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a b s t r a c t

LetM be a connectedmatroid having a ground set E. Lemos andOx-
ley proved that |E(M)| ≤ 1

2 c(M)c
∗(M)where c(M) (resp. c∗(M)) is

the circumference (resp. cocircumference) of M. In addition, they
conjectured that one can find a collection of at most c∗(M) circuits
which cover the elements ofM at least twice. In this paper, we ver-
ify this conjecture for regular matroids. Moreover, we show that a
version of this conjecture is true for fractional circuit covers.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

For all notation, terminology and concepts used for matroids, we refer the reader to [7]. For a
matroidM we define the circumference (resp. cocircumference) to be the size of the largest circuit
(resp. cocircuit) and denote it by c(M) (resp. c∗(M)). In [2], Lemos and Oxley established the following
bound for the size of a connected matroid:

Theorem 1.1 (Lemos, Oxley). Let M be a connected matroid. Then |E(M)| ≤ 1
2 c(M)c

∗(M).

Later, Oxley [6] conjectured that a stronger result holds:

Conjecture 1.2 (Oxley). For any connectedmatroidM with at least two elements, one can find a collection
of at most c∗(M) circuits which cover each element of M at least twice.

Up until now, this conjecture has been verified for graphic and cographic matroids (see [3,5]). In the
next section, we shall show that Conjecture 1.2 is true for regular matroids. In the last section, we
shall show that this conjecture is true for fractional circuit covers.
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2. Circuit covers of regular matroids

Our goal in this section is to show that Conjecture 1.2 holds for regular matroids. To start with, we
shall use a well-known result of Tutte [8].

Lemma 2.1 (Tutte). Let M be a connected matroid and let e ∈ E(M). Then either M\{e} or M/{e} is
connected.

In [3], the following result was proven.

Theorem 2.2. Let M be a k-connected regular matroid where c(M) ≥ 2k. If C1 and C2 are disjoint circuits
satisfying r(C1)+ r(C2) = r(C1 ∪ C2), then |C1| + |C2| ≤ 2(c(M)− k+ 1).

Remark. In the case where M is 3-connected, the proof of Theorem 2.2 given for binary matroids in
[3] (Theorem 5.2) shows that even ifM is vertically 3-connected, the theorem is still true (for k = 3).

In [4], it was shown:

Theorem 2.3. Let M be a connected binary matroid having no F∗7 -minor. Let A∗ be a collection of
cocircuits of M. Then there is a circuit intersecting all cocircuits of A∗ if either one of two things hold:

(i) For any two disjoint cocircuits A∗1 and A
∗

2 inA∗ it holds that r∗(A∗1)+ r
∗(A∗2) > r

∗(A∗1 ∪ A
∗

2).
(ii) For any two disjoint cocircuits A∗1 and A

∗

2 inA∗ it holds that r(A∗1)+ r(A
∗

2) > r(M).

For a matroidM , let S∗(M) be the set of cocircuits of size at least c∗(M)− 1. A collection of circuits
K of M is said to be a covering set if |K| ≤ c∗(M), and every element of M belongs to at least two
circuits ofK . We shall say thatM is coverable if it has a covering set.

Theorem 2.4. Any connected regular matroid is coverable.

Proof. LetM be a connected regularmatroid.We shall show thatM is coverable by induction on r(M).
If r(M) ≤ 3, then M is either graphic or cographic and there is a circuit intersecting every cocircuit
of M . Using the arguments in Case 1, one can show that M is coverable. We therefore assume that
r(M) ≥ 4, and the theorem holds for all connected regular matroids M ′ where r(M ′) < r(M), or
r(M ′) = r(M) and |E(M ′)| < |E(M)|.
Suppose that M contains a 2-cocircuit {e, f }. Let M ′ = M/f . Then M ′ is connected, r(M ′) =

r(M)− 1, and c∗(M ′) ≤ c∗(M). By assumption,M ′ has a covering setK ′. Let

K = {C | C ∈ K ′, e 6∈ C} ∪ {C ∪ {f }| C ∈ K ′, e ∈ C}.

