
J. LOGIC PROGRAMMING 19X7:4:119-155 119

HORNLOG: A GRAPH-BASED INTERPRETER
FOR GENERAL HORN CLAUSES

JEAN H. GALLIER AND STAN RAATZ*

D This paper presents HORNLOG, a general Horn-clause proof procedure that
can be used to interpret logic programs. The system is based on a form of
graph rewriting, and on the linear-time algorithm for testing the unsatisfi-
ability of propositional Horn formulae given by Dowling and Gallier [8].
HORNLOG applies to a class of logic programs which is a proper superset of
the class of logic programs handled by PROLOG systems. In particular,
negative Horn clauses used as assertions and queries consisting of disjunc-
tions of negations of Horn clauses are allowed. This class of logic programs
admits answers which are indefinite, in the sense that an answer can consist
of a disjunction of substitutions. The method does not use the negation-by-
failure semantics [6] in handling these extensions and appears to have an
immediate parallel interpretation. a

1. INTRODUCTION

HORNLOG, first presented in [13], is an example of an application of a proof
procedure different from SLD resolution in an attempt to address a larger subset of
first-order logic and to allow indefinite answers. Its logical approach can be
summarized as follows: Consider any logic program P consisting of arbitrary
Horn clauses, and queries of the form Q = 3z,. . .3z, (-,H, v . . . v ,H,)

where {H,,..., H,,,} are Horn clauses whose sets of variables are disjoint, and
where{ zl,. . . , z,,} is the union of all these free variables. Observe that P 2 3z1
. ..3z.(,H,v ... V,H,,,) is valid if and only if P~ifz,...Vz,(H, A -.. AH,,,)

Address correspondence to Dr. J. H. Gallier, Department of Computer and Information Science,
University of Pennsylvania, Philadelphia, PA 19104.

Received February 1986; revised July 1986; accepted August 1986.
*At same address as J. H. Gallier.

THE JOURNAL OF LOGIC PROGRAMMING

QElsevier Science Publishing Co., Inc., 1987
52 Vanderbilt Ave., New York, NY 10017 0743-1066/87/$3.50

120 JEAN H.GALLIERANDSTANRAATZ

is unsatisfiable. This last formula is equivalent to a conjunction of Horn clauses. If

{N,,..., Nk} CPU {II,,..., H,} is the subset of negative clauses, and D c P U
{Hp..., H,} is the subset of definite clauses, then, if the set P U { H,, . . . , H,} is
unsatisfiable, there is a subset D U { Ni} of this set of Horn clauses which is
unsatisfiable for some negative clause Nj. The HORNLOG procedure makes use of this
fact and applies to any arbitrary set of Horn clauses P and query Q as above, and it
may return disjunctive answers when the query Q contains certain forms of
negation.

The essence of the method which implements this logical approach is to incre-
mentally build a graph encoding a quantifier-free formula which is a conjunction of
substitution instances of clauses in the input logic program P and query Q, and to
check for the unsatisfiability of the formula represented by the graph using the
linear-time algorithm in Dowling and Gallier [8]. If this check shows the formula
encoded in the graph is not yet unsatisfiable, then a node is chosen for expansion,
the graph is “rewritten” at the node, and the resulting expanded graph is subse-
quently checked again for unsatisfiability. This process is an example of the problem
reduction paradigm [26], and continues until one of the following three cases occurs:
(1) the formula encoded by the graph is shown to be unsatisfiable, (2) the graph is
not expandable, in which case the formula is refutable, or (3) the formula induces a
nonterminating sequence of expansions.

The graph mentioned above describes the logical implications defined by the
conjunction of substitution instances of clauses from P U c7Q }. Its nodes are
labeled by substitution instances of atomic formulae in P U c7Q}, plus two special
nodes, one for true and one for false. The edges are labeled with indices of
substitution instances of the clauses. The fundamental property of such a graph is
that the formula P I Q is valid if and only if there is a pebbling, a kind of path,
from true to false. The use of graphs in theorem-proving and logic-programming
systems has a long history, and we will give a detailed comparison between the data
structures used in HORNLOG and those used in a number of other related systems,
including the connection graph proof procedure [18] and the MESON procedure [23] in
particular.

In addition to extending the class of logic programs and queries, this approach to
the logic-programming problem has three other advantages. First, the representation
of the logic program and query as a graph consisting of atomic formulae as nodes
leads to an immediate parallel interpretation. In brief, any unexpanded node is
available for expansion at any time in the graph rewriting process. Subject to
synchronization, the graph can be viewed as a form of a dataflow characterization of
the unsatisfiability of the input logic program and query. We will comment more on
this interpretation after explaining the method, but save the details for a subsequent
publication. Second, some forms of negation can be expressed directly, without
recourse to negation-by-failure semantics. Third, the extension of logic programs to
include any arbitrary set of Horn clauses introduces the possibility that the system
can return indejinite answers, that is, sets of substitutions, in addition to dejinite
answers, substitutions which are singleton sets. As it is not entirely obvious how to
interpret an answer which consists of a set of substitutions, nor haw logic programs
and queries which contain arbitrary Horn clauses can be used, we will give a
discussion on these topics before describing the method in detail.

HORNLOG: A GRAPH-BASED INTERPRETER 121

2. MODEL-THEORETIC SEMANTICS OF LOGIC PROGRAMS

The fundamental idea behind logic programming [19,20] is that a proof or refuta-
tion of a logical formula can be viewed as a computation, and that from this process
an output can be extracted. The goal in logic programming is not simply to prove a

formula valid or unsatisfiable, as is the case in theorem proving, but to actually
extract results from the proof or refutation of this formula. We presently examine

the meaning of this statement more precisely.
The paradigm used in logic programming can be described as follows: Given a

first-order formula, or logic program, P, expressing a set of facts and assertions and
a first-order query formula Q containing some free variables zi, . . . , z,, one wants to
know whether the formula P I 3z 1.. .3z,Q is valid, and find explicit terms t,, . . . , t,
such that P 3 Q[tl/zl,. . . , t,/z,] is valid. However, even if the formula P 3

32 1.. .3z,Q is valid, such terms may not exist, as shown in the following example:

Example 2.1. Let P = (-p(a) V ,p(b)), and Q= 7p(x). Then (7p(a) V

,p(b)) 3 3x,p(x) is valid, but there is no term t such that (7p(a) V ,p(b)) 3

7p(t) is valid.

However, the following result holds.

Theorem 2.2. Consider a first-order language without equality having at least one
constant. If P is a formula which is the conjunction of universal sentences of the

form Vx, . . . Vx, B, where B is quunti$er-free, and 32,. . .3z,Q is a sentence, with
Q quantifier-free, then

I= P I 32,. . .3z,Q

iff there is some set of n-tuples of ground terms

((4 ,..., tA) ,..-, (tl” ,..., 6))

such that

I= PI Q[t;/zI ,..., t;/z,] v .a. vQ[t;/zl ,..., t,“/z,].

PROOF. Note that b PI 32,. . .3z,Q iff P A Vz, . . .Vz,-,Q is unsatisfiable. Since
all formulae in H A Vz, . . .VZ,,~Q are universal and prenex, by the Skolem-
Herbrand-Godel theorem [12], P A Vz, . . . VZ,,~Q is unsatisfiable iff there is some
unsatisfiable set P’ U {-,Q[ti/zl, _. , tA/z,], . . . , 7Q[t[/zl,. . . , t,k/z,]} of ground
substitution instances of formulae in P U {‘dzl.. . VZ,~Q}. But then, we have

I= P”3 Q[t:,‘zl ,..., t;/z,] V ... VQ[t[/zl ,..., t,$‘zn],

where P”=P,r\ ... AP, for a set P’= {P,,..., Pk } of substitution instances of
formulae in P, and, because k P 3 P”, this implies

I=PI Q[t:/zl ,..., t;/z,] v ... vQ[t;/zl ,..., t,“/z,]. q

The model-theoretic semantics given by Theorem 2.2 allows indejinite answers, in
the sense that the results returned are disjunctions. If one wants definite answers,
that is, answers consisting of tuples of terms, as opposed to sets of tuples, it is
necessary to place extra restrictions on the formulae P and Q. The class of Horn

122 JEANH.GALLIERANDSTANIUATZ

formulae is a class of formulae for which singleton answers can be guaranteed,
provided that certain conditions described below are met.

Recall that Horn formulae are obtained by restricting the form of the conjuncts,
or clauses, in the conjunctive normal form of logical formulae. Specifically, P is a
Horn formula if and only if every clause in the conjunctive normal form of P
contains at most one positive atomic formula, where an atomic formula is of the
form q(t,, . . ,) t,), q a predicate symbol, I,, . . . , t, terms from some term algebra. If
A, B,, . . . , BP denote atomic formulae, Horn clauses can thus take one of the
following three forms:

(1) A,

(2) 7 B, v . . e v,B,VA,alsowritten A:-B, ,..., BP,

(3) TB, v . . . V 7 BP, also written : - B,, . . . , BP.

Clauses of the form (1) are called axioms, clauses of form (1) and (2) definite
clauses, and clauses of the form (3) goal, query, or negative clauses. It is assumed
that distinct Horn clauses are universally quantified. A set of Horn clauses is
interpreted as the conjunction of these clauses.

The reason that Horn clauses are attractive for logic programming is contained in
the following theorem.

Theorem 2.3. Consider a jr&order language without equal@ having at least one
constant. For any (jinite) set P of universally quantijed Horn clauses, the following
properties hold:

(i) For any m (m22) sentences A,=3yi... 3yp,Bi, where each Bi is a conjunc-
tion of atomic formulae, if

!=PPA~vA,V .a. VA,,

then for some i, 1 I i I m, we have

t=P1A,.

(ii) For any sentence 32,. . . !lz,Q, where Q is a conjunction of atomic formulae,
if

then there is a n-tuple of ground terms (ti, . . . , t,), such that

~P=Q[~~/z~,...,~,/z,I

PROOF. The proof of Theorem 2.3 is technical in nature and appears in Appendix A.
We note that a similar result is shown for a higher-order extension of PROLOG in
[24]. 0

The most interesting consequence of Theorem 2.3 is that it delineates a class of
formulae for which it is guaranteed that a proof yields singleton answers: logic
programs consisting of definite clauses, and queries consisting of existentially
quantified conjunctions of atomic formulae. SLD resolution [2,21,22] is a refutation
procedure which applies to such sets of Horn clauses.

HORNLOG: A GRAPH-BASED INTERPRETER 125

The following theorem, which ,can be proved from Theorem 2.3, is also im-
portant. Indeed, it is the key to handling more general logic programs including
either negative clauses as assertions or disjunctions as queries.

Theorem 2.4. Let P be a set of Horn clauses over a language without equality. Consider
the partition of P consisting of the set D of all dejinite clauses in P, and the set

{N,,..., Nk) of negative clauses in P. If P is unsatisfiable, then D contains some

atomic formula, (N,, . . . , Nk} is nonempty, and for some i, 1 I i I k, the set
D U { N, } is unsatisjiable.

