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HORNLOG: A GRAPH-BASED INTERPRETER 
FOR GENERAL HORN CLAUSES 

JEAN H. GALLIER AND STAN RAATZ* 

D This paper presents HORNLOG, a general Horn-clause proof procedure that 
can be used to interpret logic programs. The system is based on a form of 
graph rewriting, and on the linear-time algorithm for testing the unsatisfi- 
ability of propositional Horn formulae given by Dowling and Gallier [8]. 
HORNLOG applies to a class of logic programs which is a proper superset of 
the class of logic programs handled by PROLOG systems. In particular, 
negative Horn clauses used as assertions and queries consisting of disjunc- 
tions of negations of Horn clauses are allowed. This class of logic programs 
admits answers which are indefinite, in the sense that an answer can consist 
of a disjunction of substitutions. The method does not use the negation-by- 
failure semantics [6] in handling these extensions and appears to have an 
immediate parallel interpretation. a 

1. INTRODUCTION 

HORNLOG, first presented in [13], is an example of an application of a proof 
procedure different from SLD resolution in an attempt to address a larger subset of 
first-order logic and to allow indefinite answers. Its logical approach can be 
summarized as follows: Consider any logic program P consisting of arbitrary 
Horn clauses, and queries of the form Q = 3z,. . .3z, (-,H, v . . . v ,H,) 

where {H,,..., H,,,} are Horn clauses whose sets of variables are disjoint, and 
where{ zl,. . . , z,,} is the union of all these free variables. Observe that P 2 3z1 
. ..3z.(,H,v ... V,H,,,) is valid if and only if P~ifz,...Vz,(H, A -.. AH,,,) 
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is unsatisfiable. This last formula is equivalent to a conjunction of Horn clauses. If 

{N,,..., Nk} CPU {II,,..., H,} is the subset of negative clauses, and D c P U 
{Hp..., H,} is the subset of definite clauses, then, if the set P U { H,, . . . , H,} is 
unsatisfiable, there is a subset D U { Ni} of this set of Horn clauses which is 
unsatisfiable for some negative clause Nj. The HORNLOG procedure makes use of this 
fact and applies to any arbitrary set of Horn clauses P and query Q as above, and it 
may return disjunctive answers when the query Q contains certain forms of 
negation. 

The essence of the method which implements this logical approach is to incre- 
mentally build a graph encoding a quantifier-free formula which is a conjunction of 
substitution instances of clauses in the input logic program P and query Q, and to 
check for the unsatisfiability of the formula represented by the graph using the 
linear-time algorithm in Dowling and Gallier [8]. If this check shows the formula 
encoded in the graph is not yet unsatisfiable, then a node is chosen for expansion, 
the graph is “rewritten” at the node, and the resulting expanded graph is subse- 
quently checked again for unsatisfiability. This process is an example of the problem 
reduction paradigm [26], and continues until one of the following three cases occurs: 
(1) the formula encoded by the graph is shown to be unsatisfiable, (2) the graph is 
not expandable, in which case the formula is refutable, or (3) the formula induces a 
nonterminating sequence of expansions. 

The graph mentioned above describes the logical implications defined by the 
conjunction of substitution instances of clauses from P U c7Q }. Its nodes are 
labeled by substitution instances of atomic formulae in P U c7Q}, plus two special 
nodes, one for true and one for false. The edges are labeled with indices of 
substitution instances of the clauses. The fundamental property of such a graph is 
that the formula P I Q is valid if and only if there is a pebbling, a kind of path, 
from true to false. The use of graphs in theorem-proving and logic-programming 
systems has a long history, and we will give a detailed comparison between the data 
structures used in HORNLOG and those used in a number of other related systems, 
including the connection graph proof procedure [18] and the MESON procedure [23] in 
particular. 

In addition to extending the class of logic programs and queries, this approach to 
the logic-programming problem has three other advantages. First, the representation 
of the logic program and query as a graph consisting of atomic formulae as nodes 
leads to an immediate parallel interpretation. In brief, any unexpanded node is 
available for expansion at any time in the graph rewriting process. Subject to 
synchronization, the graph can be viewed as a form of a dataflow characterization of 
the unsatisfiability of the input logic program and query. We will comment more on 
this interpretation after explaining the method, but save the details for a subsequent 
publication. Second, some forms of negation can be expressed directly, without 
recourse to negation-by-failure semantics. Third, the extension of logic programs to 
include any arbitrary set of Horn clauses introduces the possibility that the system 
can return indejinite answers, that is, sets of substitutions, in addition to dejinite 
answers, substitutions which are singleton sets. As it is not entirely obvious how to 
interpret an answer which consists of a set of substitutions, nor haw logic programs 
and queries which contain arbitrary Horn clauses can be used, we will give a 
discussion on these topics before describing the method in detail. 
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2. MODEL-THEORETIC SEMANTICS OF LOGIC PROGRAMS 

The fundamental idea behind logic programming [19,20] is that a proof or refuta- 
tion of a logical formula can be viewed as a computation, and that from this process 
an output can be extracted. The goal in logic programming is not simply to prove a 

formula valid or unsatisfiable, as is the case in theorem proving, but to actually 
extract results from the proof or refutation of this formula. We presently examine 

the meaning of this statement more precisely. 
The paradigm used in logic programming can be described as follows: Given a 

first-order formula, or logic program, P, expressing a set of facts and assertions and 
a first-order query formula Q containing some free variables zi, . . . , z,, one wants to 
know whether the formula P I 3z 1.. .3z,Q is valid, and find explicit terms t,, . . . , t, 
such that P 3 Q[tl/zl,. . . , t,/z,] is valid. However, even if the formula P 3 

32 1.. .3z,Q is valid, such terms may not exist, as shown in the following example: 

Example 2.1. Let P = (-p(a) V ,p(b)), and Q= 7p(x). Then (7p(a) V 

,p(b)) 3 3x,p(x) is valid, but there is no term t such that (7p(a) V ,p(b)) 3 

7p(t) is valid. 

However, the following result holds. 

Theorem 2.2. Consider a first-order language without equality having at least one 
constant. If P is a formula which is the conjunction of universal sentences of the 

form Vx, . . . Vx, B, where B is quunti$er-free, and 32,. . .3z,Q is a sentence, with 
Q quantifier-free, then 

I= P I 32,. . .3z,Q 

iff there is some set of n-tuples of ground terms 

((4 ,..., tA) ,..-, (tl” ,..., 6)) 

such that 

I= PI Q[t;/zI ,..., t;/z,] v .a. vQ[t;/zl ,..., t,“/z,]. 

PROOF. Note that b PI 32,. . .3z,Q iff P A Vz, . . .Vz,-,Q is unsatisfiable. Since 
all formulae in H A Vz, . . .VZ,,~Q are universal and prenex, by the Skolem- 
Herbrand-Godel theorem [12], P A Vz, . . . VZ,,~Q is unsatisfiable iff there is some 
unsatisfiable set P’ U {-,Q[ti/zl, _. , tA/z,], . . . , 7Q[t[/zl,. . . , t,k/z,]} of ground 
substitution instances of formulae in P U {‘dzl.. . VZ,~Q}. But then, we have 

I= P”3 Q[t:,‘zl ,..., t;/z,] V ... VQ[t[/zl ,..., t,$‘zn], 

where P”=P,r\ ... AP, for a set P’= {P,,..., Pk } of substitution instances of 
formulae in P, and, because k P 3 P”, this implies 

I=PI Q[t:/zl ,..., t;/z,] v ... vQ[t;/zl ,..., t,“/z,]. q 

The model-theoretic semantics given by Theorem 2.2 allows indejinite answers, in 
the sense that the results returned are disjunctions. If one wants definite answers, 
that is, answers consisting of tuples of terms, as opposed to sets of tuples, it is 
necessary to place extra restrictions on the formulae P and Q. The class of Horn 
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formulae is a class of formulae for which singleton answers can be guaranteed, 
provided that certain conditions described below are met. 

Recall that Horn formulae are obtained by restricting the form of the conjuncts, 
or clauses, in the conjunctive normal form of logical formulae. Specifically, P is a 
Horn formula if and only if every clause in the conjunctive normal form of P 
contains at most one positive atomic formula, where an atomic formula is of the 
form q( t,, . . , ) t,), q a predicate symbol, I,, . . . , t, terms from some term algebra. If 
A, B,, . . . , BP denote atomic formulae, Horn clauses can thus take one of the 
following three forms: 

(1) A, 

(2) 7 B, v . . e v,B,VA,alsowritten A:-B, ,..., BP, 

(3) TB, v . . . V 7 BP, also written : - B,, . . . , BP. 

Clauses of the form (1) are called axioms, clauses of form (1) and (2) definite 
clauses, and clauses of the form (3) goal, query, or negative clauses. It is assumed 
that distinct Horn clauses are universally quantified. A set of Horn clauses is 
interpreted as the conjunction of these clauses. 

The reason that Horn clauses are attractive for logic programming is contained in 
the following theorem. 

Theorem 2.3. Consider a jr&order language without equal@ having at least one 
constant. For any (jinite) set P of universally quantijed Horn clauses, the following 
properties hold: 

(i) For any m (m22) sentences A,=3yi... 3yp,Bi, where each Bi is a conjunc- 
tion of atomic formulae, if 

!=PPA~vA,V .a. VA,, 

then for some i, 1 I i I m, we have 

t=P1A,. 

(ii) For any sentence 32,. . . !lz,Q, where Q is a conjunction of atomic formulae, 
if 

then there is a n-tuple of ground terms (ti, . . . , t,), such that 

~P=Q[~~/z~,...,~,/z,I 

PROOF. The proof of Theorem 2.3 is technical in nature and appears in Appendix A. 
We note that a similar result is shown for a higher-order extension of PROLOG in 
[24]. 0 

The most interesting consequence of Theorem 2.3 is that it delineates a class of 
formulae for which it is guaranteed that a proof yields singleton answers: logic 
programs consisting of definite clauses, and queries consisting of existentially 
quantified conjunctions of atomic formulae. SLD resolution [2,21,22] is a refutation 
procedure which applies to such sets of Horn clauses. 
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The following theorem, which ,can be proved from Theorem 2.3, is also im- 
portant. Indeed, it is the key to handling more general logic programs including 
either negative clauses as assertions or disjunctions as queries. 

Theorem 2.4. Let P be a set of Horn clauses over a language without equality. Consider 
the partition of P consisting of the set D of all dejinite clauses in P, and the set 

{N,,..., Nk) of negative clauses in P. If P is unsatisfiable, then D contains some 

atomic formula, (N,, . . . , Nk} is nonempty, and for some i, 1 I i I k, the set 
D U { N, } is unsatisjiable. 

