Circuit and fractional circuit covers of matroids

Sean McGuinness
Department of Mathematics, Thompson Rivers University, McGill Road, Kamloops, BC V2C5N3, Canada

A R T I CLE I N F O

Article history:
Received 17 March 2009
Accepted 10 November 2009
Available online 16 December 2009

Abstract

Let M be a connected matroid having a ground set E. Lemos and Oxley proved that $|E(M)| \leq \frac{1}{2} c(M) c^{*}(M)$ where $c(M)$ (resp. $c^{*}(M)$) is the circumference (resp. cocircumference) of M. In addition, they conjectured that one can find a collection of at most $c^{*}(M)$ circuits which cover the elements of M at least twice. In this paper, we verify this conjecture for regular matroids. Moreover, we show that a version of this conjecture is true for fractional circuit covers.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

For all notation, terminology and concepts used for matroids, we refer the reader to [7]. For a matroid M we define the circumference (resp. cocircumference) to be the size of the largest circuit (resp. cocircuit) and denote it by $c(M)$ (resp. $c^{*}(M)$). In [2], Lemos and Oxley established the following bound for the size of a connected matroid:

Theorem 1.1 (Lemos, Oxley). Let M be a connected matroid. Then $|E(M)| \leq \frac{1}{2} c(M) c^{*}(M)$.
Later, Oxley [6] conjectured that a stronger result holds:

Conjecture 1.2 (Oxley). For any connected matroid M with at least two elements, one can find a collection of at most $c^{*}(M)$ circuits which cover each element of M at least twice.

Up until now, this conjecture has been verified for graphic and cographic matroids (see [3,5]). In the next section, we shall show that Conjecture 1.2 is true for regular matroids. In the last section, we shall show that this conjecture is true for fractional circuit covers.

[^0]
2. Circuit covers of regular matroids

Our goal in this section is to show that Conjecture 1.2 holds for regular matroids. To start with, we shall use a well-known result of Tutte [8].

Lemma 2.1 (Tutte). Let M be a connected matroid and let $e \in E(M)$. Then either $M \backslash\{e\}$ or $M /\{e\}$ is connected.

In [3], the following result was proven.

Theorem 2.2. Let M be a k-connected regular matroid where $c(M) \geq 2 k$. If C_{1} and C_{2} are disjoint circuits satisfying $r\left(C_{1}\right)+r\left(C_{2}\right)=r\left(C_{1} \cup C_{2}\right)$, then $\left|C_{1}\right|+\left|C_{2}\right| \leq 2(c(M)-k+1)$.

Remark. In the case where M is 3-connected, the proof of Theorem 2.2 given for binary matroids in [3] (Theorem 5.2) shows that even if M is vertically 3-connected, the theorem is still true (for $k=3$).

In [4], it was shown:
Theorem 2.3. Let M be a connected binary matroid having no F_{7}^{*}-minor. Let \mathcal{A}^{*} be a collection of cocircuits of M. Then there is a circuit intersecting all cocircuits of \mathcal{A}^{*} if either one of two things hold:
(i) For any two disjoint cocircuits A_{1}^{*} and A_{2}^{*} in \mathcal{A}^{*} it holds that $r^{*}\left(A_{1}^{*}\right)+r^{*}\left(A_{2}^{*}\right)>r^{*}\left(A_{1}^{*} \cup A_{2}^{*}\right)$.
(ii) For any two disjoint cocircuits A_{1}^{*} and A_{2}^{*} in \mathcal{A}^{*} it holds that $r\left(A_{1}^{*}\right)+r\left(A_{2}^{*}\right)>r(M)$.

For a matroid M, let $s^{*}(M)$ be the set of cocircuits of size at least $c^{*}(M)-1$. A collection of circuits \mathcal{K} of M is said to be a covering set if $|\mathcal{K}| \leq c^{*}(M)$, and every element of M belongs to at least two circuits of \mathcal{K}. We shall say that M is coverable if it has a covering set.

Theorem 2.4. Any connected regular matroid is coverable.
Proof. Let M be a connected regular matroid. We shall show that M is coverable by induction on $r(M)$. If $r(M) \leq 3$, then M is either graphic or cographic and there is a circuit intersecting every cocircuit of M. Using the arguments in Case 1 , one can show that M is coverable. We therefore assume that $r(M) \geq 4$, and the theorem holds for all connected regular matroids M^{\prime} where $r\left(M^{\prime}\right)<r(M)$, or $r\left(M^{\prime}\right)=r(M)$ and $\left|E\left(M^{\prime}\right)\right|<|E(M)|$.