ThenK is seen to be a covering set forM . We shall henceforth assume thatM contains no 2-cocircuits.

Case 1. SupposeM is vertically 3-connected.

Proof. Wehave thatM∗ is vertically 3-connected, and following the remark after Theorem2.2, it holds
that for any two disjoint cocircuits C∗1 , C

∗

2 ∈ S∗(M), r∗(C∗1 )+r
∗(C∗2 ) ≥ r

∗(C∗1 ∪C
∗

2 )+1. It follows from
Theorem 2.3 that there is a circuit C which intersects each cocircuit of S∗. According to Lemma 2.1,
we can successively delete or contract each element of C to yield a connected matroid M ′. Since C
intersects each cocircuit of S∗, it follows that c∗(M ′) ≤ c∗(M) − 2. Furthermore, r(M ′) ≤ r(M), and
|E(M ′)| < |E(M)|. By assumption,M ′ has a covering setK ′ where |K ′| ≤ c∗(M ′) ≤ c∗(M)−2. LetK
be a corresponding collection of circuits ofM . ThenK ∪ {C, C} is seen to be a covering set ofM . �

Case 2. SupposeM is not vertically 3-connected.
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Proof. We can expressM as a non-trivial 2-sum. We shall consider two subcases:
Case 2.1:M = M1⊕2M2, where r(Mi) ≥ 3, i = 1, 2 and E(M1) ∩ E(M2) = {e}.
For i = 1, 2 let βi = |B∗i \{e}|where B

∗

i is a largest cocircuit inMi containing e. Let β = min{β1, β2}.
We may assume that β1 = β . Then for all C∗ ∈ C∗(Mi), e 6∈ C∗, it holds that |C∗| ≤ 2βi. To see this,
let C∗ ∈ C∗(Mi), where e 6∈ C∗. Since Mi is connected, there is a cocircuit containing e which also
intersects C∗. Among such cocircuits, choose a cocircuit B∗ such that |B∗\C∗| is minimum. Then it is
seen that B′∗ = B∗4C∗ is also a cocircuit ofMi where e ∈ B′∗. Now

2(βi + 1) ≥ |B∗| + |B′∗| = |C∗| + 2|B∗\C∗| ≥ |C∗| + 2.

Thus |C∗| ≤ 2βi.
It is also seen that β1 + β2 ≤ c∗(M), and consequently 2β ≤ c∗(M). LetM ′i = Mi⊕2 Ni, i = 1, 2

where Ni is the matroid defined by taking a 3-circuit {e, f , g} and replacing f by β parallel elements,
and doing the same for g . Then r(M ′i ) < r(M), i = 1, 2. It is seen that c∗(M ′1) = 2β ≤ c

∗(M)
and c∗(M ′2) ≤ c∗(M). Thus by assumption, M ′i has a covering set K1 with q1 ≤ c(M∗1 ) = 2β
circuits. Since E(N1)\{e} is a cocircuit with 2β elements, and each circuit intersecting E(N1)\{e} does
so in exactly 2 elements, it holds that q1 = 2β . We also have that M ′2 has a covering set K2 with
q2 ≤ c∗(M ′2) ≤ c

∗(M) circuits. We have q1 = 2β ≤ β1 + β2 ≤ q2. Following very similar arguments
to those used in [3, Theorem 1.3] for graphs, one can ‘splice together’ covering sets K1 and K2 to obtain
a covering set forM .
Case 2.2: For every non-trivial 2-sumM = M1⊕2M2, either r(M1) = 2, or r(M2) = 2.
If M is a non-trivial 2-sum where r(M1) = 2 and E(M1) ∩ E(M2) = {e}, then it is seen that

B∗ = E(M1)\{e} is a cocircuit of M where r(B∗) = 2. Let C∗2 be the set of all such cocircuits of M .
If for some B∗, B′∗ ∈ C∗2 it holds that B