PROOF. First, we prove that if D U {N,, . . . , Nk} is unsatisfiable, then D contains 
some atomic formula and the set {N,, . . . , Nk} is nonempty. If D does not contain 
any atomic formulae, then every formula in D U {N,, . . . , Nk} contains some 
negative literal. Then, D U {N,, . . . , Nk} is satisfied in the one-point structure such 
that every predicate symbol is interpreted as the constant function false. If 
{N,,..., Nk} = 0, then every formula in D contains some (positive) atomic for- 
mula. Then, D is satisfied in the one-point structure such that, for every atomic 
formula of the form q( tl,. . . , t,) in D, q is interpreted as the constant function true. 

Now, since {N,,..., Nk} # 0, and since each N, is a universal formula whose 
matrix is a disjunction of negative literals, 7 N, is a formula of the form 3y,. . .3y,Q,, 
where Q, is a conjunction of atomic formulae. But D U {N,, . . . , Nk} is unsatisfiable 
iff ~DI(,N,v a.. VT Nk), and by Theorem 2.3(i), we conclude that there is 
some i, 1 I i I k, such that b D 3 ,Ni, which is equivalent to D U { Ni} being 
unsatisfiable. 0 

As application of Theorem 2.4, we sketch how a more general class of logic 
programs can be handled. Consider logic programs consisting of a set P of arbitrary 
Horn clauses and queries of the form 

32 1...3z,(-,H1v --’ v,H,), 

where H,,..., H,, are Horn clauses whose sets of free variables are disjoint, and 
where {zi,..., ’ z, } IS the umon of all these free variables. Observe that 

P 3 32,. . . 3z,(yH1 v . . . v,H,,,) 

is valid iff 

P~tlz,...Vz,(H,r\ ..- AH,,,) 

is unsatisfiable. But this last formula is equivalent to a conjunction of Horn clauses. 
From Theorem 2.4, there is a subset D U { Ni} of this set of Horn clauses which is 
unsatisfiable for some negative clause Ni. Since in a refutation of the set D U { Ni}, 
some of the definite clauses in the set { H,, . . . , H,,, } may be used more than once, it 
is possible to have disjunctive answers. In the next section we give some examples of 
programming in the class of logic programs outlined above. 

3. GENERAL HORN-CLAUSE PROGRAMMING: 
MOTIVATIONAL EXAMPLES 

The phrase “Horn-clause programmin g” has come to be used synonymously with 
programming in the language PROLOG, which is not quite accurate, since 
PROLOG applies to a class of logic programs which consist of only definite clauses 
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and a single negative clause as query. In order to distinguish between more general 
logic-programming systems and PROLOG, we will introduce the phrase “general 
Horn-clause programming” to refer to logic-programming systems which admit 
arbitrary Horn clauses both in the body of the logic program and the query, and the 
phrase “definite-clause programming” to refer to the language PROLOG. 

HORNLOG is an example of a general Horn-clause programming system. We 
extend the usual procedural interpretation of logic programs [20] as follows: 
Negative clauses in the body of the logic program are interpreted as negative 
constraints. That is, : - B,, . . . , BP is interpreted as false: - B,, . . . , BP, or “not the 
case that B,, . . ., BP all hold simultaneously”. The crucial difference between this 
interpretation and the negation-by-failure semantics used in PROLOG is that in this 
interpretation any substitutions computed using substitution instances of negative 
clauses participate in the construction of the answer substitution. 

Queries in HORNLOG are of the form 

Q=3z1...3z,(4iv ... v,H,) 

where {Hi,..., H,} are Horn clauses whose sets of variables are disjoint, and 

{Z I,“., z”} is the union of all these free variables. More explicitly, a query is a 
disjunction of conjunctions of literals, where each conjunct contains at most one 
negative literal (and distinct conjuncts have disjoint sets of free variables). Thus the 
following are all examples of legal forms for queries, where B, is an atomic formula: 

Q, = Elz, . . . 3z,(,B, V YB, v B3), 

Q2 = 32,. . . &(4, A B,), 

Q3 = 3z,. . . 3z,(B,v B,v .a. VB,). 

Let us give some examples of logic programs in HORNLOG to illustrate general 
Horn-clause programming. 

Example 3.1, A music library contains analog recordings of bath and mozart, 
and a digital recording of beethoven. The following facts are known about record- 
ings in general: digital recordings sound great and a recording cannot both sound 
great and be analog. Suppose the problem is to find which recordings do not sound 
great. 

This information is easily expressed using general Horn clauses. We note that no 
ordering is as?z-ned on the clauses in this and subsequent examples. They are simple 
enough that no ordering is needed, and it will subsequently be argued that 
HORNLOG is most profitably viewed as a parallel system in which clauses are not 
ordered. 

:- soundsGreat( X), analog( X). 
digital(beethoven). 
analog( buch). 
analog( mozart). 
soun&Great( X) :- digital(X). 

?- -, soun&Great( X). 
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The obvious answers of X= bath and X= mozart are returned by the HORNLOG 

system. 

The negative information contained in Example 3.1 is not so easily expressed in 
PROLOG. If it is coded either as the fact not( soundsGreat( X), analog( X)) or as the 
rule 

soundsGreat( X) : - 
not( analog( X)), 
digital(X). 

with query ?- not(soundsGreat( X)), the system responds with failure, as the answer 
substitutions have been lost by using the negation-by-failure semantics. In fact, the 
well-known PROLOG convention is to introduce predicates which represent ex- 
plicitly the negative information, i.e. soundsPoor :- analog(X). However, this 
practice becomes increasingly difficult as the amount of negative information 
increases. 

Example 3.2. Four people, daue, dale, peter, and jessica, are involved in a 
crime. Someone shoots and kills daue in the garden. At the time of the crime, it is 
known that jessica was in the house and that dale and peter were not both in the 
garden, and it is also assumed that one does not shoot oneself, and that one cannot 
be both in the house and in the garden. Who is innocent? The above puzzle can be 
formalized as follows: 

:- shot( x, X). 
: - inhouse ( X), ingarden ( X). 
:- ingarden (dale), ingarden (peter). 
inhouse ( jessica). 
suspect( dale). 
suspect( peter). 
suspect( jessica). 
suspect(daue). 
ingarden( X) :- shot(daue, X). 
shot( daue, X) : - ingarden ( X), suspect( X). 

?- -, shot( dave, X). 

The HORNLOG system returns the expected substitutions, X = daue, X = jessica, and 
the indefinite answer X = dale V X = peter, 

A PROLOG solution to the above example has a very different character that 
does not reflect the negative content of the information. It is also worth pointing out 
that the last two clauses of this program are mutually recursive, and that the 
HORNLOG method handles such occurrences without looping. The details of this 
characteristic will be given after the method is presented. Note also that in Example 
3.2, an answer was returned which was a disjunction of substitutions, and indefinite 
answer. Informally, the logic program of Example 3.2 model-theoretically implies 
that one of X = dale or X = peter is true, but it is not known specifically which one. 

It is possible to have logic programs which return only indefinite answers. 
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Example 3.3. Consider the following logic program: 

: - chairperson (son ( X)), chairperson (daughter ( Y )). 
french (yes). 
french ( Pierre). 
german ( fritz). 
likewine (son ( X)) :- french ( X). 
likewine( daughter( X)) :- german X). 

?- 7 chairperson(Z) A likewine( Z). 

There is no term t such that for the logic program P of Example 3.3, 

I= P 1 (7 chairperson ( t ) A Zikewine ( t )) 

However, both of the following formulas, which represent indefinite answers, 
require the disjunction of substitution instances to be valid: 

I= P I [-chairperson (son (yes)) A likewine (son ( yve.s ))] V 

[7 chairperson (daughter( fritz)) A Zikewine (daughter ( fritz))] , 

k P 3 [ 7chairperson (son ( Pierre)) A likewine (son ( Pierre))] V 

[ -, chairperson (daughter ( fritz)) A Zikewine ( daughter ( fritz ))] . 
Finally, consider the following example, a well-known puzzle drawn from the 

blocks world, which shows some of the limits of this method. 

Example 3.4. There are three blocks, labeled a, b, and c. Block a sits atop block 
b, which sits atop block c. Blocks are also colored either green or blue. The color of 
a is green, the color of c is blue, and the color of b is unknown. Is there a green 
block on a blue block? 

The answer to this problem is yes, and involves reasoning by cases. Block b must 
be either green or blue. If b is green, then the answer is yes because b is on c, which 
is blue. If b is blue, then the answer is yes because a, which is green, is on b. 
Expressing this problem in first-order logic is straightforward. Let 

P = { on(a,b), 

on(b,c), 

color ( a, green ) , 

color ( c , blue ) , 

color ( b , green ) V color ( b , blue) } . 

Then the following formula holds: 

l=PPjX!lY[on(X,Y) AcoZor(X,green) Acolor(Y,bZue)], 

with substitutions a/X, b/Y, or b/X, c/Y such that 

kPI[on(a,b) Acolor(a,green) Acolor(b,bZue)] V 

[on(b,c) Aco/or(b,green) Acolor(c,bZue)]. 

Stating the problem in general Horn clauses is not so straightforward. The 
problem is that color( b, green) V color( b, blue) is not equivalent to any Horn clause. 
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It contains more than one positive literal. Thus it is necessary to be a little devious 
in expressing this information: 

on(a,b). 
on(b,c). 
color( a, green). 
color(c, blue). 

{Devious attempt to state that b is either green or blue, 
but in fact, it only says that b cannot be both green and blue 
at the same time} 

:- color(b,green),coIor(b,blue). 

A first and obvious attempt at posing the problem, ?- on( X,Y) A color(X,green) 
A color( Y, blue), results in failure, since this query is refutable. Thus we must also 
be devious in our phrasing of the question: 

? - [,color(X,bZue) A on(X,Y) A coZor(Y,bZue)] V 

[,co/or( Y,green) A on( X,Y) A color( X,green)]. 

This version of Example 3.4 works, but the query is not very natural. In fact, it 
asks if there is either a nonblue block X on a blue block Y, or a green block X on a 
nongreen block Y. Since there are only two colors, the query itself expresses the 
information that block b can be either green or blue. HORNLOG returns the same 
substitutions given above. 

Before presenting the method, we make the following two observations. It is 
tempting to suggest that the effect of a negative constraint Ni = : - B,, . . . , BP can be 
simulated in a definite clause program using SLD resolution as follows: Given a set 
P of arbitrary Horn clauses, let X be a new literal not occurring in P. Let P’ be 
obtained from P by replacing every negative clause : - B,, _. . , BP in P with 
X:- B1,..., bi,, and adding : - X as the new goal. It is true that P IS unsatisfiable 
iff P’ is unsatisfiable, and since P’ only contains definite clauses except for the goal 
: - X, SLD resolution can be applied to test P’. 