Suppose that M contains a 2-cocircuit $\{e, f\}$. Let $M^{\prime}=M / f$. Then M^{\prime} is connected, $r\left(M^{\prime}\right)=$ $r(M)-1$, and $c^{*}\left(M^{\prime}\right) \leq c^{*}(M)$. By assumption, M^{\prime} has a covering set \mathcal{K}^{\prime}. Let

$$
\mathcal{K}=\left\{C \mid C \in \mathcal{K}^{\prime}, e \notin C\right\} \cup\left\{C \cup\{f\} \mid C \in \mathcal{K}^{\prime}, e \in C\right\} .
$$

Then \mathcal{K} is seen to be a covering set for M. We shall henceforth assume that M contains no 2-cocircuits.
Case 1. Suppose M is vertically 3-connected.
Proof. We have that M^{*} is vertically 3-connected, and following the remark after Theorem 2.2, it holds that for any two disjoint cocircuits $C_{1}^{*}, C_{2}^{*} \in s^{*}(M), r^{*}\left(C_{1}^{*}\right)+r^{*}\left(C_{2}^{*}\right) \geq r^{*}\left(C_{1}^{*} \cup C_{2}^{*}\right)+1$. It follows from Theorem 2.3 that there is a circuit C which intersects each cocircuit of s^{*}. According to Lemma 2.1, we can successively delete or contract each element of C to yield a connected matroid M^{\prime}. Since C intersects each cocircuit of δ^{*}, it follows that $c^{*}\left(M^{\prime}\right) \leq c^{*}(M)-2$. Furthermore, $r\left(M^{\prime}\right) \leq r(M)$, and $\left|E\left(M^{\prime}\right)\right|<|E(M)|$. By assumption, M^{\prime} has a covering set \mathcal{K}^{\prime} where $\left|\mathcal{K}^{\prime}\right| \leq c^{*}\left(M^{\prime}\right) \leq c^{*}(M)-2$. Let \mathcal{K} be a corresponding collection of circuits of M. Then $\mathcal{K} \cup\{C, C\}$ is seen to be a covering set of M.

Case 2. Suppose M is not vertically 3-connected.

Proof. We can express M as a non-trivial 2-sum. We shall consider two subcases:
Case 2.1: $M=M_{1} \oplus_{2} M_{2}$, where $r\left(M_{i}\right) \geq 3, i=1,2$ and $E\left(M_{1}\right) \cap E\left(M_{2}\right)=\{e\}$.
For $i=1$, 2 let $\beta_{i}=\left|B_{i}^{*} \backslash\{e\}\right|$ where B_{i}^{*} is a largest cocircuit in M_{i} containing e. Let $\beta=\min \left\{\beta_{1}, \beta_{2}\right\}$. We may assume that $\beta_{1}=\beta$. Then for all $C^{*} \in \mathcal{C}^{*}\left(M_{i}\right), e \notin C^{*}$, it holds that $\left|C^{*}\right| \leq 2 \beta_{i}$. To see this, let $C^{*} \in \mathcal{C}^{*}\left(M_{i}\right)$, where $e \notin C^{*}$. Since M_{i} is connected, there is a cocircuit containing e which also intersects C^{*}. Among such cocircuits, choose a cocircuit B^{*} such that $\left|B^{*} \backslash C^{*}\right|$ is minimum. Then it is seen that $B^{\prime *}=B^{*} \Delta C^{*}$ is also a cocircuit of M_{i} where $e \in B^{* *}$. Now

$$
2\left(\beta_{i}+1\right) \geq\left|B^{*}\right|+\left|B^{*}\right|=\left|C^{*}\right|+2\left|B^{*} \backslash C^{*}\right| \geq\left|C^{*}\right|+2 .
$$

Thus $\left|C^{*}\right| \leq 2 \beta_{i}$.
It is also seen that $\beta_{1}+\beta_{2} \leq c^{*}(M)$, and consequently $2 \beta \leq c^{*}(M)$. Let $M_{i}^{\prime}=M_{i} \oplus_{2} N_{i}, i=1,2$ where N_{i} is the matroid defined by taking a 3-circuit $\{e, f, g\}$ and replacing f by β parallel elements, and doing the same for g. Then $r\left(M_{i}^{\prime}\right)<r(M), i=1,2$. It is seen that $c^{*}\left(M_{1}^{\prime}\right)=2 \beta \leq c^{*}(M)$ and $c^{*}\left(M_{2}^{\prime}\right) \leq c^{*}(M)$. Thus by assumption, M_{i}^{\prime} has a covering set \mathcal{K}_{1} with $q_{1} \leq c\left(M_{1}^{*}\right)=2 \beta$ circuits. Since $E\left(N_{1}\right) \backslash\{e\}$ is a cocircuit with 2β elements, and each circuit intersecting $E\left(N_{1}\right) \backslash\{e\}$ does so in exactly 2 elements, it holds that $q_{1}=2 \beta$. We also have that M_{2}^{\prime} has a covering set \mathcal{K}_{2} with $q_{2} \leq c^{*}\left(M_{2}^{\prime}\right) \leq c^{*}(M)$ circuits. We have $q_{1}=2 \beta \leq \beta_{1}+\beta_{2} \leq q_{2}$. Following very similar arguments to those used in [3, Theorem 1.3] for graphs, one can 'splice together' covering sets K_{1} and K_{2} to obtain a covering set for M.
Case 2.2: For every non-trivial 2-sum $M=M_{1} \oplus_{2} M_{2}$, either $r\left(M_{1}\right)=2$, or $r\left(M_{2}\right)=2$.
If M is a non-trivial 2-sum where $r\left(M_{1}\right)=2$ and $E\left(M_{1}\right) \cap E\left(M_{2}\right)=\{e\}$, then it is seen that $B^{*}=E\left(M_{1}\right) \backslash\{e\}$ is a cocircuit of M where $r\left(B^{*}\right)=2$. Let \mathcal{C}_{2}^{*} be the set of all such cocircuits of M. If for some $B^{*}, B^{*} \in \mathcal{C}_{2}^{*}$ it holds that $B^{*} \cap B^{*} \neq \emptyset$, then we can express M as a non-trivial 2-sum $M=M_{1}^{\prime} \oplus_{2} M_{2}^{\prime}$ where $E\left(M_{1}^{\prime}\right) \cap E\left(M_{2}^{\prime}\right)=\left\{e^{\prime}\right\}$ and $E\left(M_{1}^{\prime}\right)=B^{*} \cup B^{\prime *} \cup\left\{e^{\prime}\right\}$. It would then hold that $r\left(M_{1}^{\prime}\right)=3$, and hence $r\left(M_{2}^{\prime}\right)=2$. In this case, M is graphic and thus has a covering set. We may therefore assume that \mathcal{C}_{2}^{*} is a disjoint collection of cocircuits.