∗
∩ B′∗ 6= ∅, then we can express M as a non-trivial 2-sum

M = M ′1⊕2M
′

2 where E(M
′

1) ∩ E(M
′

2) = {e
′
} and E(M ′1) = B

∗
∪ B′∗ ∪ {e′}. It would then hold that

r(M ′1) = 3, and hence r(M
′

2) = 2. In this case, M is graphic and thus has a covering set. We may
therefore assume that C∗2 is a disjoint collection of cocircuits.
We shall create a matroid M ′ from M in the following way: let B∗ ∈ C∗2 and let f , g ∈ B

∗ be non-
parallel elements. Then B∗ = cl(f ) ∪ cl(g). If |cl(f )| ≥ |cl(g)|, then contract the elements of cl(g);
otherwise, contract the elements of cl(f ). After performing this operation on each B∗ ∈ C∗2 we obtain
a vertically 3-connected matroidM ′. By Theorem 2.2 (and the remark after it) and Theorem 2.3, there
is a circuit CM ′ of M ′ which intersects every cocircuit of S∗(M ′). Let CM be a corresponding circuit in
M . If CM intersects every cocircuit of S∗(M), then we can argue as in Case 1. We assume therefore that
CM does not. Since CM ′ intersects every cocircuit of S∗(M ′), it is seen that CM intersects every cocircuit
of S∗(M)\C∗2 (M), and thus for some B

∗

1 ∈ C∗2 (M) it holds that CM ∩ B
∗

1 = ∅ and |B
∗

1| ≥ c
∗
− 1.

Let e1, e2 ∈ B∗1 be non-parallel elements and let Ei = cl(ei), i = 1, 2. Among the circuits of M
containing e1 and e2, let D be a circuit having maximum length. If D intersects all cocircuits of S∗(M),
then we can proceed as in Case 1. We may therefore assume that for some B∗2 ∈ S∗(M) it holds that
D∩B∗2 = ∅. SinceM is connected there is a cocircuit containing e1 and elements of B

∗

2 . Among all such
cocircuits choose C∗1 so that |C

∗

1 \B
∗

2| is minimum. Then by minimality, C
∗

2 = C
∗

14(B
∗

1 ∪ B
∗

2) is seen to
be a cocircuit. Thus

2c∗ ≥ |C∗1 | + |C
∗

2 | = |B
∗

1| + |B
∗

2| + 2|C
∗

1 \(B
∗

1 ∪ B
∗

2)|

≥ 2(c∗ − 1)+ 2|C∗1 \(B
∗

1 ∪ B
∗

2)|. (1)

We have that D ∩ C∗1 6= ∅ and hence |D ∩ C
∗

1 | ≥ 2. Thus (D\{e1, e2}) ∩ C∗1 6= ∅ and hence
C∗1 \(B

∗

1 ∪ B
∗

2) 6= ∅. It follows from (1) that

|(D\{e1, e2}) ∩ C∗1 | = |C
∗

1 \(B
∗

1 ∪ B
∗

2)| = |C
∗

2 \(B
∗

1 ∪ B
∗

2)| = 1,

and equality holds throughout in (1). Consequently,

|B∗1| = |B
∗

2| = c
∗
− 1, |C∗1 | = |C

∗

2 | = c
∗, and |E1| = |E2| =

c∗ − 1
2

.

Let

{d1} = (D\{e1, e2}) ∩ C∗1 = C
∗

1 \(B
∗

1 ∪ B
∗

2) = C
∗

2 \(B
∗

1 ∪ B
∗

2).
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It is seen that any circuit of E(M)\B∗2 containing d1 must also intersect B
∗

1 , and as such E(M)\(B
∗

1 ∪ B
∗

2)
has no circuit containing d1. Since M contains no 2-cocircuits, it holds that c∗ − 1 ≥ 3, and thus
|Ei| ≥ 2, i = 1, 2. Let

Fi = C∗i ∩ B
∗

2, fi ∈ Fi, i = 1, 2.

By the choice of C∗1 , it follows that C
∗

14B
∗

2 = E1 ∪ F2 ∪ {d1} is a cocircuit, as is C
∗

14B
∗

1 = E2 ∪ F1 ∪ {d1}.
In particular, this implies that |F1| = |F2| = c∗−1

2 . In the remainder of the proof, we aim to show that,
assuming D does not intersect all cocircuits of S∗(M), then either M has an F7-minor, or there is a
2-cocircuit. In either case, we reach a contradiction.
Let

T1 ∈ B(M\B∗2), D\{d1} ⊂ T1.