The above argument is correct, but an important point is missing. The set P is 
obtained by adding to a logic program the negation of each formula occurring in the 
query, and in the above method, answer substitutions are lost. 

It is possible to try to argue that the above method can be refined to take care of 
this problem. However, a refinement that works in the general case will have to 
mimic our method. This is because, in order to return the correct answer substitu- 
tion, it is necessary to keep track carefully of all uses of negations of clauses from 
the query. This can be demonstrated by the following example. 

Example 3.5. Let P be the following set of clauses: 

:-p(a). 

:-p(b). 

P(X) : - 4(X). 

? - 7q(z). 
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There are two answers: 2 = a and Z = b. We can form the set P’ obtained by 
adding q(W) and using a new goal r(Z) as follows: 

r(U):-p(u). 

r(V):-p(b). 

p(X) :- 4(X). 

4(W)* 

? - r(Z). 

P’ is unsatisfiable, but unfortunately, the answers are lost. The problem is that 
there is no way of asserting that U, V, and W are in fact the same variable. Such an 
assertion would even violate the fact that clauses are universally quantified. 

Also, if Q is of the form Q = 32,. . .3z,(,H, V . . . V,H,,,), m > 1, for the 
purposes of showing unsatisfiabihty, it is equivalent to conjoin an additional clause 
C to the body of a logic program P, or disjoin the negation of C to the query Q. 
However, for the purposes of defining the answer substitution there is a difference. 
Clause C included in the query Q can contribute free variables { zkl,. . . , zk, } to the 

query 

Q’=3zi...3z,3zk,...3z&H1v ..’ v,H,,,v,C) 

that would not be present if C were in the body of the logic program. If the 
additional clause C defines Q to be of the form Q = ,C, C clearly cannot be placed 
in the body of the logic program, since a logic program with a null query returns no 
answer. 

It should be pointed out that the negation-by-failure method [6] is not sound for 
general Horn clauses. Consider the program 

p(b):- +(a]. 

:-p(b). 

?-P(X) 

Using the negation-by-failure strategy, since p(a) cannot be proved, 7p(a) is 
true, and clause p(b) : - -p(u) yields the truth of p(b). Hence, the answer [b/X] 
will be returned, saying that p(b) is true. However, the clause : -p(b) asserts that 
p(b) must be false. 

In the next section we describe the refutation procedure underlying HORNLOG 

which applies to arbitrary sets of Horn clauses. 

4. HORNLOG: A REFUTATION PROCEDURE BASED ON 
GRAPH REWRITING 

The method underlying HORNLOG is inspired by Herbrand’s theorem. Its essence 
consists of incrementally building a graph that encodes a first-order quantifier-free 
formula, and checking for unsatisfiability of this formula using a linear-time 
algorithm [8]. If this check for unsatisfiability fails, the graph is rewritten by 
choosing a node and expanding it, and the expanded graph is again checked for 
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unsatisfiability. The process terminates if the graph is shown to be unsatisfiable, or 
if it can no longer be expanded, in which case the query formula is shown to be 
refutable. The process may also enter into a nonterminating sequence of expansion 
steps. The algorithm that checks for unsatisfiability is not a resolution method, and 
has the property that the truth of each node is checked at most once. 

This strategy is an instance of the problem-reduction paradigm [26]. The method 
presented here, in the context of a logic-programming interpreter, is new primarily 
because the underlying data structure, which we call an H-graph, is a graph and not 
an AND/OR tree, and because answer substitutions are returned for general Horn- 
clause programs. Along with representational issues, a major difference between 
these two data structures is that an AND/OR tree can be shown to be unsatisfiable if 
its leaves are substitution instances of axioms. This simple property does not 
necessarily hold in the case of graphs. There is also a subtle but fundamental 
distinction between methods that mark nodes in an AND/OR tree as “already seen”, 
or “identical to some other node”, and we will point out the differences. 

The presentation of the method will be divided into four parts: (1) the definition 
of the underlying H-graph data structure, (2) a description of the procedure for 
constructing and expanding H-graphs, (3) a description of the algorithm which tests 
an H-graph for unsatisfiability, and (4) discussion of the main interpreter and 
related details. In the context of this description, we will use the following notation. 
Let P be a logic program with query Q = 32,. . .3z,(,H, V . . . V, H,), and 
assume that P U {HI,. . . , H,,,} is partitioned into three subsets: 

(1) The set {N,,..., N,,} of negative clauses. 

(2) The set { FI ,..., F*,} of axioms. 

(3) The set {Cr,..., C,,} of definite clauses of the form A : - B,, . . . , B,. 

For the sake of clarity, we will present the method in a “theorem proving” form 
that ensures completeness, and consider the changes necessary to realize a logic-pro- 
gramming interpreter in the conclusion section. 

4.1. Definition of an H-graph 

An H-graph is defined as follows. 

Definition 4.1. Let P be a logic program. An H-graph G for P is a directed 
edge-labeled graph denoted by the triple (S, E, L), where S is a set of nodes that 
are substitution instances of atomic formulae in P, L is a set of labels, each label 
a pair (C, u) consisting of a clause C in P and a substitution (I, and E is a subset 
of S x L X S of ordered triples called edges. Each H-graph has two special nodes, 
called nodefalse and nodetrue, and all nodes have numerous fields, including a 
truth field, an age field, and a status field. The truth field of a node is set to true 
if the node is a substitution instance of an axiom, and false otherwise. The use of 
the age and status fields will be discussed later. Given that for any edge 
e = (n,, I,n,), n, is the source of e, n2 is the target of e, and I is the label of e, 
and that for any node N in G, {(C,, a,), . . . ,(Ck, u,)} is the set of labels of all 
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(N,,id)A(I._,id) FIGURE 1. Initial H-graph of negative clauses. 

edges with source N, the sets L and E satisfy the following three provisos: 

(i) If C, is a negative clause of the form : - B,, . . . , BP, then N = nodefalse, and 
the target of the jth edge labeled (C,, ai) is ai( B,). 

(ii) If C, is a definite clause of the form Ai : - B,, . . . , B,, then a,(A,) = N, and 
the target of the jth edge labeled (C,, a,) is a;( Bj). 

(iii) If C, is a clause consisting of a single atomic formula B in S, then 
uj( B) = N, and there is a single edge with target nodetrue labeled (C,, uj). 

Proviso (i) for the logic program P u {-Q}, with negative clauses {N,, . . . , N,,}, 
is illustrated by Figure 1. Every edge from nodefalse to an atomic formula B in the 
negative clause Ni is labeled with (Ni, id), where id is the identity substitution. By 
convention, we will refer to the graph which consists of just the negative clauses as 
the initial graph. Proviso (ii), relating to definite clauses of the form A : - B,, . . . , BP, 
is illustrated by Figure 2. Nbte that proviso (iii), for definite clauses which are 
axioms, is the special case in which N has no new successors. 

The graph G encodes the conjunction of the clauses of the form u(C) and hence 
is indeed a kind of Herbrund expansion. We will give some examples after a 
discussion of how an H-graph is constructed. 

4.2. Construction and Expansion of H-graphs 

The first step in constructing an H-graph is to construct the initial H-graph, 
denoted by G,, which consists of the node nodefalse and all atomic formulae 
occurring in any negative clause. An H-graph is then expanded in stages, using 
definite clauses of the form A : - B,, . . . , BP as rewrite rules, under one of two 
protocols. Let Q = 32,. . . 3z,Q’ be a query. For simplicity of notation, we often 
identify Q and Q’, and call {zi,.. ., z,,} the set of output variables in the query Q. 

(1) All-solutions protocol: The system can return all sets of n-tuples of terms 
(ground or not) {(t:, . . . , ti), . . . , (t,“, . . . , t,k)} such that 

I=PIQ’[t;,‘zl ,..., t;/z,] v ... VQ’[t;/zI ,..., t,“,‘z,]. 

This case is similar to the assumption in PROLOG that affixing a semicolon 
“;” after an answer substitution is a request for another answer. The 
all-solutions protocol in HORNLOG allows the same option. 
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(2) Single-solution protocol: The system returns only one substitution. This 
assumption has no counterpart in PROLOG. The idea is best understood as 
a simultaneous attempt to explore all possible trials towards unsatisfiability, 
and to return the first one that succeeds. We will comment more on this 
protocol after presenting the method. 

The two protocols are mutually exclusive. If an H-graph is initially expanded 
under one protocol, it cannot later in any state be expanded under the other. 
Note that there is no reason the answer substitution returned under the 
single-solution protocol cannot be an indefinite answer. Thus, referring back to 
Example 3.3, two sets of 2-tuples are logically implied by the logic program, the set 
{(son ( yues)),( duughter( fritz))} and the set {(son ( Pierre)), duughter( fritz))}. Under 
the all-solutions protocol, both sets could be returned if the user wished, but under 
the single-solution, only the set that was arrived at first by the HORNLOG interpreter. 
However both sets result in indefinite answers. 

We will present the method first with the simplifying assumption that the node 
chosen for expansion unifies with only one definite clause. This assumption will be 
relaxed subsequently. 

Let G be an H-graph obtained at some stage of expansion, and assume that 
XE G, the node chosen for expansion, unifies with the head A of a single definite 
clause C with most general unifier u. In order to explain how the H-graph G is 
expanded, we need to define the graphs a(G), G,, and a(G)[ a( X) +- u(G,)]. 

(1) The graph u(G)’ is defined as follows: First, the substitution u is applied to 
all nodes and edges of the graph G, that is, a node labeled with u,(N) will be 
relabeled with u(u,(N)), and an edge labeled with (C,, uj) is relabeled with 
(C,, a, 0 a) (where uj is applied before u in a, 0 a). The second step consists in 
merging any two nodes having the same label. This means any two distinct 
nodes ui and u2 having the same label L are merged into a single node u 
labeled L, and that all edges with target ur or u2 now have target u, and that 
all edges with source ur or u2 now have source u. Hence, in the resulting 
graph u(G), nodes have distinct labels. Note that composing substitutions is 
necessary in order to compute the answer substitution at the end. 

(2) Let C = A : - B,, . . . , BP be the clause such that X unifies with A. Before 
determining whether X unifies with the head of C, the variables in C are 
renamed apart from the variable occurring in the graph G. The graph G, 
consists of a root node labeled with A and nodes labeled with the Bl’s as 
immediate successors. Let u(Gc.) be the graph obtained by applying the 
substitution u to G,, as defined in (1). Then, the graph u(Gc) is grafted at 
node u(X) = u(A) in u(G), and nodes having the same label are merged as 
in (l), obtaining the graph denoted by 

+)b(X> +- u(Gc)l~ 

In the special case where the definite clause consists of an axiom F, the graph 
Gc consists of the single node F, and we have u(G)[u( X) +- u(G,)] = u(G) 
with the truth field of node u(X) = u(F) set to true. Thus unification with an 
axiom does not grow new nodes. 
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4G) R FIGURE 3. Simplified expansion step. 
c/G) = o(X) 

o(Gc) 

u(B1) . . . 4%) 

Observe that the process in which the graph a(G)[a( X) + a(G,)] is obtained from 
the graph G using A -+ Gc (C = A : - II,, . . . , BP) as a “graph rewrite rule” is 
analogous to a “narrowing step” [9]. However, it is defined for graphs instead of 

trees. We will write 

G -"G' 
C 

iff G’ is obtained from G in a graph expansion step involving substitution (I and 
definite clause C. The process is illustrated in Figure 3. 