We shall create a matroid M^{\prime} from M in the following way: let $B^{*} \in \mathcal{C}_{2}^{*}$ and let $f, g \in B^{*}$ be nonparallel elements. Then $B^{*}=\operatorname{cl}(f) \cup \mathrm{cl}(g)$. If $|\mathrm{cl}(f)| \geq|\mathrm{cl}(g)|$, then contract the elements of $\mathrm{cl}(g)$; otherwise, contract the elements of $\mathrm{cl}(f)$. After performing this operation on each $B^{*} \in \mathcal{C}_{2}^{*}$ we obtain a vertically 3-connected matroid M^{\prime}. By Theorem 2.2 (and the remark after it) and Theorem 2.3, there is a circuit $C_{M^{\prime}}$ of M^{\prime} which intersects every cocircuit of $s^{*}\left(M^{\prime}\right)$. Let C_{M} be a corresponding circuit in M. If C_{M} intersects every cocircuit of $\delta^{*}(M)$, then we can argue as in Case 1 . We assume therefore that C_{M} does not. Since $C_{M^{\prime}}$ intersects every cocircuit of $\delta^{*}\left(M^{\prime}\right)$, it is seen that C_{M} intersects every cocircuit of $\delta^{*}(M) \backslash \mathscr{C}_{2}^{*}(M)$, and thus for some $B_{1}^{*} \in \mathcal{C}_{2}^{*}(M)$ it holds that $C_{M} \cap B_{1}^{*}=\emptyset$ and $\left|B_{1}^{*}\right| \geq c^{*}-1$.

Let $e_{1}, e_{2} \in B_{1}^{*}$ be non-parallel elements and let $E_{i}=\mathrm{cl}\left(e_{i}\right), i=1,2$. Among the circuits of M containing e_{1} and e_{2}, let D be a circuit having maximum length. If D intersects all cocircuits of $s^{*}(M)$, then we can proceed as in Case 1. We may therefore assume that for some $B_{2}^{*} \in s^{*}(M)$ it holds that $D \cap B_{2}^{*}=\emptyset$. Since M is connected there is a cocircuit containing e_{1} and elements of B_{2}^{*}. Among all such cocircuits choose C_{1}^{*} so that $\left|C_{1}^{*} \backslash B_{2}^{*}\right|$ is minimum. Then by minimality, $C_{2}^{*}=C_{1}^{*} \Delta\left(B_{1}^{*} \cup B_{2}^{*}\right)$ is seen to be a cocircuit. Thus

$$
\begin{align*}
2 c^{*} \geq\left|C_{1}^{*}\right|+\left|C_{2}^{*}\right| & =\left|B_{1}^{*}\right|+\left|B_{2}^{*}\right|+2\left|C_{1}^{*} \backslash\left(B_{1}^{*} \cup B_{2}^{*}\right)\right| \\
& \geq 2\left(c^{*}-1\right)+2\left|C_{1}^{*} \backslash\left(B_{1}^{*} \cup B_{2}^{*}\right)\right| . \tag{1}
\end{align*}
$$