PROOF. First, we prove that if D U {N,, . . . , Nk} is unsatisfiable, then D contains
some atomic formula and the set {N,, . . . , Nk} is nonempty. If D does not contain
any atomic formulae, then every formula in D U {N,, . . . , Nk} contains some
negative literal. Then, D U {N,, . . . , Nk} is satisfied in the one-point structure such
that every predicate symbol is interpreted as the constant function false. If
{N,,..., Nk} = 0, then every formula in D contains some (positive) atomic for-
mula. Then, D is satisfied in the one-point structure such that, for every atomic
formula of the form q(tl,. . . , t,) in D, q is interpreted as the constant function true.

Now, since {N,,..., Nk} # 0, and since each N, is a universal formula whose
matrix is a disjunction of negative literals, 7 N, is a formula of the form 3y,. . .3y,Q,,
where Q, is a conjunction of atomic formulae. But D U {N,, . . . , Nk} is unsatisfiable
iff ~DI(,N,v a.. VT Nk), and by Theorem 2.3(i), we conclude that there is
some i, 1 I i I k, such that b D 3 ,Ni, which is equivalent to D U { Ni} being
unsatisfiable. 0

As application of Theorem 2.4, we sketch how a more general class of logic
programs can be handled. Consider logic programs consisting of a set P of arbitrary
Horn clauses and queries of the form

32 1...3z,(-,H1v --’ v,H,),

where H,,..., H,, are Horn clauses whose sets of free variables are disjoint, and
where {zi,..., ’ z, } IS the umon of all these free variables. Observe that

P 3 32,. . . 3z,(yH1 v . . . v,H,,,)

is valid iff

P~tlz,...Vz,(H,r\ ..- AH,,,)

is unsatisfiable. But this last formula is equivalent to a conjunction of Horn clauses.
From Theorem 2.4, there is a subset D U { Ni} of this set of Horn clauses which is
unsatisfiable for some negative clause Ni. Since in a refutation of the set D U { Ni},
some of the definite clauses in the set { H,, . . . , H,,, } may be used more than once, it
is possible to have disjunctive answers. In the next section we give some examples of
programming in the class of logic programs outlined above.

3. GENERAL HORN-CLAUSE PROGRAMMING:
MOTIVATIONAL EXAMPLES

The phrase “Horn-clause programmin g” has come to be used synonymously with
programming in the language PROLOG, which is not quite accurate, since
PROLOG applies to a class of logic programs which consist of only definite clauses

124 JEANH.GALLIERANDSTANFUATZ

and a single negative clause as query. In order to distinguish between more general
logic-programming systems and PROLOG, we will introduce the phrase “general
Horn-clause programming” to refer to logic-programming systems which admit
arbitrary Horn clauses both in the body of the logic program and the query, and the
phrase “definite-clause programming” to refer to the language PROLOG.

HORNLOG is an example of a general Horn-clause programming system. We
extend the usual procedural interpretation of logic programs [20] as follows:
Negative clauses in the body of the logic program are interpreted as negative
constraints. That is, : - B,, . . . , BP is interpreted as false: - B,, . . . , BP, or “not the
case that B,, . . ., BP all hold simultaneously”. The crucial difference between this
interpretation and the negation-by-failure semantics used in PROLOG is that in this
interpretation any substitutions computed using substitution instances of negative
clauses participate in the construction of the answer substitution.

Queries in HORNLOG are of the form

Q=3z1...3z,(4iv ... v,H,)

where {Hi,..., H,} are Horn clauses whose sets of variables are disjoint, and

{Z I,“., z”} is the union of all these free variables. More explicitly, a query is a
disjunction of conjunctions of literals, where each conjunct contains at most one
negative literal (and distinct conjuncts have disjoint sets of free variables). Thus the
following are all examples of legal forms for queries, where B, is an atomic formula:

Q, = Elz, . . . 3z,(,B, V YB, v B3),

Q2 = 32,. . . &(4, A B,),

Q3 = 3z,. . . 3z,(B,v B,v .a. VB,).

Let us give some examples of logic programs in HORNLOG to illustrate general
Horn-clause programming.

Example 3.1, A music library contains analog recordings of bath and mozart,
and a digital recording of beethoven. The following facts are known about record-
ings in general: digital recordings sound great and a recording cannot both sound
great and be analog. Suppose the problem is to find which recordings do not sound
great.

This information is easily expressed using general Horn clauses. We note that no
ordering is as?z-ned on the clauses in this and subsequent examples. They are simple
enough that no ordering is needed, and it will subsequently be argued that
HORNLOG is most profitably viewed as a parallel system in which clauses are not
ordered.

:- soundsGreat(X), analog(X).
digital(beethoven).
analog(buch).
analog(mozart).
soun&Great(X) :- digital(X).

?- -, soun&Great(X).

HORNLOG:AGRAPH-BASEDINTERPRETER 125

The obvious answers of X= bath and X= mozart are returned by the HORNLOG

system.

The negative information contained in Example 3.1 is not so easily expressed in
PROLOG. If it is coded either as the fact not(soundsGreat(X), analog(X)) or as the
rule

soundsGreat(X) : -
not(analog(X)),
digital(X).

with query ?- not(soundsGreat(X)), the system responds with failure, as the answer
substitutions have been lost by using the negation-by-failure semantics. In fact, the
well-known PROLOG convention is to introduce predicates which represent ex-
plicitly the negative information, i.e. soundsPoor :- analog(X). However, this
practice becomes increasingly difficult as the amount of negative information
increases.

Example 3.2. Four people, daue, dale, peter, and jessica, are involved in a
crime. Someone shoots and kills daue in the garden. At the time of the crime, it is
known that jessica was in the house and that dale and peter were not both in the
garden, and it is also assumed that one does not shoot oneself, and that one cannot
be both in the house and in the garden. Who is innocent? The above puzzle can be
formalized as follows:

:- shot(x, X).
: - inhouse (X), ingarden (X).
:- ingarden (dale), ingarden (peter).
inhouse (jessica).
suspect(dale).
suspect(peter).
suspect(jessica).
suspect(daue).
ingarden(X) :- shot(daue, X).
shot(daue, X) : - ingarden (X), suspect(X).

?- -, shot(dave, X).

The HORNLOG system returns the expected substitutions, X = daue, X = jessica, and
the indefinite answer X = dale V X = peter,

A PROLOG solution to the above example has a very different character that
does not reflect the negative content of the information. It is also worth pointing out
that the last two clauses of this program are mutually recursive, and that the
HORNLOG method handles such occurrences without looping. The details of this
characteristic will be given after the method is presented. Note also that in Example
3.2, an answer was returned which was a disjunction of substitutions, and indefinite
answer. Informally, the logic program of Example 3.2 model-theoretically implies
that one of X = dale or X = peter is true, but it is not known specifically which one.

It is possible to have logic programs which return only indefinite answers.

126 JEAN H. GALLIER AND STAN RAATZ

Example 3.3. Consider the following logic program:

: - chairperson (son (X)), chairperson (daughter (Y)).
french (yes).
french (Pierre).
german (fritz).
likewine (son (X)) :- french (X).
likewine(daughter(X)) :- german X).

?- 7 chairperson(Z) A likewine(Z).

There is no term t such that for the logic program P of Example 3.3,

I= P 1 (7 chairperson (t) A Zikewine (t))

However, both of the following formulas, which represent indefinite answers,
require the disjunction of substitution instances to be valid:

I= P I [-chairperson (son (yes)) A likewine (son (yve.s))] V

[7 chairperson (daughter(fritz)) A Zikewine (daughter (fritz))] ,

k P 3 [7chairperson (son (Pierre)) A likewine (son (Pierre))] V

[-, chairperson (daughter (fritz)) A Zikewine (daughter (fritz))] .
Finally, consider the following example, a well-known puzzle drawn from the

blocks world, which shows some of the limits of this method.

Example 3.4. There are three blocks, labeled a, b, and c. Block a sits atop block
b, which sits atop block c. Blocks are also colored either green or blue. The color of
a is green, the color of c is blue, and the color of b is unknown. Is there a green
block on a blue block?

The answer to this problem is yes, and involves reasoning by cases. Block b must
be either green or blue. If b is green, then the answer is yes because b is on c, which
is blue. If b is blue, then the answer is yes because a, which is green, is on b.
Expressing this problem in first-order logic is straightforward. Let

P = { on(a,b),

on(b,c),

color (a, green) ,

color (c , blue) ,

color (b , green) V color (b , blue) } .

Then the following formula holds:

l=PPjX!lY[on(X,Y) AcoZor(X,green) Acolor(Y,bZue)],

with substitutions a/X, b/Y, or b/X, c/Y such that

kPI[on(a,b) Acolor(a,green) Acolor(b,bZue)] V

[on(b,c) Aco/or(b,green) Acolor(c,bZue)].

Stating the problem in general Horn clauses is not so straightforward. The
problem is that color(b, green) V color(b, blue) is not equivalent to any Horn clause.

HORNLOG:AGRAPH-BASEtDINTERF'RETER 127

It contains more than one positive literal. Thus it is necessary to be a little devious
in expressing this information:

on(a,b).
on(b,c).
color(a, green).
color(c, blue).

{Devious attempt to state that b is either green or blue,
but in fact, it only says that b cannot be both green and blue
at the same time}

:- color(b,green),coIor(b,blue).

A first and obvious attempt at posing the problem, ?- on(X,Y) A color(X,green)
A color(Y, blue), results in failure, since this query is refutable. Thus we must also
be devious in our phrasing of the question:

? - [,color(X,bZue) A on(X,Y) A coZor(Y,bZue)] V

[,co/or(Y,green) A on(X,Y) A color(X,green)].

This version of Example 3.4 works, but the query is not very natural. In fact, it
asks if there is either a nonblue block X on a blue block Y, or a green block X on a
nongreen block Y. Since there are only two colors, the query itself expresses the
information that block b can be either green or blue. HORNLOG returns the same
substitutions given above.

Before presenting the method, we make the following two observations. It is
tempting to suggest that the effect of a negative constraint Ni = : - B,, . . . , BP can be
simulated in a definite clause program using SLD resolution as follows: Given a set
P of arbitrary Horn clauses, let X be a new literal not occurring in P. Let P’ be
obtained from P by replacing every negative clause : - B,, _. . , BP in P with
X:- B1,..., bi,, and adding : - X as the new goal. It is true that P IS unsatisfiable
iff P’ is unsatisfiable, and since P’ only contains definite clauses except for the goal
: - X, SLD resolution can be applied to test P’.

The above argument is correct, but an important point is missing. The set P is
obtained by adding to a logic program the negation of each formula occurring in the
query, and in the above method, answer substitutions are lost.

It is possible to try to argue that the above method can be refined to take care of
this problem. However, a refinement that works in the general case will have to
mimic our method. This is because, in order to return the correct answer substitu-
tion, it is necessary to keep track carefully of all uses of negations of clauses from
the query. This can be demonstrated by the following example.

Example 3.5. Let P be the following set of clauses:

:-p(a).

:-p(b).

P(X) : - 4(X).

? - 7q(z).

128 JEAN H.GALLIERANDSTANRAATZ

There are two answers: 2 = a and Z = b. We can form the set P’ obtained by
adding q(W) and using a new goal r(Z) as follows:

r(U):-p(u).

r(V):-p(b).

p(X) :- 4(X).