Since B∗2 is a cocircuit, T1 ∪ {f1, f2} has a unique circuit which contains f1 and f2. Let

C ∈ C(M), where C ⊂ T1 ∪ {f1, f2}, f1, f2 ∈ C .

Then |C∗i ∩ C | ≥ 2, i = 1, 2, and consequently, e1, e2 ∈ C . Suppose d1 is a chord of C; that is, for two
circuits C ′, C ′′ it holds C ∪ {d1} = C ′ ∪ C ′′, and C ′ ∩ C ′′ = {d1}. Assuming f1 ∈ C ′′, it holds that f2 ∈ C ′′
since |B∗2 ∩ C

′′
| ≥ 2. We also have that e1, e2 ∈ C ′, since d1 ∈ C ′ and C ′ ⊆ E(M)\B∗2 . This implies that

C ′ ⊆ T1 ∪ {d1}, and given that D is the unique circuit of T1 ∪ {d1}, it must hold that C ′ = D. However,

|C | = |C ′| + |C ′′| − 2 ≥ |D| + 1,

contradicting the maximality of D. We conclude that d1 is not a chord of C , and D\(C ∪ {d1}) 6= ∅.
Let

d2 ∈ D\(C ∪ {d1}), T2 = (T1\{d2}) ∪ {d1}.

Then d2 ∈ T1. Moreover, T2 ∈ B(M\B∗2) where D\d2 ⊆ T2. Let H1,H2,H
′

1,H
′

2 be hyperplanes defined
such that

H1 = cl((T1\{e1}) ∪ {f2}) H2 = cl((T1\{e2}) ∪ {f1})
H ′1 = cl((T2\{e1}) ∪ {f2}) H ′2 = cl((T2\{e2}) ∪ {f1}).

It is seen that

C∗i = E(M)\Hi, i = 1, 2.

Let

C ′∗i = E(M)\H
′

i , i = 1, 2.

Then C ′∗i , i = 1, 2 are cocircuits where fi, d2 ∈ C
′∗

i . Given that |F1| = |F2| =
c∗−1
2 ≥ 2, there are

elements

f ′i ∈ Fi\{fi}, i = 1, 2.

For f , g ∈ {f1, f ′1, f2, f
′

2}, f 6= g , there is a unique circuit in (T1 ∪ {d1}\{e1, e2}) ∪ {f , g} = (T2 ∪
{d2}\{e1, e2})∪ {f , g}which contains f and g . We shall denote such a circuit by C(f , g). We first note
that since C4D ⊂ (T1 ∪ {d1}\{e1, e2}) ∪ {f1, f2}, it holds that

C(f1, f2) = C4D, and d1, d2 ∈ C(f1, f2).

We also observe that for any f ∈ F1, and g ∈ F2, it holds that f ∈ C(f , g) ∩ C∗1 , and thus |C(f , g)
∩ C∗1 | ≥ 2. It follows that {f , d1} = C(f , g) ∩ C

∗

1 . Hence

d1 ∈ C(f , g), ∀f ∈ F1, ∀g ∈ F2.

Suppose f ′1 ∈ H
′

1. Since H
′

1 = cl((T2\{e1})∪ {f2}), there is a circuit K in T2\{e1} ∪ {f
′

1, f2} containing
f ′1 , and such a circuit must also contain f2. It follows that K = C(f

′

1, f2), and C(f
′

1, f2) ⊂ H
′

1. Thus d1 ∈
C(f ′1, f2) and d2 6∈ C(f

′

1, f2) since d2 6∈ H
′

1. Since d1, d2 ∈ C(f1, f2), and C(f1, f
′

1) = C(f1, f2)4C(f
′

1, f2), it
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holds that d2 ∈ C(f1, f ′1) (since d2 6∈ C(f
′