We have that $D \cap C_{1}^{*} \neq \emptyset$ and hence $\left|D \cap C_{1}^{*}\right| \geq 2$. Thus $\left(D \backslash\left\{e_{1}, e_{2}\right\}\right) \cap C_{1}^{*} \neq \emptyset$ and hence $C_{1}^{*} \backslash\left(B_{1}^{*} \cup B_{2}^{*}\right) \neq \emptyset$. It follows from (1) that

$$
\left|\left(D \backslash\left\{e_{1}, e_{2}\right\}\right) \cap C_{1}^{*}\right|=\left|C_{1}^{*} \backslash\left(B_{1}^{*} \cup B_{2}^{*}\right)\right|=\left|C_{2}^{*} \backslash\left(B_{1}^{*} \cup B_{2}^{*}\right)\right|=1,
$$

and equality holds throughout in (1). Consequently,

$$
\left|B_{1}^{*}\right|=\left|B_{2}^{*}\right|=c^{*}-1, \quad\left|C_{1}^{*}\right|=\left|C_{2}^{*}\right|=c^{*}, \quad \text { and } \quad\left|E_{1}\right|=\left|E_{2}\right|=\frac{c^{*}-1}{2} .
$$

Let

$$
\left\{d_{1}\right\}=\left(D \backslash\left\{e_{1}, e_{2}\right\}\right) \cap C_{1}^{*}=C_{1}^{*} \backslash\left(B_{1}^{*} \cup B_{2}^{*}\right)=C_{2}^{*} \backslash\left(B_{1}^{*} \cup B_{2}^{*}\right) .
$$

It is seen that any circuit of $E(M) \backslash B_{2}^{*}$ containing d_{1} must also intersect B_{1}^{*}, and as such $E(M) \backslash\left(B_{1}^{*} \cup B_{2}^{*}\right)$ has no circuit containing d_{1}. Since M contains no 2 -cocircuits, it holds that $c^{*}-1 \geq 3$, and thus $\left|E_{i}\right| \geq 2, i=1,2$. Let

$$
F_{i}=C_{i}^{*} \cap B_{2}^{*}, \quad f_{i} \in F_{i}, i=1,2 .
$$

By the choice of C_{1}^{*}, it follows that $C_{1}^{*} \Delta B_{2}^{*}=E_{1} \cup F_{2} \cup\left\{d_{1}\right\}$ is a cocircuit, as is $C_{1}^{*} \Delta B_{1}^{*}=E_{2} \cup F_{1} \cup\left\{d_{1}\right\}$. In particular, this implies that $\left|F_{1}\right|=\left|F_{2}\right|=\frac{c^{*}-1}{2}$. In the remainder of the proof, we aim to show that, assuming D does not intersect all cocircuits of $s^{*}(M)$, then either M has an F_{7}-minor, or there is a 2 -cocircuit. In either case, we reach a contradiction.

Let

$$
T_{1} \in \mathscr{B}\left(M \backslash B_{2}^{*}\right), \quad D \backslash\left\{d_{1}\right\} \subset T_{1} .
$$

Since B_{2}^{*} is a cocircuit, $T_{1} \cup\left\{f_{1}, f_{2}\right\}$ has a unique circuit which contains f_{1} and f_{2}. Let

$$
C \in \mathcal{C}(M), \quad \text { where } C \subset T_{1} \cup\left\{f_{1}, f_{2}\right\}, f_{1}, f_{2} \in C
$$

Then $\left|C_{i}^{*} \cap C\right| \geq 2, i=1,2$, and consequently, $e_{1}, e_{2} \in C$. Suppose d_{1} is a chord of C; that is, for two circuits $C^{\prime}, C^{\prime \prime}$ it holds $C \cup\left\{d_{1}\right\}=C^{\prime} \cup C^{\prime \prime}$, and $C^{\prime} \cap C^{\prime \prime}=\left\{d_{1}\right\}$. Assuming $f_{1} \in C^{\prime \prime}$, it holds that $f_{2} \in C^{\prime \prime}$ since $\left|B_{2}^{*} \cap C^{\prime \prime}\right| \geq 2$. We also have that $e_{1}, e_{2} \in C^{\prime}$, since $d_{1} \in C^{\prime}$ and $C^{\prime} \subseteq E(M) \backslash B_{2}^{*}$. This implies that $C^{\prime} \subseteq T_{1} \cup\left\{d_{1}\right\}$, and given that D is the unique circuit of $T_{1} \cup\left\{d_{1}\right\}$, it must hold that $C^{\prime}=D$. However,

$$
|C|=\left|C^{\prime}\right|+\left|C^{\prime \prime}\right|-2 \geq|D|+1,
$$

contradicting the maximality of D. We conclude that d_{1} is not a chord of C, and $D \backslash\left(C \cup\left\{d_{1}\right\}\right) \neq \emptyset$.
Let

$$
d_{2} \in D \backslash\left(C \cup\left\{d_{1}\right\}\right), \quad T_{2}=\left(T_{1} \backslash\left\{d_{2}\right\}\right) \cup\left\{d_{1}\right\} .
$$