4(W)*

? - r(Z).

P’ is unsatisfiable, but unfortunately, the answers are lost. The problem is that
there is no way of asserting that U, V, and W are in fact the same variable. Such an
assertion would even violate the fact that clauses are universally quantified.

Also, if Q is of the form Q = 32,. . .3z,(,H, V . . . V,H,,,), m > 1, for the
purposes of showing unsatisfiabihty, it is equivalent to conjoin an additional clause
C to the body of a logic program P, or disjoin the negation of C to the query Q.
However, for the purposes of defining the answer substitution there is a difference.
Clause C included in the query Q can contribute free variables { zkl,. . . , zk, } to the

query

Q’=3zi...3z,3zk,...3z&H1v ..’ v,H,,,v,C)

that would not be present if C were in the body of the logic program. If the
additional clause C defines Q to be of the form Q = ,C, C clearly cannot be placed
in the body of the logic program, since a logic program with a null query returns no
answer.

It should be pointed out that the negation-by-failure method [6] is not sound for
general Horn clauses. Consider the program

p(b):- +(a].

:-p(b).

?-P(X)

Using the negation-by-failure strategy, since p(a) cannot be proved, 7p(a) is
true, and clause p(b) : - -p(u) yields the truth of p(b). Hence, the answer [b/X]
will be returned, saying that p(b) is true. However, the clause : -p(b) asserts that
p(b) must be false.

In the next section we describe the refutation procedure underlying HORNLOG

which applies to arbitrary sets of Horn clauses.

4. HORNLOG: A REFUTATION PROCEDURE BASED ON
GRAPH REWRITING

The method underlying HORNLOG is inspired by Herbrand’s theorem. Its essence
consists of incrementally building a graph that encodes a first-order quantifier-free
formula, and checking for unsatisfiability of this formula using a linear-time
algorithm [8]. If this check for unsatisfiability fails, the graph is rewritten by
choosing a node and expanding it, and the expanded graph is again checked for

HORNLOG:AGRAPH-BASEDINTERPRETER 129

unsatisfiability. The process terminates if the graph is shown to be unsatisfiable, or
if it can no longer be expanded, in which case the query formula is shown to be
refutable. The process may also enter into a nonterminating sequence of expansion
steps. The algorithm that checks for unsatisfiability is not a resolution method, and
has the property that the truth of each node is checked at most once.

This strategy is an instance of the problem-reduction paradigm [26]. The method
presented here, in the context of a logic-programming interpreter, is new primarily
because the underlying data structure, which we call an H-graph, is a graph and not
an AND/OR tree, and because answer substitutions are returned for general Horn-
clause programs. Along with representational issues, a major difference between
these two data structures is that an AND/OR tree can be shown to be unsatisfiable if
its leaves are substitution instances of axioms. This simple property does not
necessarily hold in the case of graphs. There is also a subtle but fundamental
distinction between methods that mark nodes in an AND/OR tree as “already seen”,
or “identical to some other node”, and we will point out the differences.

The presentation of the method will be divided into four parts: (1) the definition
of the underlying H-graph data structure, (2) a description of the procedure for
constructing and expanding H-graphs, (3) a description of the algorithm which tests
an H-graph for unsatisfiability, and (4) discussion of the main interpreter and
related details. In the context of this description, we will use the following notation.
Let P be a logic program with query Q = 32,. . .3z,(,H, V . . . V, H,), and
assume that P U {HI,. . . , H,,,} is partitioned into three subsets:

(1) The set {N,,..., N,,} of negative clauses.

(2) The set { FI ,..., F*,} of axioms.

(3) The set {Cr,..., C,,} of definite clauses of the form A : - B,, . . . , B,.

For the sake of clarity, we will present the method in a “theorem proving” form
that ensures completeness, and consider the changes necessary to realize a logic-pro-
gramming interpreter in the conclusion section.

4.1. Definition of an H-graph

An H-graph is defined as follows.

Definition 4.1. Let P be a logic program. An H-graph G for P is a directed
edge-labeled graph denoted by the triple (S, E, L), where S is a set of nodes that
are substitution instances of atomic formulae in P, L is a set of labels, each label
a pair (C, u) consisting of a clause C in P and a substitution (I, and E is a subset
of S x L X S of ordered triples called edges. Each H-graph has two special nodes,
called nodefalse and nodetrue, and all nodes have numerous fields, including a
truth field, an age field, and a status field. The truth field of a node is set to true
if the node is a substitution instance of an axiom, and false otherwise. The use of
the age and status fields will be discussed later. Given that for any edge
e = (n,, I,n,), n, is the source of e, n2 is the target of e, and I is the label of e,
and that for any node N in G, {(C,, a,), . . . ,(Ck, u,)} is the set of labels of all

130 JEAN H.GALLIERANDSTANRAATZ

(N,,id)A(I._,id) FIGURE 1. Initial H-graph of negative clauses.

edges with source N, the sets L and E satisfy the following three provisos:

(i) If C, is a negative clause of the form : - B,, . . . , BP, then N = nodefalse, and
the target of the jth edge labeled (C,, ai) is ai(B,).

(ii) If C, is a definite clause of the form Ai : - B,, . . . , B,, then a,(A,) = N, and
the target of the jth edge labeled (C,, a,) is a;(Bj).

(iii) If C, is a clause consisting of a single atomic formula B in S, then
uj(B) = N, and there is a single edge with target nodetrue labeled (C,, uj).

Proviso (i) for the logic program P u {-Q}, with negative clauses {N,, . . . , N,,},
is illustrated by Figure 1. Every edge from nodefalse to an atomic formula B in the
negative clause Ni is labeled with (Ni, id), where id is the identity substitution. By
convention, we will refer to the graph which consists of just the negative clauses as
the initial graph. Proviso (ii), relating to definite clauses of the form A : - B,, . . . , BP,
is illustrated by Figure 2. Nbte that proviso (iii), for definite clauses which are
axioms, is the special case in which N has no new successors.

The graph G encodes the conjunction of the clauses of the form u(C) and hence
is indeed a kind of Herbrund expansion. We will give some examples after a
discussion of how an H-graph is constructed.

4.2. Construction and Expansion of H-graphs

The first step in constructing an H-graph is to construct the initial H-graph,
denoted by G,, which consists of the node nodefalse and all atomic formulae
occurring in any negative clause. An H-graph is then expanded in stages, using
definite clauses of the form A : - B,, . . . , BP as rewrite rules, under one of two
protocols. Let Q = 32,. . . 3z,Q’ be a query. For simplicity of notation, we often
identify Q and Q’, and call {zi,.. ., z,,} the set of output variables in the query Q.

(1) All-solutions protocol: The system can return all sets of n-tuples of terms
(ground or not) {(t:, . . . , ti), . . . , (t,“, . . . , t,k)} such that

I=PIQ’[t;,‘zl ,..., t;/z,] v ... VQ’[t;/zI ,..., t,“,‘z,].

This case is similar to the assumption in PROLOG that affixing a semicolon
“;” after an answer substitution is a request for another answer. The
all-solutions protocol in HORNLOG allows the same option.

HORNLOG: A GRAPH-BASED INTERPRETER 131

(2) Single-solution protocol: The system returns only one substitution. This
assumption has no counterpart in PROLOG. The idea is best understood as
a simultaneous attempt to explore all possible trials towards unsatisfiability,
and to return the first one that succeeds. We will comment more on this
protocol after presenting the method.

The two protocols are mutually exclusive. If an H-graph is initially expanded
under one protocol, it cannot later in any state be expanded under the other.
Note that there is no reason the answer substitution returned under the
single-solution protocol cannot be an indefinite answer. Thus, referring back to
Example 3.3, two sets of 2-tuples are logically implied by the logic program, the set
{(son (yues)),(duughter(fritz))} and the set {(son (Pierre)), duughter(fritz))}. Under
the all-solutions protocol, both sets could be returned if the user wished, but under
the single-solution, only the set that was arrived at first by the HORNLOG interpreter.
However both sets result in indefinite answers.

We will present the method first with the simplifying assumption that the node
chosen for expansion unifies with only one definite clause. This assumption will be
relaxed subsequently.

Let G be an H-graph obtained at some stage of expansion, and assume that
XE G, the node chosen for expansion, unifies with the head A of a single definite
clause C with most general unifier u. In order to explain how the H-graph G is
expanded, we need to define the graphs a(G), G,, and a(G)[a(X) +- u(G,)].

(1) The graph u(G)’ is defined as follows: First, the substitution u is applied to
all nodes and edges of the graph G, that is, a node labeled with u,(N) will be
relabeled with u(u,(N)), and an edge labeled with (C,, uj) is relabeled with
(C,, a, 0 a) (where uj is applied before u in a, 0 a). The second step consists in
merging any two nodes having the same label. This means any two distinct
nodes ui and u2 having the same label L are merged into a single node u
labeled L, and that all edges with target ur or u2 now have target u, and that
all edges with source ur or u2 now have source u. Hence, in the resulting
graph u(G), nodes have distinct labels. Note that composing substitutions is
necessary in order to compute the answer substitution at the end.

(2) Let C = A : - B,, . . . , BP be the clause such that X unifies with A. Before
determining whether X unifies with the head of C, the variables in C are
renamed apart from the variable occurring in the graph G. The graph G,
consists of a root node labeled with A and nodes labeled with the Bl’s as
immediate successors. Let u(Gc.) be the graph obtained by applying the
substitution u to G,, as defined in (1). Then, the graph u(Gc) is grafted at
node u(X) = u(A) in u(G), and nodes having the same label are merged as
in (l), obtaining the graph denoted by

+)b(X> +- u(Gc)l~

In the special case where the definite clause consists of an axiom F, the graph
Gc consists of the single node F, and we have u(G)[u(X) +- u(G,)] = u(G)
with the truth field of node u(X) = u(F) set to true. Thus unification with an
axiom does not grow new nodes.

132 JEAN H. GALLIER AND STAN RAATZ

4G) R FIGURE 3. Simplified expansion step.
c/G) = o(X)

o(Gc)

u(B1) . . . 4%)

Observe that the process in which the graph a(G)[a(X) + a(G,)] is obtained from
the graph G using A -+ Gc (C = A : - II,, . . . , BP) as a “graph rewrite rule” is
analogous to a “narrowing step” [9]. However, it is defined for graphs instead of

trees. We will write

G -"G'
C

iff G’ is obtained from G in a graph expansion step involving substitution (I and
definite clause C. The process is illustrated in Figure 3.

Let us now proceed to the general case, in which a node X chosen for expansion
can unify with any number of definite clauses. It is important to point out that the
phrase “merging of nodes”, as explained previously in (1) is used in its graph-theo-
retic sense, and implies the redirection of arcs. This is not equivalent to marking
nodes in an AND/OR tree as, for instance, “already seen” and handling such nodes
identically to a previously seen node. Such a strategy does not propagate the
consequences of the identity of two nodes throughout the graph, and is not
equivalent to redirecting the arcs into and out of the node in question. One such
consequence, as mentioned in the introduction to Section 4, is that methods to
check for the unsatisfiability of a graph and an AND/OR tree are not equivalent.
This will be clear when we present the algorithm which performs this check on
H-graphs.