1, f2)) and d1 6∈ C(f1, f
′

1) (since d1 ∈ C(f
′

1, f2)). Summarizing,
we have

f ′1 ∈ H
′

1 ⇒ d1 6∈ C(f1, f
′

1), d2 ∈ C(f1, f ′1). (2)

Similarly,

f ′2 ∈ H
′

2 ⇒ d1 6∈ C(f2, f
′

2), d2 ∈ C(f2, f ′2). (3)

Suppose f ′i ∈ H
′

i , i = 1, 2. From (2) and (3) we have

d2 ∈ C(fi, f ′i ), and d1, e1, e2 6∈ C(fi, f ′i ), i = 1, 2.

We have

C(fi, f ′i ) = C(f1, f2)4C(f
′

i , f3−i), i = 1, 2.

Given that d1, d2 ∈ C(f1, f2) and d1 6∈ C(fi, f ′i ), d2 ∈ C(fi, f
′

i ), i = 1, 2, it follows that

d1 ∈ C(f ′i , f3−i) d2 6∈ C(f
′

i , f3−i), i = 1, 2.

Also, since

C(f ′1, f
′

2) = C(f
′

1, f2)4C(f2, f
′

2),

it holds that d1, d2 ∈ C(f ′1, f
′

2). Let N = M|T1 ∪ {d1, f1, f2, f
′

1, f
′

2}. Then

C(f1, f2)4D, C(f ′1, f
′

2)4D, C(f ′1, f2), C(f1, f ′2), C(f1, f ′1), C(f2, f ′2), D

correspond to the 3-circuits of an F7-minor ofN . This contradicts the regularity ofM . This shows that if
f ∈ H ′1 for some f ∈ F1\{f1}, then F2 ⊆ C

′∗

2 . Similarly, if f ∈ H
′

2 for some f ∈ F2\{f2}, then F1 ⊆ C
′∗

1 . Thus
either F1 ⊆ C ′∗1 , or F2 ⊆ C

′∗

2 . Assumewithout loss of generality that F1 ⊆ C
′∗

1 . Then {d2}∪F1∪E1 ⊆ C
′∗

1 .
Since |{d2} ∪ F1 ∪ E1| = c∗, it holds that C ′∗1 = {d2} ∪ F1 ∪ E1. Thus C

∗

14C
′∗

1 = {d1, d2}, implying that
{d1, d2} is a 2-cocircuit. This contradicts our assumptions aboutM . ThusDmust intersect all cocircuits
of S∗(M). �

The proof of the theorem now follows Cases 1 and 2. �

3. Fractional circuit covers

In this section, we shall prove that Conjecture 1.2 is true for fractional circuit covers. As a matter
of notation, we shall view functions φ : E → R+ interchangeably as vectors φ ∈ R|E|+ . For any subset
X ⊆ E, we let φ(X) =

∑
e∈X φ(e).

Lemma 3.1. Let M be a connected matroid having a ground set E where |E| ≥ 2. Let l,w : E → R+
where either

l(e) ≤
1
2
max{l(C) : C ∈ C(M)} ∀e, or w(e) ≤

1
2
max{w(C∗) : C∗ ∈ C∗(M)} ∀e.

Then

l ·w ≤
1
2
max{l(C) : C ∈ C(M)} ×max{w(C∗) : C∗ ∈ C∗(M)}.

Proof. Theproof is divided into twoparts: in the first part,we shall assume that l(e) > 0,w(e) > 0∀e.
Using rational approximation, the theorem is seen to hold if it holds for l,w : E → Q+. If l,w : E →
Q+, then one can scale l and w by multiplying each by appropriate factors to obtain integer-valued
functions. Thus it suffices to prove the theorem for integral l,w, and we shall assume that l,w ∈ Z|E|+ .
Taking the dual, when necessary, we may assume that l(e) ≤ 1