Then $d_{2} \in T_{1}$. Moreover, $T_{2} \in \mathcal{B}\left(M \backslash B_{2}^{*}\right)$ where $D \backslash d_{2} \subseteq T_{2}$. Let $H_{1}, H_{2}, H_{1}^{\prime}, H_{2}^{\prime}$ be hyperplanes defined such that

$$
\begin{aligned}
H_{1} & =\operatorname{cl}\left(\left(T_{1} \backslash\left\{e_{1}\right\}\right) \cup\left\{f_{2}\right\}\right) & H_{2}=\operatorname{cl}\left(\left(T_{1} \backslash\left\{e_{2}\right\}\right) \cup\left\{f_{1}\right\}\right) \\
H_{1}^{\prime} & =\operatorname{cl}\left(\left(T_{2} \backslash\left\{e_{1}\right\}\right) \cup\left\{f_{2}\right\}\right) & H_{2}^{\prime}=\operatorname{cl}\left(\left(T_{2} \backslash\left\{e_{2}\right\}\right) \cup\left\{f_{1}\right\}\right) .
\end{aligned}
$$

It is seen that

$$
C_{i}^{*}=E(M) \backslash H_{i}, \quad i=1,2 .
$$

Let

$$
C_{i}^{\prime *}=E(M) \backslash H_{i}^{\prime}, \quad i=1,2 .
$$

Then $C_{i}^{\prime *}, i=1,2$ are cocircuits where $f_{i}, d_{2} \in C_{i}^{\prime *}$. Given that $\left|F_{1}\right|=\left|F_{2}\right|=\frac{c^{*}-1}{2} \geq 2$, there are elements

$$
f_{i}^{\prime} \in F_{i} \backslash\left\{f_{i}\right\}, \quad i=1,2 .
$$

For $f, g \in\left\{f_{1}, f_{1}^{\prime}, f_{2}, f_{2}^{\prime}\right\}, f \neq g$, there is a unique circuit in $\left(T_{1} \cup\left\{d_{1}\right\} \backslash\left\{e_{1}, e_{2}\right\}\right) \cup\{f, g\}=\left(T_{2} \cup\right.$ $\left.\left\{d_{2}\right\} \backslash\left\{e_{1}, e_{2}\right\}\right) \cup\{f, g\}$ which contains f and g. We shall denote such a circuit by $C(f, g)$. We first note that since $C \triangle D \subset\left(T_{1} \cup\left\{d_{1}\right\} \backslash\left\{e_{1}, e_{2}\right\}\right) \cup\left\{f_{1}, f_{2}\right\}$, it holds that

$$
C\left(f_{1}, f_{2}\right)=C \Delta D, \quad \text { and } \quad d_{1}, d_{2} \in C\left(f_{1}, f_{2}\right)
$$

We also observe that for any $f \in F_{1}$, and $g \in F_{2}$, it holds that $f \in C(f, g) \cap C_{1}^{*}$, and thus $\mid C(f, g)$ $\cap C_{1}^{*} \mid \geq 2$. It follows that $\left\{f, d_{1}\right\}=C(f, g) \cap C_{1}^{*}$. Hence

$$
d_{1} \in C(f, g), \quad \forall f \in F_{1}, \forall g \in F_{2} .
$$

Suppose $f_{1}^{\prime} \in H_{1}^{\prime}$. Since $H_{1}^{\prime}=\operatorname{cl}\left(\left(T_{2} \backslash\left\{e_{1}\right\}\right) \cup\left\{f_{2}\right\}\right)$, there is a circuit K in $T_{2} \backslash\left\{e_{1}\right\} \cup\left\{f_{1}^{\prime}, f_{2}\right\}$ containing f_{1}^{\prime}, and such a circuit must also contain f_{2}. It follows that $K=C\left(f_{1}^{\prime}, f_{2}\right)$, and $C\left(f_{1}^{\prime}, f_{2}\right) \subset H_{1}^{\prime}$. Thus $d_{1} \in$ $C\left(f_{1}^{\prime}, f_{2}\right)$ and $d_{2} \notin C\left(f_{1}^{\prime}, f_{2}\right)$ since $d_{2} \notin H_{1}^{\prime}$. Since $d_{1}, d_{2} \in C\left(f_{1}, f_{2}\right)$, and $C\left(f_{1}, f_{1}^{\prime}\right)=C\left(f_{1}, f_{2}\right) \triangle C\left(f_{1}^{\prime}, f_{2}\right)$, it
holds that $d_{2} \in C\left(f_{1}, f_{1}^{\prime}\right)$ (since $\left.d_{2} \notin C\left(f_{1}^{\prime}, f_{2}\right)\right)$ and $d_{1} \notin C\left(f_{1}, f_{1}^{\prime}\right)$ (since $d_{1} \in C\left(f_{1}^{\prime}, f_{2}\right)$). Summarizing, we have

$$
\begin{equation*}
f_{1}^{\prime} \in H_{1}^{\prime} \Rightarrow d_{1} \notin C\left(f_{1}, f_{1}^{\prime}\right), \quad d_{2} \in C\left(f_{1}, f_{1}^{\prime}\right) . \tag{2}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
f_{2}^{\prime} \in H_{2}^{\prime} \Rightarrow d_{1} \notin C\left(f_{2}, f_{2}^{\prime}\right), \quad d_{2} \in C\left(f_{2}, f_{2}^{\prime}\right) . \tag{3}
\end{equation*}
$$