As before, let G be an H-graph obtained at some stage of expansion, and node
X E G be chosen for expansion. Let L = ((C,, a,), (C,, a,), . . . , (C,, uk)) be the list
of all pairs such that a node X unifies with the head A, of definite clause C, with
most general unifier uj. It is assumed that the variables m the clauses C, have been
renamed apart from the variables occurring in the graph G, and that any two
distinct clauses have disjoint sets of variables.

In the general case, it is not necessary to instantiate the entire H-graph G for
each substitution uj. This can be achieved by attaching an age field to every node of
an H-graph, as mentioned in Definition 4.1. In order to accomodate the single-solu-
tion protocol, the age field is a list of integers, but under the all-solutions protocol,
each list contains a single element. The method is that a substitution uj is only
applied to the subgraph (Gjage(X)) of G consisting of nodefalse and all descen-
dants of nodefalse having the same age as the node X currently being expanded. We
also maintain a global counter AgeCounter which is used in the following way to
update age fields. Except for the graph u,(G(age(X))[u,(X) + u,(G,-1)], in which
all nodes have the same age as X, for j = 2,. . . , k the counter AgeCounter is

HORNLOG: A GRAPH-BASED INTERPRETJSR 133

incremented by 1, and the age field of every node in the graph uJG]uge(X))[uj(X)
+ uj(Gcj)] is set to AgeCounter.

In order to obtain the final graph resulting from an expansion step involving
the list of substitutions L = ((C,, a,), . . . , (C, u,)), certain H-graphs are merged at
nodefalse. There are two types of merging operations: @ under the all-solutions
protocol, and + under the single-solution protocol. Given two H-graphs G, and G,,
the graph G, @ G, is obtained by merging the root nodes of G, and GZ, but not
performing any other merging. The graph G, + G, is obtained by merging the root
nodes and all nodes having the same label. In this case, the age lists of the two

nodes being merged are also merged. Let (G]age (X)) be the subgraph of G
consisting of nodefalse and all descendants of nodefalse whose age is not equal to

age(X).
Under the all-solutions protocol the graph G’ obtained as the result of the

expansion step involving the list of substitutions L = ((C,, a,), . . . , (C,, u,J) is

(Wage(X)) eo,(GIage(X))[u,(X) *u,(G,~)] @ *..

Under the single-solution protocol, the graph G’ is

(Ww(X)) +dGlw(X))[~dX) -u~(G,,)] + **-
+&+w(X))[u,(X) -J,&)].

In the first case, we write

G j (Ol,...~‘Jk) G’,
8 (C,,...,C,)

and in the second case,

G j (‘J,,....%) G’,
+ (C,,...,C,)

Note that in the all-solutions protocol, merging of nodes only occurs within
subgraphs whose nodes have the same age. Under the single-solution protocol, the
only condition for merging nodes is that their labels are identical, and nodes having
different ages can be merged.

In order to guarantee completeness, it is crucial that the expansion of the
H-graph be, in some sense, fair, i.e. that no node waits forever for expansion. This
corresponds to a breadth-first expansion strategy. To ensure fairness, the status field
of each node is assigned one of the following four values:

(1) young, meaning that this is a newly created node;

(2) mature, meaning that the node is ready to be expanded;

(3) old, meaning that this node has been expanded;

(4) dead, meaning that expansion of this node leads to a dead end.

The change of status of a node obeys the following fairness rules: (1) A young node
can become mature only after all mature nodes have become old, (2) all young
nodes must become mature, (3) all mature nodes must become old. When all mature
nodes have become old, all young nodes become mature. When a definite clause

134 RAN H.GALLIERANDSTANRAATZ

e(&) . . . m(%) mm) ... 4M

FIGURE 4. Expansion step.

A : - B,, . . . , BP is used to expand an H-graph, the status field of the substitution
instance of the head a(A) is set to old, and the status fields of the substitution
instances of its successors a(Bj), 1 I i sp, are set to young. If the definite clause is
an axiom A, then the status field of the substitution instance a(A) is set to old.

We will illustrate the expansion step in the HORNLOG method with three exam-
ples, two abstract and one concrete.

Example 4.2. Let P be a logic program partitioned into the set {N,, . . . , N,,} of
negative clauses, the set { C,, . . . , Cnd} of definite clauses of the form A : - B,, . . . , BP
(pzl), and the set {F,,..., F,,} of axioms. Figure 4 shows the graph at some
expansion stage in which mature note X, chosen for expansion, has unified with the
head A, of the definite clause C, = A, : - B,,.. ., BP1 with substitution ul, and also
with A,, the head of the definite clause C, = A, : - D,, . . . , Dp, with substitution
u2. The first unification has resulted in graph a(G]age(X))[ul(X) + ul(Gcl)]
with the subgraph containing root a,(X) = u,(A,) and immediate descendants
e1(B,), . . f 9 ul(B,,) being grafted at ui(X), and the second unification resulted in
the graph u,(G(age(X))[u,(X) + uz(Gc,)]. Both u,(X) and uz(X) have their status
set to old, and all the a,(Bi) and u2(0,) have their status set to young.

Under the all-solutions protocol, merging occurs in region 1, and separately in
region 2. After u,(Gc,) and u2(Gc,) have been grafted on, merging occurs again
between nodes in regions 1 and 3, and separately, between nodes in regions 2 and 4.
Under the single-solution protocol, in addition, merging of nodes occurs across all
regions. The generalization to the case in which the node chosen for expansion
unifies with any number of definite clauses should be clear.

Example 4.3. Consider the following set of clauses, which are an example of
general Horn-clause programming as defined in Section 3:

1. :-P(X),q(X,Y),u(-w(z)).

2. P(U).

3. n(b).

4. q(X,Y):-r(X,Y),s(X,Y).

5. r(X,Y) :- t(f(X),Y).

6. s(X,Y):-t(f(X),Y),m(b).

HORNLOG: A GRAPH-BASED INTERPRETER 135

7. t(f(X),Y) :-a(Y,f(X)).

8. m(b) :-n(b).

9. n(b):-m(b). \

10. ?-,u(a,Y).

Note that the first clause is a negative clause used as an assertion, and that the query
contains a negation. It is also worth pointing out that this example contains two
clauses, 8 and 9, which are mutually recursive. This example has been chosen with
simplicity of presentation very much in mind. In particular, for every expansion
step, the node chosen for expansion unifies with only a single definite clause, which
implies that all nodes have the same age. Thus, for each expansion step, 0 I i s p - 1,

The extent of merging is also restricted. (Example 4.4 examines merging in the more
general case.)

The initial graph for this example is shown in Figure 5. Nodes are annotated by
the schema Zubel(index*stat”s), where label is a substitution instance of an atomic
formula, index is an integer index of nodes, and status is the status field of the
node, denoted as m for mature, o for old, and y for young. Edges are annotated by
(clause, a), where clause is the clause associated with the edge and u is a substitu-
tion. We will adopt the rule that the node chosen for expansion will be the mature
node of lowest index.

On the first expansion step, the mature node with lowest index is node 2. The
procedure maintains for each node, in a manner analogous to the connection-graph
procedure [18], a list of clauses whose head could unify with the node. In this case,
node 2 can only unify with the axiom p(a) with most general unifier ui = [a/X].
Rewriting by this step yields an H-graph with the same structure as that in Figure 5,
except that there is an arc from node 2 to nodetrue, and the substitution [a/X] has
been applied to the graph. Note also that the status of node 2 has been set to old.
On the next expansion step, node 3 is rewritten by clause 4, that is, q(a, Y) unifies
with q(X, Y) with most general unifier a2 = [a/X, Y/Y], and results in Figure 6.

After a few more expansion steps, the H-graph shown in Figure 7 is reached. For
the sake of clarity, we have dropped the annotations on this graph. The first
unsatisfiable H-graph constructed by the procedure expandGraph is shown in
Figure 8. It has resulted from expanding the node labeled u(Y, f(a)) in the H-graph
in Figure 7 with substitution [a/Y]. Note that a merging of nodes labeled u(a, f(a))
has occurred, but has not resulted in any redirection of arcs from the two nodes. In
this case, the “merging” is equivalent to marking the second node as “already seen”,
as done in various methods that use AND/OR trees. In the more complicated case of
Example 4.4, however, the two methods are not equivalent.

FIGURE 5. Initial H-graph for Example 4.3.

136 JEAN H. GALLIER AND STAN RAATZ

.m)

FIGURE 6. Third expansion step in Example 4.3.

node false

FIGURE 7. Intermediate step in expansion cycle.

no& false

FIGURE 8. First unsatisfiable H-graph for Example 4.3.

FIGURE 9. Intermediate expansion stage.

Example 4.4. Consider amending the logic program of Example 4.3 so that for
some intermediate stage of expansion, an H-graph analogous to that shown in
Figure 7 contains the structure illustrated in Figure 9. The node labeled u(Y, f(a))
has incoming arcs from nodes labeled {m,, . . . , mk}, and outgoing arcs to nodes
labeled {mk+l,...,mk+i }. Similarly, the node labeled u(a, f(a)) has both incoming
and outgoing arcs. Other nodes are not shown. As in Example 4.3, let the next

HORNLOG: A GRAPH-BASED INTERPRETER 137

nodefalse

FIGURE 10. Second intermediate expansion

stage.

rewriting of this H-graph result from expanding the node labeled u(Y, f(a)) with
substitution [a/Y], as shown in Figure 10. As before, the two nodes merge, but now
redirection of arcs occurs, and nodes { m,, . . . , mk+, } and { n,, . . . , r~,+~} are affected.
In this case, the method differs form methods which use AND/OR trees. The
generalization to the case in which more than two nodes merge should be clear.

A number of techniques are used in the method to cut down on the size of the
graphs. One in particular is important. A mature node becomes dead if all
unifications fails. The death of a node may cause the death of some of its ancestors
according to the following rule: A node X gets the status dead iff for every label
(C, a) of an edge with source X, there is a target node of some edge labeled (C, a)
having status dead. The death propagation is conveniently performed using a
variation of the same procedure which checks for the unsatisfiability of an H-graph.
One more technical detail is that the node nodetrue is actually never built. Instead, a
node gets value true when it is matched with a clause of the form B.