2 max{l(C) : C ∈ C(M)} ∀e. We form a
newmatroidM ′ fromM in the following way: for each e ∈ E replace e byw(e) elements e1, . . . , ew(e)
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in parallel. Then replace each ei with l(e) elements ei1, . . . eil(e) in series. Then |E(M ′)| = l ·w. LetM ′e =
M ′|{eij : i = 1, . . . ,w(e), j = 1, . . . , l(e)}. Clearly any cocircuit C∗ ∈ C∗(M ′), C∗ 6⊆ E(M ′e) which
intersects E(M ′e) does so in exactly w(e) elements. Furthermore, any cocircuit of C∗(M ′) contained
in E(M ′e) has exactly two elements. From this it is seen that c

∗(M ′) = max{w(C∗) : C∗ ∈ C∗(M)}.
Similarly, any circuit C ∈ C(M ′), C 6⊆ E(M ′) which intersects M ′e does so in exactly l(e) elements.
Any circuit of C(M ′) contained in E(M ′e) contains at most 2l(e) ≤ max{l(C) : C ∈ C(M)} elements.
Thus c(M ′) = max{l(C) : C ∈ C(M)}. Given that l(e) > 0,w(e) > 0 ∀e,M ′ is connected, and hence
Theorem 1.1 implies that |E(M ′)| ≤ 1

2 c(M
′)c∗(M ′). This in turn implies that

l ·w ≤
1
2
max{l(C) : C ∈ C(M)} ×max{w(C∗) : C∗ ∈ C∗(M)}.

In the case that l(e) = 0 or w(e) = 0 for some elements e ∈ E(M), we let ε be a small positive
number and define new vectors l′,w′ : E → R+ where

l′(e) =
{
l(e), if l(e) 6= 0;
ε, if l(e) = 0.

w′(e) =
{
w(e), if w(e) 6= 0;
ε, if w(e) = 0.

By the first part, we have that

l′ ·w′ ≤
1
2
max{l′(C) : C ∈ C(M)} ×max{w′(C∗) : C∗ ∈ C∗(M)}

and taking limits

lim
ε→0

l′ ·w′ ≤ lim
ε→0

1
2
max{l′(C) : C ∈ C(M)} ×max{w′(C∗) : C∗ ∈ C∗(M)}.

From this it follows that

l ·w ≤
1
2
max{l(C) : C ∈ C(M)} ×max{w(C∗) : C∗ ∈ C∗(M)}. �

We note that the inequality in the above lemma is very similar to the so-called width–length
inequality introduced by Lehman [1] who used it to characterize ideal clutters. We shall now show
that a fractional version of Conjecture 1.2 holds.

Theorem 3.2. Let M be a connected matroid having ground set E where |E| ≥ 2. Then there exist
constants αC ∈ R+, C ∈ C(M) such that

∑
C αC iC ≥ 2iE, and

∑
C αC ≤ c

∗(M).

Proof. Let l,w : E → R+ wherew ≡ 1 and l(C) ≤ 1,∀C ∈ C(M). SinceM is connected, it holds that
c∗(M) ≥ 2, and hence

w(e) = 1 ≤
1
2
max{w(C∗) : C∗ ∈ C∗(M)} =

c∗(M)
2

∀ e.

Lemma 3.1 now implies that

l(E) = l ·w ≤
1
2
max{l(C) : C ∈ C} ×max{w(C∗) : C∗ ∈ C∗} ≤

c∗(M)
2

.

Thus

l(E) ≤
c∗(M)
2

, ∀l : E → R+ where l(C) ≤ 1, ∀C ∈ C(M). (4)

Let A = A(C(M)) be the circuit matrix ofM . Consider the LP

max x · 2, Ax ≤ 1, x ≥ 0. (5)



S. McGuinness / European Journal of Combinatorics 31 (2010) 1335–1341 1341

and the dual LP

min y · 1, ytA ≥ 2, y ≥ 0. (6)

By (4) it follows that any optimal solution x∗ to (5) satisfies x∗ · 2 ≤ c∗(M). Consequently any optimal
solution y∗ to (6) satisfies y∗ · 1 ≤ c∗(M). Indexing y∗ by the circuits ofM , letting y∗ = (y∗C )C∈C(M), we
achieve the desired constants by taking αC = y∗C , C ∈ C(M). �
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