Suppose $f_{i}^{\prime} \in H_{i}^{\prime}, i=1,2$. From (2) and (3) we have

$$
d_{2} \in C\left(f_{i}, f_{i}^{\prime}\right), \quad \text { and } \quad d_{1}, e_{1}, e_{2} \notin C\left(f_{i}, f_{i}^{\prime}\right), i=1,2
$$

We have

$$
C\left(f_{i}, f_{i}^{\prime}\right)=C\left(f_{1}, f_{2}\right) \Delta C\left(f_{i}^{\prime}, f_{3-i}\right), \quad i=1,2 .
$$

Given that $d_{1}, d_{2} \in C\left(f_{1}, f_{2}\right)$ and $d_{1} \notin C\left(f_{i}, f_{i}^{\prime}\right), d_{2} \in C\left(f_{i}, f_{i}^{\prime}\right), i=1,2$, it follows that

$$
d_{1} \in C\left(f_{i}^{\prime}, f_{3-i}\right) d_{2} \notin C\left(f_{i}^{\prime}, f_{3-i}\right), \quad i=1,2
$$

Also, since

$$
C\left(f_{1}^{\prime}, f_{2}^{\prime}\right)=C\left(f_{1}^{\prime}, f_{2}\right) \Delta C\left(f_{2}, f_{2}^{\prime}\right)
$$

it holds that $d_{1}, d_{2} \in C\left(f_{1}^{\prime}, f_{2}^{\prime}\right)$. Let $N=M \mid T_{1} \cup\left\{d_{1}, f_{1}, f_{2}, f_{1}^{\prime}, f_{2}^{\prime}\right\}$. Then

$$
C\left(f_{1}, f_{2}\right) \Delta D, \quad C\left(f_{1}^{\prime}, f_{2}^{\prime}\right) \Delta D, \quad C\left(f_{1}^{\prime}, f_{2}\right), \quad C\left(f_{1}, f_{2}^{\prime}\right), \quad C\left(f_{1}, f_{1}^{\prime}\right), \quad C\left(f_{2}, f_{2}^{\prime}\right), \quad D
$$

correspond to the 3 -circuits of an F_{7}-minor of N. This contradicts the regularity of M. This shows that if $f \in H_{1}^{\prime}$ for some $f \in F_{1} \backslash\left\{f_{1}\right\}$, then $F_{2} \subseteq C_{2}^{\prime *}$. Similarly, if $f \in H_{2}^{\prime}$ for some $f \in F_{2} \backslash\left\{f_{2}\right\}$, then $F_{1} \subseteq C_{1}^{\prime *}$. Thus either $F_{1} \subseteq C_{1}^{\prime *}$, or $F_{2} \subseteq C_{2}^{\prime *}$. Assume without loss of generality that $F_{1} \subseteq C_{1}^{\prime *}$. Then $\left\{d_{2}\right\} \cup F_{1} \cup E_{1} \subseteq C_{1}^{\prime *}$. Since $\left|\left\{d_{2}\right\} \cup F_{1} \cup E_{1}\right|=c^{*}$, it holds that $C_{1}^{* *}=\left\{d_{2}\right\} \cup F_{1} \cup E_{1}$. Thus $C_{1}^{*} \Delta C_{1}^{* *}=\left\{d_{1}, d_{2}\right\}$, implying that $\left\{d_{1}, d_{2}\right\}$ is a 2 -cocircuit. This contradicts our assumptions about M. Thus D must intersect all cocircuits of $\delta^{*}(M)$.

The proof of the theorem now follows Cases 1 and 2.

3. Fractional circuit covers

In this section, we shall prove that Conjecture 1.2 is true for fractional circuit covers. As a matter of notation, we shall view functions $\boldsymbol{\phi}: E \rightarrow \mathbb{R}_{+}$interchangeably as vectors $\boldsymbol{\phi} \in \mathbb{R}_{+}^{|E|}$. For any subset $X \subseteq E$, we let $\phi(X)=\sum_{e \in X} \phi(e)$.

Lemma 3.1. Let M be a connected matroid having a ground set E where $|E| \geq 2$. Let $\mathbf{1}, \mathbf{w}: E \rightarrow \mathbb{R}_{+}$ where either

$$
\mathbf{l}(e) \leq \frac{1}{2} \max \{\mathbf{l}(C): C \in \mathcal{C}(M)\} \quad \forall e, \quad \text { or } \quad \mathbf{w}(e) \leq \frac{1}{2} \max \left\{\mathbf{w}\left(C^{*}\right): C^{*} \in \mathcal{C}^{*}(M)\right\} \quad \forall e .
$$

Then

$$
\mathbf{l} \cdot \mathbf{w} \leq \frac{1}{2} \max \{\mathbf{l}(C): C \in \mathcal{C}(M)\} \times \max \left\{\mathbf{w}\left(C^{*}\right): C^{*} \in \mathcal{C}^{*}(M)\right\} .
$$