Let us now proceed to the general case, in which a node X chosen for expansion 
can unify with any number of definite clauses. It is important to point out that the 
phrase “merging of nodes”, as explained previously in (1) is used in its graph-theo- 
retic sense, and implies the redirection of arcs. This is not equivalent to marking 
nodes in an AND/OR tree as, for instance, “already seen” and handling such nodes 
identically to a previously seen node. Such a strategy does not propagate the 
consequences of the identity of two nodes throughout the graph, and is not 
equivalent to redirecting the arcs into and out of the node in question. One such 
consequence, as mentioned in the introduction to Section 4, is that methods to 
check for the unsatisfiability of a graph and an AND/OR tree are not equivalent. 
This will be clear when we present the algorithm which performs this check on 
H-graphs. 

As before, let G be an H-graph obtained at some stage of expansion, and node 
X E G be chosen for expansion. Let L = ((C,, a,), (C,, a,), . . . , (C,, uk)) be the list 
of all pairs such that a node X unifies with the head A, of definite clause C, with 
most general unifier uj. It is assumed that the variables m the clauses C, have been 
renamed apart from the variables occurring in the graph G, and that any two 
distinct clauses have disjoint sets of variables. 

In the general case, it is not necessary to instantiate the entire H-graph G for 
each substitution uj. This can be achieved by attaching an age field to every node of 
an H-graph, as mentioned in Definition 4.1. In order to accomodate the single-solu- 
tion protocol, the age field is a list of integers, but under the all-solutions protocol, 
each list contains a single element. The method is that a substitution uj is only 
applied to the subgraph (Gjage( X)) of G consisting of nodefalse and all descen- 
dants of nodefalse having the same age as the node X currently being expanded. We 
also maintain a global counter AgeCounter which is used in the following way to 
update age fields. Except for the graph u,(G(age( X))[u,( X) + u,(G,-1)], in which 
all nodes have the same age as X, for j = 2,. . . , k the counter AgeCounter is 
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incremented by 1, and the age field of every node in the graph uJG]uge( X))[uj( X) 
+ uj(Gcj)] is set to AgeCounter. 

In order to obtain the final graph resulting from an expansion step involving 
the list of substitutions L = ((C,, a,), . . . , (C, u,)), certain H-graphs are merged at 
nodefalse. There are two types of merging operations: @ under the all-solutions 
protocol, and + under the single-solution protocol. Given two H-graphs G, and G,, 
the graph G, @ G, is obtained by merging the root nodes of G, and GZ, but not 
performing any other merging. The graph G, + G, is obtained by merging the root 
nodes and all nodes having the same label. In this case, the age lists of the two 

nodes being merged are also merged. Let (G]age ( X)) be the subgraph of G 
consisting of nodefalse and all descendants of nodefalse whose age is not equal to 

age(X). 
Under the all-solutions protocol the graph G’ obtained as the result of the 

expansion step involving the list of substitutions L = ((C,, a,), . . . , (C,, u,J) is 

(Wage(X)) eo,(GIage(X))[u,(X) *u,(G,~)] @ *.. 

Under the single-solution protocol, the graph G’ is 

(Ww(X)) +dGlw(X))[~dX) -u~(G,,)] + **- 
+&+w(X))[u,(X) -J,&)]. 

In the first case, we write 

G j (Ol,...~‘Jk) G’, 
8 (C,,...,C,) 

and in the second case, 

G j (‘J,,....%) G’, 
+ (C,,...,C,) 

Note that in the all-solutions protocol, merging of nodes only occurs within 
subgraphs whose nodes have the same age. Under the single-solution protocol, the 
only condition for merging nodes is that their labels are identical, and nodes having 
different ages can be merged. 

In order to guarantee completeness, it is crucial that the expansion of the 
H-graph be, in some sense, fair, i.e. that no node waits forever for expansion. This 
corresponds to a breadth-first expansion strategy. To ensure fairness, the status field 
of each node is assigned one of the following four values: 

(1) young, meaning that this is a newly created node; 

(2) mature, meaning that the node is ready to be expanded; 

(3) old, meaning that this node has been expanded; 

(4) dead, meaning that expansion of this node leads to a dead end. 

The change of status of a node obeys the following fairness rules: (1) A young node 
can become mature only after all mature nodes have become old, (2) all young 
nodes must become mature, (3) all mature nodes must become old. When all mature 
nodes have become old, all young nodes become mature. When a definite clause 
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FIGURE 4. Expansion step. 

A : - B,, . . . , BP is used to expand an H-graph, the status field of the substitution 
instance of the head a(A) is set to old, and the status fields of the substitution 
instances of its successors a(Bj), 1 I i sp, are set to young. If the definite clause is 
an axiom A, then the status field of the substitution instance a(A) is set to old. 

We will illustrate the expansion step in the HORNLOG method with three exam- 
ples, two abstract and one concrete. 

Example 4.2. Let P be a logic program partitioned into the set {N,, . . . , N,,} of 
negative clauses, the set { C,, . . . , Cnd} of definite clauses of the form A : - B,, . . . , BP 
(pzl), and the set {F,,..., F,,} of axioms. Figure 4 shows the graph at some 
expansion stage in which mature note X, chosen for expansion, has unified with the 
head A, of the definite clause C, = A, : - B,,.. ., BP1 with substitution ul, and also 
with A,, the head of the definite clause C, = A, : - D,, . . . , Dp, with substitution 
u2. The first unification has resulted in graph a(G]age(X))[ul(X) + ul(Gcl)] 
with the subgraph containing root a,(X) = u,(A,) and immediate descendants 
e1(B,), . . f 9 ul( B,,) being grafted at ui( X), and the second unification resulted in 
the graph u,(G(age( X))[u,( X) + uz(Gc,)]. Both u,(X) and uz( X) have their status 
set to old, and all the a,( Bi) and u2( 0,) have their status set to young. 

Under the all-solutions protocol, merging occurs in region 1, and separately in 
region 2. After u,(Gc,) and u2(Gc,) have been grafted on, merging occurs again 
between nodes in regions 1 and 3, and separately, between nodes in regions 2 and 4. 
Under the single-solution protocol, in addition, merging of nodes occurs across all 
regions. The generalization to the case in which the node chosen for expansion 
unifies with any number of definite clauses should be clear. 

Example 4.3. Consider the following set of clauses, which are an example of 
general Horn-clause programming as defined in Section 3: 

1. :-P(X),q(X,Y),u(-w(z)). 

2. P(U). 

3. n(b). 

4. q(X,Y):-r(X,Y),s(X,Y). 

5. r( X,Y) :- t(f( X),Y). 

6. s(X,Y):-t(f(X),Y),m(b). 
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7. t(f(X),Y) :-a(Y,f(X)). 

8. m(b) :-n(b). 

9. n(b):-m(b). \ 

10. ?-,u(a,Y). 

Note that the first clause is a negative clause used as an assertion, and that the query 
contains a negation. It is also worth pointing out that this example contains two 
clauses, 8 and 9, which are mutually recursive. This example has been chosen with 
simplicity of presentation very much in mind. In particular, for every expansion 
step, the node chosen for expansion unifies with only a single definite clause, which 
implies that all nodes have the same age. Thus, for each expansion step, 0 I i s p - 1, 

The extent of merging is also restricted. (Example 4.4 examines merging in the more 
general case.) 

The initial graph for this example is shown in Figure 5. Nodes are annotated by 
the schema Zubel(index*stat”s), where label is a substitution instance of an atomic 
formula, index is an integer index of nodes, and status is the status field of the 
node, denoted as m for mature, o for old, and y for young. Edges are annotated by 
(clause, a), where clause is the clause associated with the edge and u is a substitu- 
tion. We will adopt the rule that the node chosen for expansion will be the mature 
node of lowest index. 

On the first expansion step, the mature node with lowest index is node 2. The 
procedure maintains for each node, in a manner analogous to the connection-graph 
procedure [18], a list of clauses whose head could unify with the node. In this case, 
node 2 can only unify with the axiom p(a) with most general unifier ui = [a/X]. 
Rewriting by this step yields an H-graph with the same structure as that in Figure 5, 
except that there is an arc from node 2 to nodetrue, and the substitution [a/X] has 
been applied to the graph. Note also that the status of node 2 has been set to old. 
On the next expansion step, node 3 is rewritten by clause 4, that is, q(a, Y) unifies 
with q( X, Y) with most general unifier a2 = [a/X, Y/Y], and results in Figure 6. 

After a few more expansion steps, the H-graph shown in Figure 7 is reached. For 
the sake of clarity, we have dropped the annotations on this graph. The first 
unsatisfiable H-graph constructed by the procedure expandGraph is shown in 
Figure 8. It has resulted from expanding the node labeled u( Y, f(a)) in the H-graph 
in Figure 7 with substitution [a/Y]. Note that a merging of nodes labeled u( a, f(a)) 
has occurred, but has not resulted in any redirection of arcs from the two nodes. In 
this case, the “merging” is equivalent to marking the second node as “already seen”, 
as done in various methods that use AND/OR trees. In the more complicated case of 
Example 4.4, however, the two methods are not equivalent. 

FIGURE 5. Initial H-graph for Example 4.3. 
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.m ) 

FIGURE 6. Third expansion step in Example 4.3. 

node false 

FIGURE 7. Intermediate step in expansion cycle. 

no& false 

FIGURE 8. First unsatisfiable H-graph for Example 4.3. 

FIGURE 9. Intermediate expansion stage. 

Example 4.4. Consider amending the logic program of Example 4.3 so that for 
some intermediate stage of expansion, an H-graph analogous to that shown in 
Figure 7 contains the structure illustrated in Figure 9. The node labeled u(Y, f(a)) 
has incoming arcs from nodes labeled {m,, . . . , mk}, and outgoing arcs to nodes 
labeled {mk+l,...,mk+i }. Similarly, the node labeled u( a, f(a)) has both incoming 
and outgoing arcs. Other nodes are not shown. As in Example 4.3, let the next 



HORNLOG: A GRAPH-BASED INTERPRETER 137 

nodefalse 

FIGURE 10. Second intermediate expansion 

stage. 

rewriting of this H-graph result from expanding the node labeled u( Y, f(a)) with 
substitution [a/Y], as shown in Figure 10. As before, the two nodes merge, but now 
redirection of arcs occurs, and nodes { m,, . . . , mk+, } and { n,, . . . , r~,+~} are affected. 
In this case, the method differs form methods which use AND/OR trees. The 
generalization to the case in which more than two nodes merge should be clear. 