We summarize this presentation in a pseudo-code version of the cental procedure
of the expansion step, expandGraph. Let P be a logic program with query Q =
3zi.. .3z,(,H, v . . . V,H,,,), and again assume that P U {If,, . . . , H,} is parti-
tioned into the three subsets (1) { N,, . . . , A’,,} of negative clauses, (2) {F,, . . . , F,,,}
of axioms, and (3) {C,, . . . , Cnd} of definite clauses of the form A : - B,, . . . , BP. -

Procedure expandGraph (G, Flag, Protocol, AgeCounter);

{G is of type H-graph, Flag is a boolean flag, and Protocol is
a boolean indicator of expansion protocol}

begin
repeat

Select any node in G having status mature;
Let X be the atomic formula labeling the selected node. Test whether

X is unifiable with any head A of some definite clause
A : - B,,. . . , BP in {C,, . . . , Cnd}, or axiom 5;

{If X is not unifiable, set status and repeat, i.e., look for another
mature node.}
if all unifications fail then

Set the status of X to dead;
Delete from G all nodes that are inaccessible as a consequence of

X becoming dead;

138 JEAN H. GALLIER AND STAN RAATZ

else
Let L = ((C,, q), . . . , (Ci, a,)) be the list of all pairs

such that X is unifiable with the head Aj of a definite clause
Cj in P, with most general unifier uj of X and Aj;

{Use each clause Cj in L, which is of the form A : - B,, . . . , BP,
1 sj I i, as rewrite rule to expand the H-graph.}

for each pair (Cj, uj) in L do
rewriteRule(jxCj, uj),(Glage(X)),G,, AgeCounter)

endf or;
if Protocol = all-solutions then

Set G=(G]uge(X))@G,@ ... @G,
else

Set G=(G(age(X))+ G,+ ..a +Gj
endif

endif
until some mature node has been selected for expansion, or no mature

nodes are left;
if no mature node has been selected for expansion then

{The graph is thus not unsatisfiable, i.e., the query formula is refutable}
Set Flag to false

else
{The H-graph G has successfully been expanded and is ready to

be tested for unsatisfiability.}
Set Flag to true

endif
end;

Procedure rewriteRule(j,(C, u),G,Gj, AgeCounter);

begin
Form a copy u(G) of G by applying u to every node in G;
Merge nodes having same label in u(G);
if Cj is an axiom then

Set the status of u(X) to old, and its truth field to true
else

Form Gj = u(G)[a(X) +- a(Gc)], that is,
apply u to the H-graph consisting of A as a root,
and B,, . . . , BP as immediate successors, obtaining u(Gc),
graft this subgraph at the node labeled with u(X)
in the H-graph u(G), and merge nodes having the same label;

Set the status of the node u(X) in G, to old;
Set the status of each node a(B,), 12 I < i, in Gj to young

endif;
{If X has participated in more than one unification, update AgeCounter.}
if j = 1 then

Set the age of each node in G, to age(X)
else

Increment AgeCounter;

HORNLOG:AGRAPH-BASEDINTERPRETER 139

Set the age of each node in Gj to AgeCounter
endif

end;

We now review the linear-time algorithm which the HORNLOG method uses to
check an H-graph for unsatisfiability.

4.3. Checking an H-graph for Unsatisjiability

After each expansion step, the procedure checks the H-graph that has resulted for
unsatisfiability, that is, it checks whether the quantifier-free formula that the graph
encodes is unsatisfiable and returns the answer substitution if this is the case. This
check is performed by interpreting the H-graph as a kind of dataflow graph for
propagating truth. Informally, if truth can be propagated to nodefalse, the graph is
unsatisfiable.

We caution the reader that it is the procedure expandGraph which handles
variables. The algorithm described in this section which checks an H-graph for
unsatisfiability operates on the data structure as a lexical object in that it compares
the labels of nodes and their edges. These labels may contain variables, but as the
reader will see in the discussion below, although the algorithm is defined in Dowling
and Gallier [8] for the propositional case, it can be used in conjunction with the
procedure expandgraph in the first-order case.

DeJnition 4.5. Let G’ = (S, E, L) be a graph obtained from the H-graph G for
some logic program P by reversing the edges of G. There is a pebbling of a node
M E S from a set XC S if either A4 belongs to X, or for some label (C, a)
corresponding to some clause C in P and substitution u, there are pebblings of
nodes Y,, . . . , Y, from X, where Y,, . . . , Y, are the sources of all incoming edges of
M labeled (C, a).

Thus node M can be pebbled from X if there is a sequence of “pebbling moves”
such that starting from nodes in X, a node is pebbled iff for some label (C, a), all
sources of incoming edges labeled (C, a) are pebbled. The fundamental property
about the pebbling of an H-graph is stated in the following theorem, shown in [8].

Theorem 4.6. Let G’ be a reversed H-graph for some logic program P. Then G’ is
satis$able IT there is no pebbling of nodefalse from nodetrue.

It can be shown that in order to test whether a node M in G’ can be pebbled, it is
sufficient to visit all nodes reachable from M in the H-graph associated with G’.
There are actually several ways of propagating truth in a graph representing a set of
clauses. The linear-time algorithm used in HORNLOG is a recursive algorithm which,
given any node X, tries to find some label (C, a) among the set of labels of all edges
with source X, such that all the targets of edges labeled (C, a) can be marked true.
Such an algorithm performs a kind of depth-first search. However, there are subtle
difficulties in implementing this strategy because a node may have several incoming
edges and the H-graph may have cycles; thus a simple scheme of marking the nodes
is insufficient.

140 JF.ANH.GALLIERANDSTANRAATZ

The solution adopted in HORNLOG is to mark the edges and allow a visit to a
node if either (1) there is some unmarked edge to it, or (2) one of its immediate
successors has some unmarked edge. This strategy is implemented by including for
the nodes and edges in the H-graph various “bookkeeping” fields. For every label

X = (C, a) there is a counter numargs(X) which keeps track of the number of target
nodes of edges labeled X whose truth field is false. Also, for every node X, there is a
list c&.selist(X), containing the list of all labels (C, a) such that X belongs to the
right-hand side of the clause a(C).

Example 4.7. Consider the graph in Figure 6 for the logic program of Example
4.3. For node 5, chselist(r(a, Y)) = (4, a,), and for clause 4, numurgs(4, az) = 2.

Then, whenever, a node X is marked true, the counter numurgs(C, a) of every
label (C, u) in cluu.selist(X) is decremented by one, and every node B which is the
left-hand side of a clause u(C) such that numurgs(C, a) = 0 is marked true.

Example 4.8. We trace the algorithm applied to the last H-graph of Example 4.3,
shown in Figure 8. First, p(u), u(u, f(u)), and n(b) become true, and then truth is
pushed all the way up to nodefalse. Hence, the above graph is unsatisfiable.
Actually, the algorithm truuerse will traverse the graph and mark the nodes true in
the following order: visit nodefalse, visit p(u), mark p(u) true, visit q(u, a), visit
r(u, a), visit t(f(u), a), visit ~(a, f(u)), mark ~(a, f(u)) true, mark t(f(u), a)
true, mark r(a, a) true, visit s(u, a), visit t(f (a), a) already marked true, visit
m(b), visit n(b), mark n(b) true, mark m(b) true, mark s(u, a) true, mark q(u, a)
true, visit u(a, f(u)) already marked true, and mark nodefulse true.

In addition to the various fields mentioned in the definition of an H-graph, nodes
contain a computed field, which is set to true when the truth field is set to true
during the check for unsatisfiability in order to avoid recomputing it. The procedure
which implements this is given in pseudo-code.

Procedure traverse (Current, G);

{Current is of type Node, G is of type H-graph. Current. Id
is read as the Id field of Current.}

begin
if Current.Computed is false then
{Call traverse recursively. First check to see if Current has been

initialized to true in the building of the H-graph, i.e., that it
corresponds to a substitution instance of an axiom.}

if Current.Truth is true then
Set Current.Computed to true;
Update the counter for every edge label (C, a) in cluuseZist(Current);

{For every edge label (C, a), compute the value of the targets of
all edges with source Current labeled (C, a), as long as the
computed field of Current is false. A Successor of Current is
a set of edges with identical labels.}

else
Let Succ be the set of Successors of Current;
for each Successor in Succ and while Current.Truth is false do

HORNLOG: A GRAPH-BASED INTERPRETER 141

{Traverse recursively for each edge labeled (C, u).}
for each Edge in Successor do

{Visit nodes reachable by unmarked edges.}
Let TargetNode be the target of Edge;
if Edge.Visited is false then

Decrement Current. Marked;
Set Edge.Visited to true;
traverse(TargetNode,G)

{If all edges are visited and TargetNode has some unvisited
outgoing edge, then call traverse}

else
if (Current. Marked = 0) and

(TargetNode. Marked # 0) then
traverse(TargetNode,G)

endif
endif

endfor
{If not already computed and all arguments for edge label

(C, a) are available, compute the truth value of Current.}
if Current.Computed is false then

if numargs((C, a)) = 0 then
Update counter for every edge label (C, a) in ClauseList

corresponding to Current;
Set Current.Computed to true;

endif
endif

endfor;
Set Current.Computed to true;

endif
endif

end;

It should be clear now why mutually recursive clauses, as in Example 4.3, do not
cause this method to loop. Since nodes are visited only if they are reachable by
unmarked edges, or if some successor has an unmarked edge, a nonterminating loop
cannot occur.

4.4. The Main HORNLOG Interpreter

The basic function of the main interpreter is to interleave graph expansion steps
performed by expandGraph and checks for unsatisfiability using the procedure
traverse. In addition, it coordinates the dropping of nodes (under the all-solutions
protocol) that are associated with only one substitution instance in order to ensure
that the graph contains no redundant information, coordinates the updating of the
various fields of nodes and edges, and extracts the answer substitution for an
unsatisfiable graph.

Extracting an answer substitution from an H-graph is not as straightforward as it
may seem. The answer substitution is not associated with arbitrary nodes whose

142 JEAN H. GALLIER AND STAN RAATZ

truth field is true, since some nodes may be true but not participate in the pebbling
of nodefulse. In fact, it is necessary to reconstruct this pebbling. This reconstruction
is performed by a recursive procedure findpebbling that works as follows. Called
from a node n labeled true, if either n is a leaf or n is not the source of a group of
edges labeled identically whose targets are all true, jindpebbling visits n, and returns
the binding associated with output variables (if any such variables are associated
with n). Called from a node n labeled true such that n is the source of a group of
edges labeled identically whose targets are all true, as in the previous case,
findpebbling visits n and returns the binding associated with output variables, but
in addition, JindPebbling is called recursively for each of the true successors in the
leftmost group of true successors of n.

Example 4.9. After the H-graph of Figure 8 is shown to be unsatisfiable as in
Example 4.3, this pebbling is reconstructed, and the binding of the node labeled
~(a, f(a)) (which is associated with the free variable of the query), Y = f(u), is
returned as the answer substitution.

If the graph was expanded under the all-solutions protocol, it contains implicitly
different and disjoint trials towards unsatisfiability. The information associated with
the present answer substitution is not needed for subsequent trials. However, one
has to be very careful not to delete nodes that might be used by subsequent trials
because they are the target of several edges. The trick is to first drop edges, and then
the nodes which are not accessible from nodefalse. Dropping edges is in itself a
subtle process. It is incorrect, for instance, given a node X, to drop a group of
identically labeled edges with source X even if the target nodes of these edges are all
true. Such a strategy can delete edges that are not in fact redundant. The correct
strategy is to identify a group of edges with source X labeled identically, such that
all the target nodes are true, and each of these target nodes is not the source of a
second group of identically labeled edges whose targets are not all true. Only in this
case can the edges in the true group with source node X be deleted. Also, a node
belonging to a pebbling is reset to false, unless it has no successors.

During the expansion cycle the case could occur when there are unexpanded
nodes with status young, but not more nodes with status mature in the graph. Since
one of the fairness rules assumes the presence of a mature node in order to initiate
an expansion step, it is necessary to check the H-graph after each expansion step for
this situation, and update the status of all young nodes to mature if it does. The
procedure reZnitialize performs this step.