Proof. The proof is divided into two parts: in the first part, we shall assume that $\mathbf{l}(e)>0, \mathbf{w}(e)>0 \forall e$. Using rational approximation, the theorem is seen to hold if it holds for $\mathbf{1}, \mathbf{w}: E \rightarrow \mathbb{Q}_{+}$. If $\mathbf{1}, \mathbf{w}: E \rightarrow$ \mathbb{Q}_{+}, then one can scale \mathbf{l} and \mathbf{w} by multiplying each by appropriate factors to obtain integer-valued functions. Thus it suffices to prove the theorem for integral $\mathbf{1}, \mathbf{w}$, and we shall assume that $\mathbf{l}, \mathbf{w} \in \mathbb{Z}_{+}^{|E|}$. Taking the dual, when necessary, we may assume that $\mathbf{l}(e) \leq \frac{1}{2} \max \{\mathbf{l}(C): C \in \mathcal{C}(M)\} \forall e$. We form a new matroid M^{\prime} from M in the following way: for each $e \in E$ replace e by $\mathbf{w}(e)$ elements $e_{1}, \ldots, e_{\mathbf{w}(e)}$
in parallel. Then replace each e_{i} with $\mathbf{l}(e)$ elements $e_{i 1}, \ldots e_{i \mathbf{i l}(e)}$ in series. Then $\left|E\left(M^{\prime}\right)\right|=\mathbf{l} \cdot \mathbf{w}$. Let $M_{e}^{\prime}=$ $M^{\prime} \mid\left\{e_{i j}: i=1, \ldots, \mathbf{w}(e), j=1, \ldots, \mathbf{l}(e)\right\}$. Clearly any cocircuit $C^{*} \in \mathcal{C}^{*}\left(M^{\prime}\right), C^{*} \nsubseteq E\left(M_{e}^{\prime}\right)$ which intersects $E\left(M_{e}^{\prime}\right)$ does so in exactly $\mathbf{w}(e)$ elements. Furthermore, any cocircuit of $\mathcal{C}^{*}\left(M^{\prime}\right)$ contained in $E\left(M_{e}^{\prime}\right)$ has exactly two elements. From this it is seen that $c^{*}\left(M^{\prime}\right)=\max \left\{\mathbf{w}\left(C^{*}\right): C^{*} \in \mathcal{C}^{*}(M)\right\}$. Similarly, any circuit $C \in \mathcal{C}\left(M^{\prime}\right), C \nsubseteq E\left(M^{\prime}\right)$ which intersects M_{e}^{\prime} does so in exactly $\mathbf{l}(e)$ elements. Any circuit of $\mathcal{C}\left(M^{\prime}\right)$ contained in $E\left(M_{e}^{\prime}\right)$ contains at most $2 \mathbf{l}(e) \leq \max \{\mathbf{l}(C): C \in \mathcal{C}(M)\}$ elements. Thus $c\left(M^{\prime}\right)=\max \{\mathbf{l}(C): C \in \mathcal{C}(M)\}$. Given that $\mathbf{l}(e)>0, \mathbf{w}(e)>0 \forall e, M^{\prime}$ is connected, and hence Theorem 1.1 implies that $\left|E\left(M^{\prime}\right)\right| \leq \frac{1}{2} c\left(M^{\prime}\right) c^{*}\left(M^{\prime}\right)$. This in turn implies that

$$
\mathbf{l} \cdot \mathbf{w} \leq \frac{1}{2} \max \{\mathbf{l}(C): C \in \mathcal{C}(M)\} \times \max \left\{\mathbf{w}\left(C^{*}\right): C^{*} \in \mathfrak{C}^{*}(M)\right\} .
$$

In the case that $\mathbf{l}(e)=0$ or $\mathbf{w}(e)=0$ for some elements $e \in E(M)$, we let ϵ be a small positive number and define new vectors $\mathbf{I}^{\prime}, \mathbf{w}^{\prime}: E \rightarrow \mathbb{R}_{+}$where

$$
\begin{aligned}
& \mathbf{l}^{\prime}(e)= \begin{cases}\mathbf{l}(e), & \text { if } \mathbf{l}(e) \neq 0 \\
\epsilon, & \text { if } \mathbf{l}(e)=0\end{cases} \\
& \mathbf{w}^{\prime}(e)= \begin{cases}\mathbf{w}(e), & \text { if } \mathbf{w}(e) \neq 0 ; \\
\epsilon, & \text { if } \mathbf{w}(e)=0\end{cases}
\end{aligned}
$$

By the first part, we have that

$$
\mathbf{I}^{\prime} \cdot \mathbf{w}^{\prime} \leq \frac{1}{2} \max \left\{\mathbf{l}^{\prime}(C): C \in \mathcal{C}(M)\right\} \times \max \left\{\mathbf{w}^{\prime}\left(C^{*}\right): C^{*} \in \mathcal{C}^{*}(M)\right\}
$$

and taking limits

$$
\lim _{\epsilon \rightarrow 0} \mathbf{I}^{\prime} \cdot \mathbf{w}^{\prime} \leq \lim _{\epsilon \rightarrow 0} \frac{1}{2} \max \left\{\mathbf{l}^{\prime}(C): C \in \mathcal{C}(M)\right\} \times \max \left\{\mathbf{w}^{\prime}\left(C^{*}\right): C^{*} \in \mathcal{C}^{*}(M)\right\} .
$$