A number of techniques are used in the method to cut down on the size of the 
graphs. One in particular is important. A mature node becomes dead if all 
unifications fails. The death of a node may cause the death of some of its ancestors 
according to the following rule: A node X gets the status dead iff for every label 
(C, a) of an edge with source X, there is a target node of some edge labeled (C, a) 
having status dead. The death propagation is conveniently performed using a 
variation of the same procedure which checks for the unsatisfiability of an H-graph. 
One more technical detail is that the node nodetrue is actually never built. Instead, a 
node gets value true when it is matched with a clause of the form B. 

We summarize this presentation in a pseudo-code version of the cental procedure 
of the expansion step, expandGraph. Let P be a logic program with query Q = 
3zi.. .3z,(,H, v . . . V,H,,,), and again assume that P U {If,, . . . , H,} is parti- 
tioned into the three subsets (1) { N,, . . . , A’,,} of negative clauses, (2) {F,, . . . , F,,,} 
of axioms, and (3) {C,, . . . , Cnd} of definite clauses of the form A : - B,, . . . , BP. - 

Procedure expandGraph (G, Flag, Protocol, AgeCounter); 

{G is of type H-graph, Flag is a boolean flag, and Protocol is 
a boolean indicator of expansion protocol} 

begin 
repeat 

Select any node in G having status mature; 
Let X be the atomic formula labeling the selected node. Test whether 

X is unifiable with any head A of some definite clause 
A : - B,,. . . , BP in {C,, . . . , Cnd}, or axiom 5; 

{If X is not unifiable, set status and repeat, i.e., look for another 
mature node.} 
if all unifications fail then 

Set the status of X to dead; 
Delete from G all nodes that are inaccessible as a consequence of 

X becoming dead; 



138 JEAN H. GALLIER AND STAN RAATZ 

else 
Let L = ((C,, q), . . . , (Ci, a,)) be the list of all pairs 

such that X is unifiable with the head Aj of a definite clause 
Cj in P, with most general unifier uj of X and Aj; 

{Use each clause Cj in L, which is of the form A : - B,, . . . , BP, 
1 sj I i, as rewrite rule to expand the H-graph.} 

for each pair (Cj, uj) in L do 
rewriteRule(jxCj, uj),(Glage( X)),G,, AgeCounter) 

endf or; 
if Protocol = all-solutions then 

Set G=(G]uge(X))@G,@ ... @G, 
else 

Set G=(G(age(X))+ G,+ ..a +Gj 
endif 

endif 
until some mature node has been selected for expansion, or no mature 

nodes are left; 
if no mature node has been selected for expansion then 

{The graph is thus not unsatisfiable, i.e., the query formula is refutable} 
Set Flag to false 

else 
{The H-graph G has successfully been expanded and is ready to 

be tested for unsatisfiability.} 
Set Flag to true 

endif 
end; 

Procedure rewriteRule( j,( C, u),G,Gj, AgeCounter); 

begin 
Form a copy u(G) of G by applying u to every node in G; 
Merge nodes having same label in u(G); 
if Cj is an axiom then 

Set the status of u(X) to old, and its truth field to true 
else 

Form Gj = u(G)[ a( X) +- a( Gc)], that is, 
apply u to the H-graph consisting of A as a root, 
and B,, . . . , BP as immediate successors, obtaining u(Gc), 
graft this subgraph at the node labeled with u(X) 
in the H-graph u(G), and merge nodes having the same label; 

Set the status of the node u(X) in G, to old; 
Set the status of each node a( B,), 12 I < i, in Gj to young 

endif; 
{If X has participated in more than one unification, update AgeCounter.} 
if j = 1 then 

Set the age of each node in G, to age(X) 
else 

Increment AgeCounter; 
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Set the age of each node in Gj to AgeCounter 
endif 

end; 

We now review the linear-time algorithm which the HORNLOG method uses to 
check an H-graph for unsatisfiability. 

4.3. Checking an H-graph for Unsatisjiability 

After each expansion step, the procedure checks the H-graph that has resulted for 
unsatisfiability, that is, it checks whether the quantifier-free formula that the graph 
encodes is unsatisfiable and returns the answer substitution if this is the case. This 
check is performed by interpreting the H-graph as a kind of dataflow graph for 
propagating truth. Informally, if truth can be propagated to nodefalse, the graph is 
unsatisfiable. 

We caution the reader that it is the procedure expandGraph which handles 
variables. The algorithm described in this section which checks an H-graph for 
unsatisfiability operates on the data structure as a lexical object in that it compares 
the labels of nodes and their edges. These labels may contain variables, but as the 
reader will see in the discussion below, although the algorithm is defined in Dowling 
and Gallier [8] for the propositional case, it can be used in conjunction with the 
procedure expandgraph in the first-order case. 

DeJnition 4.5. Let G’ = (S, E, L) be a graph obtained from the H-graph G for 
some logic program P by reversing the edges of G. There is a pebbling of a node 
M E S from a set XC S if either A4 belongs to X, or for some label (C, a) 
corresponding to some clause C in P and substitution u, there are pebblings of 
nodes Y,, . . . , Y, from X, where Y,, . . . , Y, are the sources of all incoming edges of 
M labeled (C, a). 

Thus node M can be pebbled from X if there is a sequence of “pebbling moves” 
such that starting from nodes in X, a node is pebbled iff for some label (C, a), all 
sources of incoming edges labeled (C, a) are pebbled. The fundamental property 
about the pebbling of an H-graph is stated in the following theorem, shown in [8]. 

Theorem 4.6. Let G’ be a reversed H-graph for some logic program P. Then G’ is 
satis$able IT there is no pebbling of nodefalse from nodetrue. 

It can be shown that in order to test whether a node M in G’ can be pebbled, it is 
sufficient to visit all nodes reachable from M in the H-graph associated with G’. 
There are actually several ways of propagating truth in a graph representing a set of 
clauses. The linear-time algorithm used in HORNLOG is a recursive algorithm which, 
given any node X, tries to find some label (C, a) among the set of labels of all edges 
with source X, such that all the targets of edges labeled (C, a) can be marked true. 
Such an algorithm performs a kind of depth-first search. However, there are subtle 
difficulties in implementing this strategy because a node may have several incoming 
edges and the H-graph may have cycles; thus a simple scheme of marking the nodes 
is insufficient. 
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The solution adopted in HORNLOG is to mark the edges and allow a visit to a 
node if either (1) there is some unmarked edge to it, or (2) one of its immediate 
successors has some unmarked edge. This strategy is implemented by including for 
the nodes and edges in the H-graph various “bookkeeping” fields. For every label 

X = (C, a) there is a counter numargs(X) which keeps track of the number of target 
nodes of edges labeled X whose truth field is false. Also, for every node X, there is a 
list c&.selist( X), containing the list of all labels (C, a) such that X belongs to the 
right-hand side of the clause a(C). 

Example 4.7. Consider the graph in Figure 6 for the logic program of Example 
4.3. For node 5, chselist(r(a, Y)) = (4, a,), and for clause 4, numurgs(4, az) = 2. 

Then, whenever, a node X is marked true, the counter numurgs(C, a) of every 
label (C, u) in cluu.selist( X) is decremented by one, and every node B which is the 
left-hand side of a clause u(C) such that numurgs(C, a) = 0 is marked true. 

Example 4.8. We trace the algorithm applied to the last H-graph of Example 4.3, 
shown in Figure 8. First, p(u), u(u, f(u)), and n(b) become true, and then truth is 
pushed all the way up to nodefalse. Hence, the above graph is unsatisfiable. 
Actually, the algorithm truuerse will traverse the graph and mark the nodes true in 
the following order: visit nodefalse, visit p(u), mark p(u) true, visit q(u, a), visit 
r(u, a), visit t(f(u), a), visit ~(a, f(u)), mark ~(a, f(u)) true, mark t(f(u), a) 
true, mark r( a, a) true, visit s(u, a), visit t( f (a), a) already marked true, visit 
m(b), visit n(b), mark n(b) true, mark m(b) true, mark s(u, a) true, mark q(u, a) 
true, visit u( a, f(u)) already marked true, and mark nodefulse true. 

In addition to the various fields mentioned in the definition of an H-graph, nodes 
contain a computed field, which is set to true when the truth field is set to true 
during the check for unsatisfiability in order to avoid recomputing it. The procedure 
which implements this is given in pseudo-code. 

Procedure traverse (Current, G); 

{Current is of type Node, G is of type H-graph. Current. Id 
is read as the Id field of Current.} 

begin 
if Current.Computed is false then 
{Call traverse recursively. First check to see if Current has been 

initialized to true in the building of the H-graph, i.e., that it 
corresponds to a substitution instance of an axiom.} 

if Current.Truth is true then 
Set Current.Computed to true; 
Update the counter for every edge label (C, a) in cluuseZist(Current); 

{For every edge label (C, a), compute the value of the targets of 
all edges with source Current labeled (C, a), as long as the 
computed field of Current is false. A Successor of Current is 
a set of edges with identical labels.} 

else 
Let Succ be the set of Successors of Current; 
for each Successor in Succ and while Current.Truth is false do 
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{Traverse recursively for each edge labeled (C, u).} 
for each Edge in Successor do 

{Visit nodes reachable by unmarked edges.} 
Let TargetNode be the target of Edge; 
if Edge.Visited is false then 

Decrement Current. Marked; 
Set Edge.Visited to true; 
traverse(TargetNode,G) 

{If all edges are visited and TargetNode has some unvisited 
outgoing edge, then call traverse} 

else 
if (Current. Marked = 0) and 

(TargetNode. Marked # 0) then 
traverse( TargetNode,G) 

endif 
endif 

endfor 
{If not already computed and all arguments for edge label 

(C, a) are available, compute the truth value of Current.} 
if Current.Computed is false then 

if numargs((C, a)) = 0 then 
Update counter for every edge label (C, a) in ClauseList 

corresponding to Current; 
Set Current.Computed to true; 

endif 
endif 

endfor; 
Set Current.Computed to true; 

endif 
endif 

end; 

It should be clear now why mutually recursive clauses, as in Example 4.3, do not 
cause this method to loop. Since nodes are visited only if they are reachable by 
unmarked edges, or if some successor has an unmarked edge, a nonterminating loop 
cannot occur. 

