controlled trial without back-to-back design and could not find a significant difference in neoplasia detection between the 2 techniques (5 neoplastic lesions in 5 patients for HD-NBI vs 7 neoplastic lesions in 5 patients for HD-WLE). Only 1 in 2707 random biopsies yielded an additional diagnosis of low-grade dysplasia in a patient who already had a lesion detected by NBI-targeted biopsies. These studies add further to the evidence random biopsies are low yield and should be abandoned.

Two trials have compared HD-NBI to CE. In a back-to-back study, 33 patients underwent HD colonoscopy with NBI followed by CE (0.5% indigo carmine) and 27 patients were randomized to the opposite sequence to assess miss rates of the 2 techniques. The study showed a nonsignificant trend toward a higher miss rate using NBI. In the NBI first group, NBI detected 7 neoplastic lesions in 4 patients during the first pass and CE detected 5 additional lesions in 4 patients during the second pass. In the HD-CE first group, CE detected 5 neoplastic lesions in 4 patients during the first pass and NBI detected 3 neoplastic lesions in 1 patient during the second pass. The withdrawal time for CE was significantly longer (26.87 ± 9.89 minutes for CE vs 15.74 ± 5.62 minutes for NBI, P < .01). Preliminary abstract data of a randomized trial comparing HD-NBI with CE (0.1% methylene blue) showed no significant difference in neoplasia detection rates between either modalities (18.5% for HD-NBI and 16.7% for HD-CE, P = .658).

At present, CE remains the gold standard for colitis surveillance. Further studies assessing NBI or other electronic image-enhanced endoscopic methods compared with CE are necessary before any change in recommendations or clinical practice.

Autofluorescence Imaging

Autofluorescence imaging (AFI) is a novel imaging technique. AFI is available on the monochrome chip (Lucera, Olympus, Tokyo, Japan), which has 2 charge-coupled devices for WLE and AFI and can be activated by a push of the button. An ultraviolet filter is placed in front of the light source. All tissues exhibit auto fluorescence when excited by ultraviolet (>400 nm) or short visible light (400–550 nm). Autofluorescence is generated by fluorophores, certain biomolecules (collagen, elastin), emitting a longer
wavelength than the excitation light. AFI is influenced by several factors, including tissue architecture (mucosal thickening), light absorption and scattering properties (mainly determined by the absorptive capacity of hemoglobin in neoplastic neovascularization), the biochemical content (concentration of fluorophores), and metabolic status of the tissue. Using AFI, neoplastic tissue is visible as a purple lesion on a greenish background fluorescence of normal colonic tissue. AFI has therefore the potential to serve as a red flag technique highlighting even very early minute neoplastic changes in the colonic mucosa. In contrast to NBI, the available data on AFI for colitis surveillance is sparse. In a single prospective randomized crossover trial comparing the neoplasia detection of WLE with that of AFI targeted biopsies, Van den Broek and colleagues found a significant higher yield for AFI. In the AFI first group, 10 lesions in 25 patients were detected and subsequent WLE did not detect any additional lesions. However, in the WLE first group, 3 neoplastic lesions were detected in 25 patients, but AFI additionally detected 3 lesions. This resulted in a significantly different miss rate (50% vs 0, \(P = .036 \)) between the 2 techniques. Further larger trials are needed to confirm the potential of this red flag technique and to compare its yield with that of CE-guided biopsies.

SUMMARY

Patients with long-standing extensive colitis are at increased risk for developing neoplasia and the literature suggests that surveillance endoscopy reduces mortality from CRC in these patients. CE with indigo carmine or methylene blue has replaced random biopsies as a standard for surveillance in these patients; this is supported by several clinical trials and incorporated in recent guidelines. Future studies on digitally enhanced imaging, such as NBI, will continue to be of interest, but one has to be cautious that current data do not show their superiority compared with CE.

Future unmet needs in colitis surveillance include proper training and implementation for all endoscopists. Although the evidence is abundant and supports the use of CE, it is far from being widely implemented outside of tertiary referral centers. The minimal criteria need to be standardized to determine properly trained endoscopists. An endoscopist may need to start with CE coupled with 4-quadrant biopsies and then cautiously proceed with CE-guided biopsies once competence metrics are met. The implementation of these techniques needs to be monitored in prospective quality registries to ensure patient safety and the performance by secondary care gastroenterologists.

REFERENCES