From this it follows that

$$
\mathbf{l} \cdot \mathbf{w} \leq \frac{1}{2} \max \{\mathbf{l}(C): C \in \mathcal{C}(M)\} \times \max \left\{\mathbf{w}\left(C^{*}\right): C^{*} \in \mathcal{C}^{*}(M)\right\} .
$$

We note that the inequality in the above lemma is very similar to the so-called width-length inequality introduced by Lehman [1] who used it to characterize ideal clutters. We shall now show that a fractional version of Conjecture 1.2 holds.

Theorem 3.2. Let M be a connected matroid having ground set E where $|E| \geq 2$. Then there exist constants $\alpha_{C} \in \mathbb{R}_{+}, C \in \mathcal{C}(M)$ such that $\sum_{C} \alpha_{C} \mathbf{i}_{C} \geq 2 \mathbf{i}_{E}$, and $\sum_{C} \alpha_{C} \leq c^{*}(M)$.

Proof. Let $\mathbf{1}, \mathbf{w}: E \rightarrow \mathbb{R}_{+}$where $\mathbf{w} \equiv \mathbf{1}$ and $\mathbf{l}(C) \leq 1, \forall C \in \mathcal{C}(M)$. Since M is connected, it holds that $c^{*}(M) \geq 2$, and hence

$$
\mathbf{w}(e)=1 \leq \frac{1}{2} \max \left\{\mathbf{w}\left(C^{*}\right): C^{*} \in \mathcal{C}^{*}(M)\right\}=\frac{c^{*}(M)}{2} \quad \forall e .
$$

Lemma 3.1 now implies that

$$
\mathbf{l}(E)=\mathbf{l} \cdot \mathbf{w} \leq \frac{1}{2} \max \{\mathbf{l}(C): C \in \mathcal{C}\} \times \max \left\{\mathbf{w}\left(C^{*}\right): C^{*} \in \mathcal{C}^{*}\right\} \leq \frac{C^{*}(M)}{2} .
$$

Thus
$\mathbf{l}(E) \leq \frac{c^{*}(M)}{2}, \forall \mathbf{l}: E \rightarrow \mathbb{R}_{+} \quad$ where $\mathbf{l}(C) \leq 1, \quad \forall C \in \mathcal{C}(M)$.
Let $A=A(\mathcal{C}(M))$ be the circuit matrix of M. Consider the LP

$$
\begin{equation*}
\max \mathbf{x} \cdot \mathbf{2}, \quad A \mathbf{x} \leq \mathbf{1}, \mathbf{x} \geq \mathbf{0} . \tag{5}
\end{equation*}
$$

and the dual LP
$\min \mathbf{y} \cdot \mathbf{1}, \quad \mathbf{y}^{t} A \geq \mathbf{2}, \mathbf{y} \geq 0$.
By (4) it follows that any optimal solution \mathbf{x}^{*} to (5) satisfies $\mathbf{x}^{*} \cdot \mathbf{2} \leq c^{*}(M)$. Consequently any optimal solution \mathbf{y}^{*} to (6) satisfies $\mathbf{y}^{*} \cdot \mathbf{1} \leq c^{*}(M)$. Indexing \mathbf{y}^{*} by the circuits of M, letting $\mathbf{y}^{*}=\left(\mathbf{y}_{C}^{*}\right)_{C \in \mathcal{C}(M)}$, we achieve the desired constants by taking $\alpha_{C}=\mathbf{y}_{C}^{*}, C \in \mathcal{C}(M)$.

References

[1] A. Lehman, On the width-length inequality, Math. Program. 17 (1979) 403-417.
[2] M. Lemos, J. Oxley, A sharp bound on the size of a connected matroid, Trans. Amer. Math. Soc. 353 (2001) 4039-4056.
[3] S. McGuinness, Circuits through cocircuits in a graph with extensions to matroids, Combinatorica 25 (4) (2005) 451 -463.
[4] S. McGuinness, Ore-type and Dirac-type theorems for matroids, J. Combin. Theory Ser. B 99 (2009) 827-842.
[5] V. Neumann-Lara, E. Rivera-Campo, J. Urrutia, A note on covering the edges of a graph with bonds, Discrete Math. 197/198 (1999) 633-636.
[6] J. Oxley, On the interplay between graphs and matroids, in: Surveys of the 17'th BCC, London Mathematical Society, 2001.
[7] J. Oxley, Matroid Theory, Oxford University Press, New York, 1992.
[8] W.T. Tutte, Lectures on matroids, J. Res. Nat. Bur. Standards Sect. B 69B (1965) 1-49.

[^0]: E-mail address: smcguinness@tru.ca.