4.4. The Main HORNLOG Interpreter 

The basic function of the main interpreter is to interleave graph expansion steps 
performed by expandGraph and checks for unsatisfiability using the procedure 
traverse. In addition, it coordinates the dropping of nodes (under the all-solutions 
protocol) that are associated with only one substitution instance in order to ensure 
that the graph contains no redundant information, coordinates the updating of the 
various fields of nodes and edges, and extracts the answer substitution for an 
unsatisfiable graph. 

Extracting an answer substitution from an H-graph is not as straightforward as it 
may seem. The answer substitution is not associated with arbitrary nodes whose 
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truth field is true, since some nodes may be true but not participate in the pebbling 
of nodefulse. In fact, it is necessary to reconstruct this pebbling. This reconstruction 
is performed by a recursive procedure findpebbling that works as follows. Called 
from a node n labeled true, if either n is a leaf or n is not the source of a group of 
edges labeled identically whose targets are all true, jindpebbling visits n, and returns 
the binding associated with output variables (if any such variables are associated 
with n). Called from a node n labeled true such that n is the source of a group of 
edges labeled identically whose targets are all true, as in the previous case, 
findpebbling visits n and returns the binding associated with output variables, but 
in addition, JindPebbling is called recursively for each of the true successors in the 
leftmost group of true successors of n. 

Example 4.9. After the H-graph of Figure 8 is shown to be unsatisfiable as in 
Example 4.3, this pebbling is reconstructed, and the binding of the node labeled 
~(a, f(a)) (which is associated with the free variable of the query), Y = f(u), is 
returned as the answer substitution. 

If the graph was expanded under the all-solutions protocol, it contains implicitly 
different and disjoint trials towards unsatisfiability. The information associated with 
the present answer substitution is not needed for subsequent trials. However, one 
has to be very careful not to delete nodes that might be used by subsequent trials 
because they are the target of several edges. The trick is to first drop edges, and then 
the nodes which are not accessible from nodefalse. Dropping edges is in itself a 
subtle process. It is incorrect, for instance, given a node X, to drop a group of 
identically labeled edges with source X even if the target nodes of these edges are all 
true. Such a strategy can delete edges that are not in fact redundant. The correct 
strategy is to identify a group of edges with source X labeled identically, such that 
all the target nodes are true, and each of these target nodes is not the source of a 
second group of identically labeled edges whose targets are not all true. Only in this 
case can the edges in the true group with source node X be deleted. Also, a node 
belonging to a pebbling is reset to false, unless it has no successors. 

During the expansion cycle the case could occur when there are unexpanded 
nodes with status young, but not more nodes with status mature in the graph. Since 
one of the fairness rules assumes the presence of a mature node in order to initiate 
an expansion step, it is necessary to check the H-graph after each expansion step for 
this situation, and update the status of all young nodes to mature if it does. The 
procedure reZnitialize performs this step. 

We summarize this information in the following section of pseudo-code: 

while H-graph G is not unsatisfiable and MoreMatureNodes do 
{Check for unsatisfiability.} 
truuerse (G) ; 

if the truth field of nodefalse is true then 
returnAnswer( G); 
if all-solutions protocol and user wishes another answer then 

{Delete nodes from G that are associated only with present substitution.} 
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drop ValidPart (G); 
expandGraph (G, MoreMatureNodes ); 
{Update status fields.} 
rernitialize (G); 

else 
return; 

endif 
else 

{The graph is not yet unsatisfiable.} 
expandGraph (G, MoreMatureNodes ); 
reInitialize( G); 

endif 
endwhile; 
if G not unsatisfiable then indicate query refutable; 

We conclude this section with an example showing that the use of the single-solu- 
tion protocol may prevent finding all substitution answers. 

Example 4. IO. 

:-p(a). 

:-P(a), p(e). 

P(a) :-p(c), p(d). 

?--p(X) 

If we start with the single-solution protocol, since in the initial graph the node 
labeled with p(a) unifies with the head of two clauses [p(a):-p(c), p(d), and 
p(X)], after expansion and merging, this node becomes true, and the answer [a/X] 
is returned. After dropValidPart, this node is reset to false, and no nodes are 
dropped. If the next expansion steps unify p(e), p(d), and p(c) with p(X), in this 
order, then the disjunctive answer [e/X] V [d/X] V [c/X] is returned. At this point, 
dropValidPart drops the nodes labeled with p(c), p(d), and p(e), and the 
procedure stops. The answer [c/X] V [d/X] (which is more general than the 
previous one) is not returned. 

The problem is the merging of the two (ground) instances of p(a) with dzfirent 
ages in the first expansion step. In order to return all answers, these nodes should 
not be merged. 

5. SOUNDNESS AND COMPLETENESS: A DISCUSSION 

In this section we give an argument for the correctness of the HORNLOG method 
under the all-solutions protocol as a computation procedure, in the sense that its 
operational semantics agrees with the model-theoretic semantics. The case of the 
single-solution protocol is similar. Formal proofs of correctness for both protocols 
can be found in (14, 271. 
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We will need the following definition. 

Definition 5.1. Let P be a logic program with query Q = 32, _ . .3z,(,H, 
.*. V,H,), such that PU{H,,..., 

&r>..., 

H,} is partitioned into subsets 
N,,} of negative clauses and the set {C,, . . . , C,,} of definite clauses. A 

sequence of graph expansion steps 

where I stands for nodefalse, is called an H-derivation. If, in addition, Gp is an 
unsatisfiable H-graph, the derivation is called an H-refutation. 

Any unsatisfiable H-graph, by definition, contains a pebbling from nodetrue 
to nodefalse. The basic idea of the argument is the following: from an H-refu- 
tation 

I =, (o:,...,&, G, . 
@ (c:,....ci,, 

it is possible to extract a sequence of 

. . + j cap”‘~ T Q 
0 CCP,...,C~#, 

Gp, 

simple graph expansion steps 

where 1 I ij I kj, and 1 I j up, such that: 

(1) 

(2) 

(3) 

(4) 

N~E {N,,..., N,“} is a distinguished negative clause, and Gh is the corre- 
sponding graph. 

the node Xj_ i chosen for expansion in each graph expansion step unifies with 
the head of only one definite clause (i.e., simple), 

G/ is the subgraph q,(Glage(X,_,))[a,,(X,,_,) + ai,(Gc,,)] of Gj, where Xj_r 
is the node of G,_, chosen for expansion, and 

the graph G; is unsatisfiable. 

P 

In words, for logic program P, an unsatisfiable H-graph Gp constructed by the 
HORNLOG proof procedure consists of many subgraphs, defined by age, and for any 
subgraph which yields a pebbling of nodefalse, this subgraph can be reconstructed 
by a series of simple graph expansion steps. 

To address to question of a correct answer substitution, we proceed by defining 
the meaning of a logic program. 

DEFINITION 5.2. The model-theoretic semantics for logic program P with query 
Q = 3,. . . 3z,Q’, where Q’ = (,H, V . . . v-,H,,,), each Hi a Horn clause, is 
defined as the set 

D(P,Q)=U({(t: ,..., t;) ,..., (tl” ,..., t,k)},krll 

I= P 1 Q’ [ t;/z,, . . . , t;/z,] V . 1 . V Q’ [ t,k/z,, . . . , t,“/z,] > , 

where each (ti,..., t:), 1 I i I k, is an n-tuple of terms (possibly containing 
variables) from the Herbrand universe for P and Q. 
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The standard Herbrand model consisting of a positive subset of the Herbrand 
base is not sufficiently rich to capture the semantics of disjunctions of substitutions 
instances of the query formula, as shown in the examples of Section 3. 

The correctness of the procedure for computing answer substitutions can be 
argued as follows. Let P be a logic program consisting of a finite set of Horn clauses 
and with query Q = 32,. . . 3z,Q’, where Q’ = (-TH, V . . . V ,H,), every Hj a Horn 

clause. Let the sequence of simple expansion steps 

1 a”‘*G 
0 

a 

Nb Cl 
O'G1 ... Gp_l -"'Gp 

CP 

be extracted from an H-derivation for P and Q as described above. If (Hi,, . . . , Hjk) 

is the subsequence of (Nb, C,, . . . , C,) consisting of clauses in {H,, . . . , H,,,}, then it 
can be shown that 

~ P ~ ~ei,( Hj,) V . . . V_Si,( HiI), (*> 

where ej = oj 0 Oj+ i, for every j, 1 <j <p - 1, and 8, = up. 
Since each substitution Bi, in P I) -,Sil(H,,) v . . - V Bjk( H,k) corresponds to a 

tuple of terms (t{, . . . , t!), and since Q’ = (Y HI V . . . V 7 H,,,), we have 

i=TH;,[t:/z, ,..., t:/z,] V ... ‘&H&f/z, ,..., t,“/z,] 

3 Q’[ t:/zl,. . . , t$‘z,2] v . . . v Q’ [ t,k/z,, . . . , t,k/zn] , 

and, together with (*), this implies that 

k P 3 Q+:/z,, . . . , ti,‘z,] v . . . V Q’[t:,‘zl,. . . , t,k/z,], 

where {(t: ,..., t!J ,..., (tf ,... , t,“)} is the set of tuples of terms corresponding to the 

disjunctive answer. That is, every set of tuples of terms returned by an H-refutation 
belongs to D( P, Q). 

Note that the above tells us when disjunctive answers actually arise. Disjunctive 
answers arise when the query Q contains at least one disjunct -, Hj with a negative 
literal (equivalently, H, is a definite clause), and when such clause(s) are used in at 
least two expansion steps in the sequence of graph expansions (that is, the sequence 

(Hi,,..., Hi,) has at least two elements). 

In order to show the completeness of the method, we proceed as follows. Recall 
that P is unsatisfiable, iff, by the Skolem-Herbrand-Giidel theorem, a set 9’ of 
ground substitution instances of clauses in P is unsatisfiable, Now, 9 corresponds 
to a graph 9 whose nodes are the ground instances in 9, and 9 is unsatisfiable iff 
there is a pebbling of nodefalse from nodetrue in the graph 9. The trick then, is to 
show that 9 can be “lifted” to a graph G that can be obtained in a sequence of 
simple expansion steps, and such that 9 is the homomorphic image of G in this 
sequence. 

The details of the proofs of soundness and completeness of the HORNLOG method 
can be found in [14, 271. 

In previous attempts to proving the completeness of the HORNLOG method, we 
tried to use the fixed-point method of Apt and Van Emden [2], but without success. 
The main difficulty is that their approach does not seem to account easily for 
disjunctive answers. We are investigating whether a reasonable fixed-point semantics 
can be given for HORNLOG. In this regard, recent results of Fitting [X] may turn out 
to be helpful. In a recent paper [3], Apt, Blair, and Walker develop a theory of fixed 
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points of nonmonotonic operators, and show that it provides the declarative 
semantics of a certain class of programs where negative literals are allowed in the 
premise of a clause (the stratiJiedprograms). These results are very interesting, but it 
is not clear that they can be applied to HORNLOG programs, because negative 
assertions are not allowed. 