We summarize this information in the following section of pseudo-code:

while H-graph G is not unsatisfiable and MoreMatureNodes do
{Check for unsatisfiability.}
truuerse (G) ;

if the truth field of nodefalse is true then
returnAnswer(G);
if all-solutions protocol and user wishes another answer then

{Delete nodes from G that are associated only with present substitution.}

HORNLOG:AGRAPH-BASEDINTERPRETER 143

drop ValidPart (G);
expandGraph (G, MoreMatureNodes);
{Update status fields.}
rernitialize (G);

else
return;

endif
else

{The graph is not yet unsatisfiable.}
expandGraph (G, MoreMatureNodes);
reInitialize(G);

endif
endwhile;
if G not unsatisfiable then indicate query refutable;

We conclude this section with an example showing that the use of the single-solu-
tion protocol may prevent finding all substitution answers.

Example 4. IO.

:-p(a).

:-P(a), p(e).

P(a) :-p(c), p(d).

?--p(X)

If we start with the single-solution protocol, since in the initial graph the node
labeled with p(a) unifies with the head of two clauses [p(a):-p(c), p(d), and
p(X)], after expansion and merging, this node becomes true, and the answer [a/X]
is returned. After dropValidPart, this node is reset to false, and no nodes are
dropped. If the next expansion steps unify p(e), p(d), and p(c) with p(X), in this
order, then the disjunctive answer [e/X] V [d/X] V [c/X] is returned. At this point,
dropValidPart drops the nodes labeled with p(c), p(d), and p(e), and the
procedure stops. The answer [c/X] V [d/X] (which is more general than the
previous one) is not returned.

The problem is the merging of the two (ground) instances of p(a) with dzfirent
ages in the first expansion step. In order to return all answers, these nodes should
not be merged.

5. SOUNDNESS AND COMPLETENESS: A DISCUSSION

In this section we give an argument for the correctness of the HORNLOG method
under the all-solutions protocol as a computation procedure, in the sense that its
operational semantics agrees with the model-theoretic semantics. The case of the
single-solution protocol is similar. Formal proofs of correctness for both protocols
can be found in (14, 271.

144 JEAN H. GALLIER AND STAN RAATZ

We will need the following definition.

Definition 5.1. Let P be a logic program with query Q = 32, _ . .3z,(,H,
.*. V,H,), such that PU{H,,...,

&r>...,

H,} is partitioned into subsets
N,,} of negative clauses and the set {C,, . . . , C,,} of definite clauses. A

sequence of graph expansion steps

where I stands for nodefalse, is called an H-derivation. If, in addition, Gp is an
unsatisfiable H-graph, the derivation is called an H-refutation.

Any unsatisfiable H-graph, by definition, contains a pebbling from nodetrue
to nodefalse. The basic idea of the argument is the following: from an H-refu-
tation

I =, (o:,...,&, G, .
@ (c:,....ci,,

it is possible to extract a sequence of

. . + j cap”‘~ T Q
0 CCP,...,C~#,

Gp,

simple graph expansion steps

where 1 I ij I kj, and 1 I j up, such that:

(1)

(2)

(3)

(4)

N~E {N,,..., N,“} is a distinguished negative clause, and Gh is the corre-
sponding graph.

the node Xj_ i chosen for expansion in each graph expansion step unifies with
the head of only one definite clause (i.e., simple),

G/ is the subgraph q,(Glage(X,_,))[a,,(X,,_,) + ai,(Gc,,)] of Gj, where Xj_r
is the node of G,_, chosen for expansion, and

the graph G; is unsatisfiable.

P

In words, for logic program P, an unsatisfiable H-graph Gp constructed by the
HORNLOG proof procedure consists of many subgraphs, defined by age, and for any
subgraph which yields a pebbling of nodefalse, this subgraph can be reconstructed
by a series of simple graph expansion steps.

To address to question of a correct answer substitution, we proceed by defining
the meaning of a logic program.

DEFINITION 5.2. The model-theoretic semantics for logic program P with query
Q = 3,. . . 3z,Q’, where Q’ = (,H, V . . . v-,H,,,), each Hi a Horn clause, is
defined as the set

D(P,Q)=U({(t: ,..., t;) ,..., (tl” ,..., t,k)},krll

I= P 1 Q’ [t;/z,, . . . , t;/z,] V . 1 . V Q’ [t,k/z,, . . . , t,“/z,] > ,

where each (ti,..., t:), 1 I i I k, is an n-tuple of terms (possibly containing
variables) from the Herbrand universe for P and Q.

HORNLOG:AGRAPH-BASEDINTERPRETER 145

The standard Herbrand model consisting of a positive subset of the Herbrand
base is not sufficiently rich to capture the semantics of disjunctions of substitutions
instances of the query formula, as shown in the examples of Section 3.

The correctness of the procedure for computing answer substitutions can be
argued as follows. Let P be a logic program consisting of a finite set of Horn clauses
and with query Q = 32,. . . 3z,Q’, where Q’ = (-TH, V . . . V ,H,), every Hj a Horn

clause. Let the sequence of simple expansion steps

1 a”‘*G
0

a

Nb Cl
O'G1 ... Gp_l -"'Gp

CP

be extracted from an H-derivation for P and Q as described above. If (Hi,, . . . , Hjk)

is the subsequence of (Nb, C,, . . . , C,) consisting of clauses in {H,, . . . , H,,,}, then it
can be shown that

~ P ~ ~ei,(Hj,) V . . . V_Si,(HiI), (*>

where ej = oj 0 Oj+ i, for every j, 1 <j <p - 1, and 8, = up.
Since each substitution Bi, in P I) -,Sil(H,,) v . . - V Bjk(H,k) corresponds to a

tuple of terms (t{, . . . , t!), and since Q’ = (Y HI V . . . V 7 H,,,), we have

i=TH;,[t:/z, ,..., t:/z,] V ... ‘&H&f/z, ,..., t,“/z,]

3 Q’[t:/zl,. . . , t$‘z,2] v . . . v Q’ [t,k/z,, . . . , t,k/zn] ,

and, together with (*), this implies that

k P 3 Q+:/z,, . . . , ti,‘z,] v . . . V Q’[t:,‘zl,. . . , t,k/z,],

where {(t: ,..., t!J ,..., (tf ,... , t,“)} is the set of tuples of terms corresponding to the

disjunctive answer. That is, every set of tuples of terms returned by an H-refutation
belongs to D(P, Q).

Note that the above tells us when disjunctive answers actually arise. Disjunctive
answers arise when the query Q contains at least one disjunct -, Hj with a negative
literal (equivalently, H, is a definite clause), and when such clause(s) are used in at
least two expansion steps in the sequence of graph expansions (that is, the sequence

(Hi,,..., Hi,) has at least two elements).

In order to show the completeness of the method, we proceed as follows. Recall
that P is unsatisfiable, iff, by the Skolem-Herbrand-Giidel theorem, a set 9’ of
ground substitution instances of clauses in P is unsatisfiable, Now, 9 corresponds
to a graph 9 whose nodes are the ground instances in 9, and 9 is unsatisfiable iff
there is a pebbling of nodefalse from nodetrue in the graph 9. The trick then, is to
show that 9 can be “lifted” to a graph G that can be obtained in a sequence of
simple expansion steps, and such that 9 is the homomorphic image of G in this
sequence.

The details of the proofs of soundness and completeness of the HORNLOG method
can be found in [14, 271.

In previous attempts to proving the completeness of the HORNLOG method, we
tried to use the fixed-point method of Apt and Van Emden [2], but without success.
The main difficulty is that their approach does not seem to account easily for
disjunctive answers. We are investigating whether a reasonable fixed-point semantics
can be given for HORNLOG. In this regard, recent results of Fitting [X] may turn out
to be helpful. In a recent paper [3], Apt, Blair, and Walker develop a theory of fixed

146 JFiANH.GALLIERANDSTANRAATZ

points of nonmonotonic operators, and show that it provides the declarative
semantics of a certain class of programs where negative literals are allowed in the
premise of a clause (the stratiJiedprograms). These results are very interesting, but it
is not clear that they can be applied to HORNLOG programs, because negative
assertions are not allowed.

6. COMPARISON WITH OTHER METHODS

The method presented in this paper has the flavor of a number of previously
reported theorem proving methods that either use graphs in some manner or are
based on the problem-reduction paradigm. However, we claim that there are
significant differences between how other methods use various graph data structures
and this problem-solving paradigm, and the method of HORNLOG.

The first and most obvious difference is that the other methods are full first-order
theorem provers, whereas the HORNLOG method applies only to the Horn-clause
logic subset. This is an important distinction, since the complexity of the satisfiabil-
ity problem for arbitrary clauses is NP-complete even in the ground case, and the
traverse procedure shows the unsatisfiability for ground Horn clauses in linear time.

The various connection-graph methods [l, 5,18,27] use graphs whose nodes are
clauses, and whose edges labeled with substitutions connect unifiable literals of
opposite sign. The nodes of H-graphs are atomic formulae, and the edges are pairs
(C, a), where C is a clause name and u a substitution. In the connection-graph
method, a given graph evolves to another graph in the following way: A link is
selected and deleted, and then the resolvent is added and linked to the previous
graph. Also, the resulting graph is reduced by removing clauses containing an
unlinked literal and deleting other clauses and links which become redundant as a
result of the removal. In HORNLOG, a graph is rewritten to another by expansion
steps. A set of clauses is shown to be unsatisfiable in the connection-graph method
when the empty graph is reached. In HORNLOG, unsatisfiability is discovered when
the H-graph is checked by the procedure traverse.

The MESON procedure [23] is also similar in spirit to HORNLOG. Both are instances
of the problem-reduction paradigm, and both use sophisticated marking schemes of
their data structures. However, the data structure used in MESON is an AND/OR tree
and not a graph, and its satisfiability is a consequence of propagating the truth
value of leaves in this tree rather than the use of a method similar to the procedure
trauerse. In this paper when we have made the distinction between an AND/OR tree
in which nodes are marked as “already seen” or “identical to previously seen”
nodes, we had the MESON procedure in mind.

The idea of using clauses as rewrite rules as in context-free grammars is not new
and has been exploited by Sickel [28] and Chang and Slagle [5]. However, these two
methods are described for arbitrary clauses and are therefore more complicated.
Sickel associates an attribute grammar with a set of clauses, and this attribute
grammar is used to generate refutations. Chang and Slagle first build a connection
graph from the set of clauses, and associate with this graph a set of context-free
rules. These rules are then used to generate plans as guides for the search for a
refutation. Although somewhat similar in spirit, our method is technically different
and more direct because it applies to Horn clauses.

HORNLOG: AGRAPH-BASEDINTERPRETER 147

It should be noted that an unsatisfiable H-graph does produce a mating as
defined in Andrews [l]. However, the major difference is in the method by which it
is obtained and checked. As a matter of fact, a major difference with all other
methods is in the procedure for checking unsatisfiability of the final graph. Since
traverse operates in linear time in the size of the graph, the cost of calling traverse is
much smaller than the cost of expanding graphs, and consequently we can afford to
call traverse after every expansion step without significant time overhead.