6. COMPARISON WITH OTHER METHODS 

The method presented in this paper has the flavor of a number of previously 
reported theorem proving methods that either use graphs in some manner or are 
based on the problem-reduction paradigm. However, we claim that there are 
significant differences between how other methods use various graph data structures 
and this problem-solving paradigm, and the method of HORNLOG. 

The first and most obvious difference is that the other methods are full first-order 
theorem provers, whereas the HORNLOG method applies only to the Horn-clause 
logic subset. This is an important distinction, since the complexity of the satisfiabil- 
ity problem for arbitrary clauses is NP-complete even in the ground case, and the 
traverse procedure shows the unsatisfiability for ground Horn clauses in linear time. 

The various connection-graph methods [l, 5,18,27] use graphs whose nodes are 
clauses, and whose edges labeled with substitutions connect unifiable literals of 
opposite sign. The nodes of H-graphs are atomic formulae, and the edges are pairs 
(C, a), where C is a clause name and u a substitution. In the connection-graph 
method, a given graph evolves to another graph in the following way: A link is 
selected and deleted, and then the resolvent is added and linked to the previous 
graph. Also, the resulting graph is reduced by removing clauses containing an 
unlinked literal and deleting other clauses and links which become redundant as a 
result of the removal. In HORNLOG, a graph is rewritten to another by expansion 
steps. A set of clauses is shown to be unsatisfiable in the connection-graph method 
when the empty graph is reached. In HORNLOG, unsatisfiability is discovered when 
the H-graph is checked by the procedure traverse. 

The MESON procedure [23] is also similar in spirit to HORNLOG. Both are instances 
of the problem-reduction paradigm, and both use sophisticated marking schemes of 
their data structures. However, the data structure used in MESON is an AND/OR tree 
and not a graph, and its satisfiability is a consequence of propagating the truth 
value of leaves in this tree rather than the use of a method similar to the procedure 
trauerse. In this paper when we have made the distinction between an AND/OR tree 
in which nodes are marked as “already seen” or “identical to previously seen” 
nodes, we had the MESON procedure in mind. 

The idea of using clauses as rewrite rules as in context-free grammars is not new 
and has been exploited by Sickel [28] and Chang and Slagle [5]. However, these two 
methods are described for arbitrary clauses and are therefore more complicated. 
Sickel associates an attribute grammar with a set of clauses, and this attribute 
grammar is used to generate refutations. Chang and Slagle first build a connection 
graph from the set of clauses, and associate with this graph a set of context-free 
rules. These rules are then used to generate plans as guides for the search for a 
refutation. Although somewhat similar in spirit, our method is technically different 
and more direct because it applies to Horn clauses. 
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It should be noted that an unsatisfiable H-graph does produce a mating as 
defined in Andrews [l]. However, the major difference is in the method by which it 
is obtained and checked. As a matter of fact, a major difference with all other 
methods is in the procedure for checking unsatisfiability of the final graph. Since 
traverse operates in linear time in the size of the graph, the cost of calling traverse is 
much smaller than the cost of expanding graphs, and consequently we can afford to 
call traverse after every expansion step without significant time overhead. 

7. CONCLUSIONS 

We have presented a new method for logic-programming interpreters based on 
graph rewriting and on a linear-time algorithm for showing the unsatisfiability of 
ground Horn clauses. The system is presently implemented in PASCAL on a VAX 
11/785, and uses a powerful LAr_R(l)-parser constructor incorporating systematic 
error recovery [17]. 

The method applies to a class of logic programs that we have called general 
Horn-clause programs. The examples given in Section 3 illustrate both some of the 
expressive power and limitations of general Horn-clause programs. It is possible to 
state some forms of negation without recourse to the negation-by-failure semantics, 
as shown by Examples 3.1 and 3.2. More “complicated’ forms of negation, for 
instance an embedded negation as in ~(~q( X)), or a negated literal in the body of 
a clause as in A : - B,, . . . , 7 Bi, . . _, BP, are not expressible, however. 

It is possible to extract indefinite answers, in the sense that the answer is a 
disjunction of substitutions, as shown in Examples 3.2, 3.3, and 3.4. It seems clear 
that for certain applications indefinite answers are practically more desirable than 
no answer at all. For example, in a medical domain, it is certainly better for a 
system to conclude that a patient suffers from either condition A or from condition 
B than for the system to conclude that the patient suffers from no condition 
because it cannot return a definite answer. Indeed, a disjunctive answer gives a list 
of possible answers, and often suggests the addition of new assertions that would 
improve the definiteness of a program. On the other hand, we admit that the 
underlying mathematical semantics of HORNLOG may not be quite as simple as 
systems which return only definite answers (i.e., so far, we do not have a least-fixed- 
point semantics). 

Finally, it is even possible in some cases, though not convenient, to express 
information which is not logically equivalent to any set of Horn clauses, by using 
what can only be called “programming tricks”, as shown in Example 3.4. The use 
and need for such tricks also points out the inevitable fact that general Horn-clause 
programs are a proper subset of the full first-order logic, and that there will be 
problems that cannot be conveniently expressed in this subset. It is possible to 
generalize the HORNLOG procedure to handle clauses with negative literals in the 
premise, but his leads to a refutation procedure whose computational complexity is 
prohibitive (just in the ground case, graphs of exponential size may have to be 
constructed). 

An interesting approach for dealing with a class of formulae more general than 
Horn clauses is presented by Miller in [25]. Miller gets around the problem of 
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having to deal with indefinite answers in an astute fashion. His solution is to 
abandon classical provability and instead to use more “constructive” notions of 
provability, such as intuitionistic provability. In this way, definite answers can be 
ensured for a class of programs consisting of formulae that may contain implica- 
tions or disjunctions. Miller also gives a least-fixed-point semantics in terms of 
Kripke models, and discusses a theory of modules. He defines an interpreter at a 
fairly abstract level, and neither the complexity of his method nor an actual 
procedure using unification is presented. 

In this paper we have presented the method with a “ theorem proving” flavor, in 
the sense that it is complete and uses a breadth-first search for answer substitutions. 
It is equally possible to present the method as a procedure which uses depth-first 
search and backtracking, in a manner similar to PROLOG. Such a version has also 
been implemented in PASCAL. In this version, we represent the graph as a stack of 
records, each component of which consists of two parts: 

(1) a section of the H-graph related to either the initial H-graph as described 
above, or the subgraph of an expansion step, and 

(2) a substitution. 

In the place of the construction of the graph resulting from considering all clauses 
that are unifiable with the selected mature node, instead, as in interpreters for 
PROLOG, only the first clause in lexical order is considered. The substitutions are not 
applied, so that when backtracking occurs, any state of the graph can be recon- 
structed from the information held in the stack. The instantiated graph is recon- 
structed as the stack is used by traverse to test for unsatisfiability. 

We chose to present the breadth-first version of HORNLOG in detail, rather than 
the backtracking version, for two reasons. Presenting the breadth-first version 
enhances the clarity of presentation of eliminating the need to consider a HORNLOG 
counterpart of an SLD tree built by the SLD-resolution method, and the details of 
its traversal. Each node in such a counterpart is an H-graph, and the leaves are 
unsatisfiable H-graphs. Since the method itself uses a data structure which is re’-‘-l 
to the SLD tree, we felt the simultaneous explanation of two such data strucl 
would unnecessarily complicate the presentation. There is, in addition, a I 
fundamental reason that motivated our choice of presentation. 

While H-graphs can be represented in the form of stacks, this representation is 
not very natural and significantly complicates the procedure. The problem is that 
the H-graph data structure has the property that previous stages of the expansion 
cannot easily be recovered. Stated in another way, it is difficult to undo an 
expansion step during backtracking. Our experience suggests that the complications 
necessary to the procedure in order to make such a recovery possible cause it to 
compare unfavorably with SLD resolution in a single-processor environment. 

In a parallel environment, however, we think the HORNLOG method will compare 
favorably with SLD resolution. A fundamental parallel interpretation seems im- 
mediate in both the graph-expansion step and the graph-traversal step. Since any 
nondead node can be chosen at any stage of the expansion cycle, conceptually, 
subject to the synchonization induced by a logic-programming language [7], for 
every expansion cycle on an architecture with n processors, n nodes could be 
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expanded simultaneously (one per processeor), and the n disjoint graphs merged. 
The resulting graph is tested for unsatisfiability by the traverse procedure, which, as 
was pointed out in [8], is itself modeled by the dataflow model. Since the H-graph 
data structure is a compact encoding for all possible ways of showing a formula 
unsatisfiable, a parallel strategy has a natural interpretation. 

Note two differences between the HORNLOG method and SLD resolution in a 
parallel environment. First, it is possible for the construction of all branches of the 
SLD tree [2] in parallel to result in extensive duplication of information (the same 
substitution instance of a clause could occur in many different branches). The 
H-graph data structure represents duplicate information by merging nodes with 
duplicate labels. Second, nodes in an SLD tree are labeled with either negative 
clauses or the empty clause, while nodes in an H-graph are labeled with atomic 

formulae. It is possible (this is clearly a conjecture) that the finer “granularity” of 
the data structure used in HORNLOG coupled with the flexibility in the expansion 
process (each substitution instance of a predicate is attached to a processor, and any 
nondead node is available for expansion at any point in the derivation) could 
suggest a new approach to the problems induced by a logic-programming language 
on a parallel architecture. These are issues that we will have to explore before the 
conjecture that HORNLOG compares favorably with SLD resolution can be substanti- 
ated. 

We also comment on the approach to equality used in HORNLOG. Based on work 
which extends SLD-resolution to admit equational Horn clauses [ll, 15,161, we have 
defined two extensions to the HORNLOG method presented here, based on unification 
modulo a set of equations, or E-unification. This first extension is general, in that it 
applies to arbitrary set of equational Horn clauses, but is not practical, as it assumes 
a procedure which gives an explicit sequence of substitutions for each E-unifier. The 
second extension, which we have called the HE+-refutation method, applies to any 
set of equational Horn clauses that admits a procedure enumerating a complete set 
of E-unifiers, and is complete for the set of logic programs containing clauses of the 
form s A t, Q : - P,, . . . , P,,, or : - P,, . . . , P,, where s and t are first-order terms, Q 
is a nonequational atomic formula, and P,, _ . . , P, are either equational or nonequa- 
tional atomic formulae. This is an important class of equational logic programs, in 
that it subsumes the paradigms of functional, logic, and equational programming. 

It may also be possible to adapt our graph-based method to make it more 
incremental. By this, we mean that we would like to be able to reuse as much as 
possible a graph built by the procedure and found unsatisfiable, when the set of 
input clauses is changed, without having to go through previous expansion steps 
again. This would seem particularI;, advantageous when the procedure returns 
indefinite answers. Indeed, in many cases, an indefinite answer suggests assertions 
that could be added to the original sei. 

APPENDIX A 

In this appendix, we give the proof of Theorem 2.3. Recall the statement of 
Theorem 2.3: Consider a first-order language without equality having at least one 
constant. For any (finite) set P of universally quantified Horn clauses, the following 
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properties hold: 

For any m (m 2 2) sentences Aj = 3~;. . . 3y~rBi, where each Bj is a conjunc- 
tion of atomic formulae, if 

!=PPA~VA,V a-. VA,, 

then for some i, 1 I i s m, we have 

kPxAi. 

For any sentence 32,. . . 3z,Q, where Q is a conjunction of atomic formulae, 
if 

l=P33z p..3z,Q, 

then there is a p-tuple of ground terms (t,, . . . , rp) such that 

t==pI Q[h/q,..., fp/zp]. 

PROOF. Theorem 2.3 can be proved using the fact that Horn sentences are preserved 
under direct products of models (Chang and Keisler [4]), or proof-theoretically as in 
Gallier [12]. We give a model-theoretic proof because it also applies to a slightly 
more general case. In this proof, the following notation is used. V denotes a 
countable set of variables, J? denotes a first-order structure, A4 denotes the 
underlying domain of this structure, and an assignment is any function s : 7v+ hf. 
Given a term t, a formula A, a first-order structure M, and an assignment 
s : V+ M, the value tM[s] and the truth value of A&[s] for s are defined in the 
usual way (see Gallier [12]). Recall that if A is a sentence (that is, it has no free 
variables), then A&[s] does not depend on s. Given a formula A, a structure .M, 
and an assignment s, we write At= A[s] iff A,[s] = true, A!= A iff AM[s] = true 
for every assignment s, and I= A iff &t= A for every structure .M. We also write 
At+ A[s] iff A,[s] = false for some assignment s, and we write # A iff A!# A for 
some structure A%. Note that if A is a sentence, then .A kt A iff A != 7A. 

Let Z be a nonempty set which will be used as an index set, and let ( Ai) i E I be an 
Z-indexed family of nonempty sets. The Cartesian product, denoted by n( A,)i E I, is 
the set of all Z-indexed sequences f : I -+ Ui E I Ai such that, for each i E I, f(i) E A;. 
Such Z-sequences will also be denoted as (f(i) 1 i E Z). For each i E I, let Ai be a 
structure. We define the direct product M of the ( Ai); E I as the structure defined as 
follows: 

The domain of A is the Cartesian product l-l< Mi) i E I. 

(1) 
(2) 

(3) 

Every constant symbol c is interpreted as the Z-sequence (c&, 1 i E Z). 

Every function symbol f of rank n > 0 is interpreted as the function such 
that, for any n Z-sequences G1 = (g’(i) (i EZ),...,G”= (g”(i) Ii E Z), 

fM(G1,..., G”)=(f,,(g’(i),...,g”(i))ji~Z). 

For every predicate symbol q of rank n 2 0, q is interpreted as the predicate 
such that, for any n Z-sequences G1 = (g’(i) 1 i E Z), . . . , G” = (g”(i) I i E Z), 

qA(G?.., G”)=true iff q&,(gl(i),...,g”(i))=true forall iEZ. 

The direct product & is also denoted by I~(J?,), E I. If Z = { 1,. . . , m }, note 
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that every assignments s : V+ l7( ATI;)~ E I corresponds to a unique m-tuple 

(s r, . . . , s,) of assignments si : f-+ 44,. 

We now prove the theorem. First, we prove (i). Assume that k P I A, v A, 

V . - . VA,, but # P 3 Ai for every i, 1 I i I m. Since P is a set of sentences and 
A 1,. . . , A, are sentences, there are structures _Mi, 1 I i I m, such that 

di#PzAi. 

Hence, for every i, 1 I i I m, 

JHikP, 

and 

Since A, = 3~;. . . 3yj,Bi, where B, is a conjunction of atomic formulae, 7A, is of the 
form 7Ai=V_y;‘...Vy;,(,Bi V ..- V-, B&), where the B,f are atomic. Now, for 
every i, 1 I i I m, &Ii b -,Ai iff for every assignment si : V+ &I,, Ai k (,Bi 
v . . . V -, B,f,,)[s,]. Hence, for every i, 1 I i I m, and for every si, there is some jj, 
1 <j, I m,, such that 

Ai!= ,Bj[si]. (*) 

Note that for any atomic formula B and any assignment (sr, . . . , sm) : V+ n(Mi)i E I, 
we have 

Il(Ai)i~Ib lB[(sl,..-~ ‘,)I 
iff 

IJ(Ai>i~Ik B[(sl,..., sm)l 
iff (by the definition of validity in a direct product) 

Ai !# B[si] forsomei, l_<iIm, 

iff 

JIit= ,B[si] forsomei, llilm. 

Applying the above observation to -, B/‘I [ si], by ( * ), we have 

n<~,)icl~l’Bfl[(sl,...,s,)], 

that is, 

n<~;>i,,~lBi[(s,,...,s,)I, 

for every i, 1 < i I m. Since the above argument holds for any arbitrary sr,. . . , s,,,, 
we have shown that for every i, 1 I i I m, we have 

II(~i)rc~~~A,. 

Since P is a set of Horn sentences, and sets of Horn sentences are preserved under 
direct products [4], 

JX,I=P foreveryi, llism 
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implies that 

n(“i)iGIbPo 
But then, we have shown that 

l-&qi,lk P A -7A, A ,A, A -. . /\,A,, 

contradicting the fact that 

~=PPA~VA~V .‘a VA,. 

Hence, we must have I= P I Ai for some i, 1 I i I M. 
We now prove (ii). Let HT be the Herbrand universe, that is, the set of all terms 

built up from constant and function symbols in the language. Assume that I= P I 
32 1.. .3z,Q, but that for every p-tuple of terms (tr, . . . , fp) E HTP, we have !# P z~ 

Q[tJq,. . . , t,/z,.]. Then, for every p-tuple of ground terms t = (tr, . . . , tP) E HTP, 

there is a structure ./I, such that 

~r~PA,e[tl/z,,...,t,/z,]. (**) 

For simplicity of notation, for each t = (tl, _ . . , fp) E HTP, let us denote 
Q[h/q,. . . , fp/zp] as Q(t). From (* *), for every t E HTP, we have 

M,bP and &Y,k7Q(t). 

Now, we use two facts: 

(1) For any formula B = B, A * - . A B,,,, where B,, . . . , B, are atomic formulae, 
for any assignment (sili~Z): V+II(ZVZ,)~,,, we have 

n(~i)i,,~=,B[(siliEZ)I 

iff, for some j, 1 Ij I m, 

n(~i)i~l~lBj[(s,l’E’)l 
iff, for some j, 1 Ij I m, 

lFI<di>iETw Bj[(siliE1)l 
iff, for some j, 1 ~j I m (by the definition of validity in a direct product), 

JI; # Bj[si] for some i E I, 

iff, for some j, 1 Ij 5 m, 

.Mi!= TBj[si] for some i E I, 

iff 

.M, t= ,B[si] for some i E Z. 

(2) Horn sentences are preserved under direct products. 

Let Z = HTP. Since 

A,bP, 

by fact (2) we have 

ll(Az>iClk PO 

P is a set of Horn clauses, and since for every t E Z we have 
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Since Q(t) = Q,(t) A . . . A Q,(t) for some atomic formulae Q,,. . ., Q,, and for 

every t E Z we have 

At I= lQ(t>, 
by fact (1) we have 

II(~i);E~‘=~Q(‘) for every t E Z. 

Hence, we have shown that: 

(3) The set P u {-,Q(t) 1 t E Z} is satisfied in FI(J?~),,,. 

On the other hand, since E P 3 3z,.. .3z,Q, the set P U {t/z, . . .VzP7Q} is un- 
satisfiable. We claim that this implies that: 

(4) The set P U c7Q( t) 1 t E Z } is unsatisfiable. 

Note that (4) contradicts (3), and this will establish part (ii) of the theorem. Since all 
sentences in P U {ifzl _ . . 'dz,-,Q } are clauses with no existential quantifiers, it is 
well known [12] that a sentence in negation normal form with no existential 
quantifiers is valid in some structure iff it is valid in some Herbrand structure, that 
is, a structure whose domain is HT. If P U c7Q( t) ) t E Z } were satisfiable, it would 
be satisfied in some Herbrand structure 4. But then, since the domain of .& is the 
set HT of Herbrand terms, by the definition of validity of a universal formula, the 
fact that &%!=:A for every A E P U c7Q(t) ] t E Z} implies that &!F PA 
VZ 1.. . VzP7Q, contradicting the unsatisfiability of P U {Vz, . . . Vz,-,Q }. Hence, (4) 
holds. 

Since the assumption that # P 3 Q(t) for every t E HTP leads to a contradic- 
tion, we must have K P I Q(t) for some t E HTP. III 

Corollary. Let P be a conjunction of universal Horn clauses over a fkst-order language 
without equality having at least one constant. For any finite disjunction A, 
V -.. VA,ofsentencesoftheformA,=3y,... 3yp, Bi, where Bj is a conjunction of 

atomic formulae, if 

I=PxA,v em- VA,, 

then there is some i, 1 I i I m, and some tuple of ground terms (t,, . . . , t,, ), such 
that 

~P~B,[t,/z,,...,t,,/z,,]. 

PROOF. Immediate by Theorem 2.3. q 

REMARK. 

(1) 

(2) 

A shorter proof of part (ii) of Theorem 2.3 can be given from part (i) of 
Theorem 2.3 and the Skolem-Herbrand-Godel theorem. The proof that we 
have given uses more basic principles and shows the central role of the 
preservation under direct products. In effect, we have proven directly a 
special version of the Skolem-Herbrand-Giidel theorem for (universal) Horn 
formulae. 

The proof of part (i) applies to any set of sentences preserved under direct 
products. This includes sentences containing existential quantifiers, and 
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sentences not equivalent to any Horn sentences [4]. Part (ii) holds for any 
universal set of sentences preserved under direct products. However, by 
McKinsey’s theorem [4], such a set of sentences has a set of axioms consisting 
of universal Horn sentences. Hence, it is likely that Theorem 2.3 only holds 
for sets of universal Horn sentences, and we conjecture that this is so. 

Our proof technique also allows us to show that Theorem 2.3 holds for languages 
with equality. However, due to the lack of space, this generalization is presented in 
Ref. [14]. 

We would like to thank the referee for his careful review, and for making numerous suggestions which led 

to improvements in the presentation, particularly regarding the section on soundness and completeness. 

We would also like to thank Ken McAloon and Gopalan Nadathur for incisive comments and helpful 

suggestions given while this paper was being written. 
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