7. CONCLUSIONS

We have presented a new method for logic-programming interpreters based on
graph rewriting and on a linear-time algorithm for showing the unsatisfiability of
ground Horn clauses. The system is presently implemented in PASCAL on a VAX
11/785, and uses a powerful LAr_R(l)-parser constructor incorporating systematic
error recovery [17].

The method applies to a class of logic programs that we have called general
Horn-clause programs. The examples given in Section 3 illustrate both some of the
expressive power and limitations of general Horn-clause programs. It is possible to
state some forms of negation without recourse to the negation-by-failure semantics,
as shown by Examples 3.1 and 3.2. More “complicated’ forms of negation, for
instance an embedded negation as in ~(~q(X)), or a negated literal in the body of
a clause as in A : - B,, . . . , 7 Bi, . . _, BP, are not expressible, however.

It is possible to extract indefinite answers, in the sense that the answer is a
disjunction of substitutions, as shown in Examples 3.2, 3.3, and 3.4. It seems clear
that for certain applications indefinite answers are practically more desirable than
no answer at all. For example, in a medical domain, it is certainly better for a
system to conclude that a patient suffers from either condition A or from condition
B than for the system to conclude that the patient suffers from no condition
because it cannot return a definite answer. Indeed, a disjunctive answer gives a list
of possible answers, and often suggests the addition of new assertions that would
improve the definiteness of a program. On the other hand, we admit that the
underlying mathematical semantics of HORNLOG may not be quite as simple as
systems which return only definite answers (i.e., so far, we do not have a least-fixed-
point semantics).

Finally, it is even possible in some cases, though not convenient, to express
information which is not logically equivalent to any set of Horn clauses, by using
what can only be called “programming tricks”, as shown in Example 3.4. The use
and need for such tricks also points out the inevitable fact that general Horn-clause
programs are a proper subset of the full first-order logic, and that there will be
problems that cannot be conveniently expressed in this subset. It is possible to
generalize the HORNLOG procedure to handle clauses with negative literals in the
premise, but his leads to a refutation procedure whose computational complexity is
prohibitive (just in the ground case, graphs of exponential size may have to be
constructed).

An interesting approach for dealing with a class of formulae more general than
Horn clauses is presented by Miller in [25]. Miller gets around the problem of

148 .JJ%ANH.GALLIERANDSTANRAATZ

having to deal with indefinite answers in an astute fashion. His solution is to
abandon classical provability and instead to use more “constructive” notions of
provability, such as intuitionistic provability. In this way, definite answers can be
ensured for a class of programs consisting of formulae that may contain implica-
tions or disjunctions. Miller also gives a least-fixed-point semantics in terms of
Kripke models, and discusses a theory of modules. He defines an interpreter at a
fairly abstract level, and neither the complexity of his method nor an actual
procedure using unification is presented.

In this paper we have presented the method with a “ theorem proving” flavor, in
the sense that it is complete and uses a breadth-first search for answer substitutions.
It is equally possible to present the method as a procedure which uses depth-first
search and backtracking, in a manner similar to PROLOG. Such a version has also
been implemented in PASCAL. In this version, we represent the graph as a stack of
records, each component of which consists of two parts:

(1) a section of the H-graph related to either the initial H-graph as described
above, or the subgraph of an expansion step, and

(2) a substitution.

In the place of the construction of the graph resulting from considering all clauses
that are unifiable with the selected mature node, instead, as in interpreters for
PROLOG, only the first clause in lexical order is considered. The substitutions are not
applied, so that when backtracking occurs, any state of the graph can be recon-
structed from the information held in the stack. The instantiated graph is recon-
structed as the stack is used by traverse to test for unsatisfiability.

We chose to present the breadth-first version of HORNLOG in detail, rather than
the backtracking version, for two reasons. Presenting the breadth-first version
enhances the clarity of presentation of eliminating the need to consider a HORNLOG
counterpart of an SLD tree built by the SLD-resolution method, and the details of
its traversal. Each node in such a counterpart is an H-graph, and the leaves are
unsatisfiable H-graphs. Since the method itself uses a data structure which is re’-‘-l
to the SLD tree, we felt the simultaneous explanation of two such data strucl
would unnecessarily complicate the presentation. There is, in addition, a I
fundamental reason that motivated our choice of presentation.

While H-graphs can be represented in the form of stacks, this representation is
not very natural and significantly complicates the procedure. The problem is that
the H-graph data structure has the property that previous stages of the expansion
cannot easily be recovered. Stated in another way, it is difficult to undo an
expansion step during backtracking. Our experience suggests that the complications
necessary to the procedure in order to make such a recovery possible cause it to
compare unfavorably with SLD resolution in a single-processor environment.

In a parallel environment, however, we think the HORNLOG method will compare
favorably with SLD resolution. A fundamental parallel interpretation seems im-
mediate in both the graph-expansion step and the graph-traversal step. Since any
nondead node can be chosen at any stage of the expansion cycle, conceptually,
subject to the synchonization induced by a logic-programming language [7], for
every expansion cycle on an architecture with n processors, n nodes could be

HORNLOG:AGRAPH-BASEDINTERPRETER 149

expanded simultaneously (one per processeor), and the n disjoint graphs merged.
The resulting graph is tested for unsatisfiability by the traverse procedure, which, as
was pointed out in [8], is itself modeled by the dataflow model. Since the H-graph
data structure is a compact encoding for all possible ways of showing a formula
unsatisfiable, a parallel strategy has a natural interpretation.

Note two differences between the HORNLOG method and SLD resolution in a
parallel environment. First, it is possible for the construction of all branches of the
SLD tree [2] in parallel to result in extensive duplication of information (the same
substitution instance of a clause could occur in many different branches). The
H-graph data structure represents duplicate information by merging nodes with
duplicate labels. Second, nodes in an SLD tree are labeled with either negative
clauses or the empty clause, while nodes in an H-graph are labeled with atomic

formulae. It is possible (this is clearly a conjecture) that the finer “granularity” of
the data structure used in HORNLOG coupled with the flexibility in the expansion
process (each substitution instance of a predicate is attached to a processor, and any
nondead node is available for expansion at any point in the derivation) could
suggest a new approach to the problems induced by a logic-programming language
on a parallel architecture. These are issues that we will have to explore before the
conjecture that HORNLOG compares favorably with SLD resolution can be substanti-
ated.

We also comment on the approach to equality used in HORNLOG. Based on work
which extends SLD-resolution to admit equational Horn clauses [ll, 15,161, we have
defined two extensions to the HORNLOG method presented here, based on unification
modulo a set of equations, or E-unification. This first extension is general, in that it
applies to arbitrary set of equational Horn clauses, but is not practical, as it assumes
a procedure which gives an explicit sequence of substitutions for each E-unifier. The
second extension, which we have called the HE+-refutation method, applies to any
set of equational Horn clauses that admits a procedure enumerating a complete set
of E-unifiers, and is complete for the set of logic programs containing clauses of the
form s A t, Q : - P,, . . . , P,,, or : - P,, . . . , P,, where s and t are first-order terms, Q
is a nonequational atomic formula, and P,, _ . . , P, are either equational or nonequa-
tional atomic formulae. This is an important class of equational logic programs, in
that it subsumes the paradigms of functional, logic, and equational programming.

It may also be possible to adapt our graph-based method to make it more
incremental. By this, we mean that we would like to be able to reuse as much as
possible a graph built by the procedure and found unsatisfiable, when the set of
input clauses is changed, without having to go through previous expansion steps
again. This would seem particularI;, advantageous when the procedure returns
indefinite answers. Indeed, in many cases, an indefinite answer suggests assertions
that could be added to the original sei.

APPENDIX A

In this appendix, we give the proof of Theorem 2.3. Recall the statement of
Theorem 2.3: Consider a first-order language without equality having at least one
constant. For any (finite) set P of universally quantified Horn clauses, the following

150 JEAN H. GALLIER AND STAN RAATZ

properties hold:

For any m (m 2 2) sentences Aj = 3~;. . . 3y~rBi, where each Bj is a conjunc-
tion of atomic formulae, if

!=PPA~VA,V a-. VA,,

then for some i, 1 I i s m, we have

kPxAi.

For any sentence 32,. . . 3z,Q, where Q is a conjunction of atomic formulae,
if

l=P33z p..3z,Q,

then there is a p-tuple of ground terms (t,, . . . , rp) such that

t==pI Q[h/q,..., fp/zp].

PROOF. Theorem 2.3 can be proved using the fact that Horn sentences are preserved
under direct products of models (Chang and Keisler [4]), or proof-theoretically as in
Gallier [12]. We give a model-theoretic proof because it also applies to a slightly
more general case. In this proof, the following notation is used. V denotes a
countable set of variables, J? denotes a first-order structure, A4 denotes the
underlying domain of this structure, and an assignment is any function s : 7v+ hf.
Given a term t, a formula A, a first-order structure M, and an assignment
s : V+ M, the value tM[s] and the truth value of A&[s] for s are defined in the
usual way (see Gallier [12]). Recall that if A is a sentence (that is, it has no free
variables), then A&[s] does not depend on s. Given a formula A, a structure .M,
and an assignment s, we write At= A[s] iff A,[s] = true, A!= A iff AM[s] = true
for every assignment s, and I= A iff &t= A for every structure .M. We also write
At+ A[s] iff A,[s] = false for some assignment s, and we write # A iff A!# A for
some structure A%. Note that if A is a sentence, then .A kt A iff A != 7A.

Let Z be a nonempty set which will be used as an index set, and let (Ai) i E I be an
Z-indexed family of nonempty sets. The Cartesian product, denoted by n(A,)i E I, is
the set of all Z-indexed sequences f : I -+ Ui E I Ai such that, for each i E I, f(i) E A;.
Such Z-sequences will also be denoted as (f(i) 1 i E Z). For each i E I, let Ai be a
structure. We define the direct product M of the (Ai); E I as the structure defined as
follows:

The domain of A is the Cartesian product l-l< Mi) i E I.

(1)
(2)

(3)

Every constant symbol c is interpreted as the Z-sequence (c&, 1 i E Z).

Every function symbol f of rank n > 0 is interpreted as the function such
that, for any n Z-sequences G1 = (g’(i) (i EZ),...,G”= (g”(i) Ii E Z),

fM(G1,..., G”)=(f,,(g’(i),...,g”(i))ji~Z).

For every predicate symbol q of rank n 2 0, q is interpreted as the predicate
such that, for any n Z-sequences G1 = (g’(i) 1 i E Z), . . . , G” = (g”(i) I i E Z),

qA(G?.., G”)=true iff q&,(gl(i),...,g”(i))=true forall iEZ.

The direct product & is also denoted by I~(J?,), E I. If Z = { 1,. . . , m }, note

HORNLOG: A GRAPH-BASED INTERPRETER 151

that every assignments s : V+ l7(ATI;)~ E I corresponds to a unique m-tuple

(s r, . . . , s,) of assignments si : f-+ 44,.

We now prove the theorem. First, we prove (i). Assume that k P I A, v A,

V . - . VA,, but # P 3 Ai for every i, 1 I i I m. Since P is a set of sentences and
A 1,. . . , A, are sentences, there are structures _Mi, 1 I i I m, such that

di#PzAi.

Hence, for every i, 1 I i I m,

JHikP,

and

Since A, = 3~;. . . 3yj,Bi, where B, is a conjunction of atomic formulae, 7A, is of the
form 7Ai=V_y;‘...Vy;,(,Bi V ..- V-, B&), where the B,f are atomic. Now, for
every i, 1 I i I m, &Ii b -,Ai iff for every assignment si : V+ &I,, Ai k (,Bi
v . . . V -, B,f,,)[s,]. Hence, for every i, 1 I i I m, and for every si, there is some jj,
1 <j, I m,, such that

Ai!= ,Bj[si]. (*)

Note that for any atomic formula B and any assignment (sr, . . . , sm) : V+ n(Mi)i E I,
we have

Il(Ai)i~Ib lB[(sl,..-~ ‘,)I
iff

IJ(Ai>i~Ik B[(sl,..., sm)l
iff (by the definition of validity in a direct product)

Ai !# B[si] forsomei, l_<iIm,

iff

JIit= ,B[si] forsomei, llilm.

Applying the above observation to -, B/‘I [si], by (*), we have

n<~,)icl~l’Bfl[(sl,...,s,)],

that is,

n<~;>i,,~lBi[(s,,...,s,)I,

for every i, 1 < i I m. Since the above argument holds for any arbitrary sr,. . . , s,,,,
we have shown that for every i, 1 I i I m, we have

II(~i)rc~~~A,.

Since P is a set of Horn sentences, and sets of Horn sentences are preserved under
direct products [4],

JX,I=P foreveryi, llism

152 JEAN H. GALLIER AND STAN RAATZ

implies that

n(“i)iGIbPo
But then, we have shown that

l-&qi,lk P A -7A, A ,A, A -. . /\,A,,

contradicting the fact that

~=PPA~VA~V .‘a VA,.

Hence, we must have I= P I Ai for some i, 1 I i I M.
We now prove (ii). Let HT be the Herbrand universe, that is, the set of all terms

built up from constant and function symbols in the language. Assume that I= P I
32 1.. .3z,Q, but that for every p-tuple of terms (tr, . . . , fp) E HTP, we have !# P z~

Q[tJq,. . . , t,/z,.]. Then, for every p-tuple of ground terms t = (tr, . . . , tP) E HTP,

there is a structure ./I, such that

~r~PA,e[tl/z,,...,t,/z,]. (**)

For simplicity of notation, for each t = (tl, _ . . , fp) E HTP, let us denote
Q[h/q,. . . , fp/zp] as Q(t). From (* *), for every t E HTP, we have

M,bP and &Y,k7Q(t).

Now, we use two facts:

(1) For any formula B = B, A * - . A B,,,, where B,, . . . , B, are atomic formulae,
for any assignment (sili~Z): V+II(ZVZ,)~,,, we have

n(~i)i,,~=,B[(siliEZ)I

iff, for some j, 1 Ij I m,

n(~i)i~l~lBj[(s,l’E’)l
iff, for some j, 1 Ij I m,

lFI<di>iETw Bj[(siliE1)l
iff, for some j, 1 ~j I m (by the definition of validity in a direct product),

JI; # Bj[si] for some i E I,

iff, for some j, 1 Ij 5 m,

.Mi!= TBj[si] for some i E I,

iff

.M, t= ,B[si] for some i E Z.

(2) Horn sentences are preserved under direct products.

Let Z = HTP. Since

A,bP,

by fact (2) we have

ll(Az>iClk PO

P is a set of Horn clauses, and since for every t E Z we have

HORNLOG: A GRAPH-BASED INTERPRETER 153

Since Q(t) = Q,(t) A . . . A Q,(t) for some atomic formulae Q,,. . ., Q,, and for

every t E Z we have

At I= lQ(t>,
by fact (1) we have

II(~i);E~‘=~Q(‘) for every t E Z.

Hence, we have shown that:

(3) The set P u {-,Q(t) 1 t E Z} is satisfied in FI(J?~),,,.

On the other hand, since E P 3 3z,.. .3z,Q, the set P U {t/z, . . .VzP7Q} is un-
satisfiable. We claim that this implies that:

(4) The set P U c7Q(t) 1 t E Z } is unsatisfiable.

Note that (4) contradicts (3), and this will establish part (ii) of the theorem. Since all
sentences in P U {ifzl _ . . 'dz,-,Q } are clauses with no existential quantifiers, it is
well known [12] that a sentence in negation normal form with no existential
quantifiers is valid in some structure iff it is valid in some Herbrand structure, that
is, a structure whose domain is HT. If P U c7Q(t)) t E Z } were satisfiable, it would
be satisfied in some Herbrand structure 4. But then, since the domain of .& is the
set HT of Herbrand terms, by the definition of validity of a universal formula, the
fact that &%!=:A for every A E P U c7Q(t)] t E Z} implies that &!F PA
VZ 1.. . VzP7Q, contradicting the unsatisfiability of P U {Vz, . . . Vz,-,Q }. Hence, (4)
holds.

Since the assumption that # P 3 Q(t) for every t E HTP leads to a contradic-
tion, we must have K P I Q(t) for some t E HTP. III

Corollary. Let P be a conjunction of universal Horn clauses over a fkst-order language
without equality having at least one constant. For any finite disjunction A,
V -.. VA,ofsentencesoftheformA,=3y,... 3yp, Bi, where Bj is a conjunction of

atomic formulae, if

I=PxA,v em- VA,,

then there is some i, 1 I i I m, and some tuple of ground terms (t,, . . . , t,,), such
that

~P~B,[t,/z,,...,t,,/z,,].

PROOF. Immediate by Theorem 2.3. q

REMARK.

(1)

(2)

A shorter proof of part (ii) of Theorem 2.3 can be given from part (i) of
Theorem 2.3 and the Skolem-Herbrand-Godel theorem. The proof that we
have given uses more basic principles and shows the central role of the
preservation under direct products. In effect, we have proven directly a
special version of the Skolem-Herbrand-Giidel theorem for (universal) Horn
formulae.

The proof of part (i) applies to any set of sentences preserved under direct
products. This includes sentences containing existential quantifiers, and

154 JEAN H. GALLIER AND STAN RAATZ

sentences not equivalent to any Horn sentences [4]. Part (ii) holds for any
universal set of sentences preserved under direct products. However, by
McKinsey’s theorem [4], such a set of sentences has a set of axioms consisting
of universal Horn sentences. Hence, it is likely that Theorem 2.3 only holds
for sets of universal Horn sentences, and we conjecture that this is so.

Our proof technique also allows us to show that Theorem 2.3 holds for languages
with equality. However, due to the lack of space, this generalization is presented in
Ref. [14].

We would like to thank the referee for his careful review, and for making numerous suggestions which led

to improvements in the presentation, particularly regarding the section on soundness and completeness.

We would also like to thank Ken McAloon and Gopalan Nadathur for incisive comments and helpful

suggestions given while this paper was being written.

REFERENCES

8.

9.

10.

11.

12.

13.

14.

15.

16.

Andrews, Peter, Theorem Proving via General Matings, J. Assoc. Comput. Much.
28(2):193-214 (1981).

Apt, K. R. and Van Emden, M. H., Contributions to the Theory of Logic Programming,
J. Assoc. Comput. Much. 29(3):841-862 (July 1982).

Apt, K. R., Blair, H., and Walker, A., Towards a Theory of Declarative Knowledge,
Technical Report, IBM T. J. Watson Research Center, Yorktown Heights, N.Y. 10598,
1985.

Chang, C. C. and Keisler, J. H., Model Theory, North-Holland, 1978.

Chang, C. L. and Slagle, J. R., Using Rewriting Rules for Connection Graphs to Prove
Theorems, Artificial Intelligence 12(2):159-178 (1979).

Clark, K. L., Negation as Failure, in: Logic and Databases, Plenum, 1978, pp. 293-322.

Connery, J. and Kibler, D., Parallel Interpretation of Logic Programs, in: Proceedings of
the Conference on Functional Programming Languages and Computer Architecture, Vol. 1,
pp. 163-170.

Dowling, W. P. and Gallier, J. H. Linear-Time Algorithms for Testing the Satisfiability of
Propositional Horn Formulae, J. Logic Programming 1(3):267-284 (1984).

Fay, M., First-order Unification in an Equational Theory, in: Proceedings of the 4th
Workshop on Automated Deduction, Austin, Tex., 1979.

Fitting, M., A Kripke/Kleene Semantics for Logic Programs, J. Logic Programming
2(4):295-312 (1985).

Gallier, J. H., Fast Algorithms for Testing Unsatisfiability of Ground Horn Clauses with
Equations. J. Symb. Comput., submitted for publication

Gallier, J. H., Logic for Computer Science: Foundations of Automatic Theorem Proving,
Harper and Row, 1986.

Gallier, J. H. and Raatz, S., Logic Programming and Graph Rewriting, in: 1985 ZEEE
Symposium on Logic Programming, Boston, pp. 208-219.

Gallier, J. H. and Raatz, S., Theoretical Results for the HORNLOG Procedure, Technical
Report, Univ. of Pennsylvania, Philadelphia, 1986.

Gallier, J. H. and Raatz, S., SLD-Resolution Methods for Horn Clauses with Equality
Based on E-Unification, in: 1986 IEEE Symposium on Logic Programming, Salt Lake
City, Utah, to appear.
Gallier, J. H. and Raatz, S., Extending SLD-Resolution to Equational Horn Clauses
using E-unification, J. Logic Programming, to appear.

HORNLOG: A GRAPH-BASED INTERPRETER 155

17. Jalili, F. and Gallier, J. H., Building Friendly Parsers, in: POPL 9, Albuquerque, N.
Mex. 1982, pp. 197-206.

18. Kowalski, R. A., A Proof Procedure Using Connection Graphs, J. Assoc. Comput. Mach.
22(4):572-595 (1975).

19. Kowalski, R. A., Logic for Problem Solving, Elsevier North-Holland, 1979.

20. Kowalski, R. A. and Van Emden, M. H., The Semantics of Predicate Logic as a
Programming Language, J. Assoc. Comput. Mach. 23(4):733-742 (1976).

21. Kowalski, R. A. and Kuehner, D., Linear Resolution with Selection Function, Artzjkial
Intelligence 2:227-260 (1970).

22. Lloyd, J. W., Foundations of Logic Programming, Springer, New York, 1984.

23. Loveland, D., Automated Theorem Proving: A Logical Basis, North-Holland, 1978.

24. Miller, D. and Nadathur, G., Higher-order Logic Programming, in: Proceedings of Third
International Conference on Logic Programming, London, 1986.

25. Miller, D., A Theory of Modules for Logic Programming, in: 1986 IEEE Symposium on
Logic Programming Salt Lake City, Utah, to appear.

26. Nilsson, N. J., Principles of Artificial Intelligence, Tioga Press, 1980.

27. Raatz, S., Aspects of a Graph-Based Proof Procedure for Horn Clauses, Ph. D. Disser-
ation, University of Pennsylvania, Dept. of Computer and Information Science, 1987.

28. Sickel, S., Formal Grammars as Models of Logic Derivations, in: Proceedings of IJCAI-77,
1977, pp. 544-551.

