Orthogonal Polynomials on the Negative Multinomial Distribution

R. C. Griffiths
Department of Mathematics, Monash University
Communicated by the Editors

Orthogonal polynomials on the multivariate negative binomial distribution,

$$
(1+\theta)^{-\alpha-x}\left\{\prod_{j=0}^{p} \theta_{j}^{x_{j}} / x_{j}!\right\} \Gamma(\alpha+x) / \Gamma(\alpha),
$$

where $\alpha>0, \theta_{j}>0, x=\Sigma x_{j}, \theta=\Sigma \theta_{j}, x_{0}, x_{1}, \ldots, x_{p}=0,1, \ldots$ are constructed and their properties studied.

Introduction

One generalization of the negative binomial to higher dimensions is given by the distribution

$$
\begin{equation*}
(1+\theta)^{-\alpha-x}\left(\prod_{j=0}^{p} \theta_{j}^{\alpha_{j}} / x_{j}!\right) \Gamma(\alpha+x) / \Gamma(\alpha), \tag{1}
\end{equation*}
$$

where $\alpha>0, \theta_{j}>0, x=\sum_{0}^{p} x_{j}, \theta=\sum_{0}^{p} \theta_{j}, x_{0}, x_{1}, \ldots, x_{p}=0,1, \ldots$.
The aim of this paper is to generalize the Meixner polynomials on the negative binomial distribution to a set of orthogonal polynomials on the distribution (1). If \mathbf{k} is any vector the notation $k=\sum_{i} k_{i}$ will be used, and at times the parameters of a function will be suppressed to avoid cumbersome notation.

Received September 3, 1973; revised January 2, 1975.
AMS classification: 42A56.
Key words and phrases: Multivariate negative binomial, negative binomial, orthogonal polynomials.

Generating Function

Define a set of functions $\left\{m_{\mathbf{k}}(\mathbf{X})\right\}$ by

$$
\begin{align*}
G(\mathbf{X}, \mathbf{w}) & =\sum_{\mathbf{k} \geqslant 0} m_{\mathbf{k}}(\mathbf{X}) w_{0}^{k_{0}} \cdots w_{p}^{k_{p}} /\left(k_{0}!\cdots k_{p}!\right) \tag{2}\\
& =\left(1-w_{0}\right)^{-X_{-\alpha}} \prod_{i=0}^{p}\left(1-w_{0}(1+\theta) / \theta+\sum_{j=1}^{p} v_{i}^{(j)} w_{j}\right)^{x_{i}},
\end{align*}
$$

where $\left\{v^{(j)} ; j=0,1, \ldots, p\right\}$ is a complete set of orthogonal functions on $\left\{\theta_{i}\right\}$ with $v^{(0)} \equiv 1$ and the summation is taken over $k_{j}=0,1, \ldots, j=0,1, \ldots, p$. The domain D of \mathbf{w} is given by $\sum_{0}^{P} a_{i}{ }^{2} w_{i}{ }^{2}<1$, where $a_{0}{ }^{2}=(1+\theta) / \theta$,

$$
a_{j}^{2}=\sum_{i=0}^{x} v_{i}^{(j)^{2}} \theta_{i}
$$

Let $b_{i}(\mathbf{w})=1-w_{0}(1+\theta) / \theta+\sum_{j=1}^{p} v_{i}^{(j)} w_{j}$. Then

$$
\begin{aligned}
E G(\mathbf{X}, \mathbf{w}) G(\mathbf{X}, \mathbf{v}) & =E E\left\{\left[\left(1-w_{0}\right)\left(1-v_{0}\right)\right]^{-\alpha-X} \prod_{i=0}^{p}\left[b_{i}(\mathbf{w}) b_{i}(\mathbf{v})\right]^{X_{i}} \mid X\right\} \\
& =E\left[\left(1-w_{0}\right)\left(1-v_{0}\right)\right]^{-\alpha-X}\left[\sum_{i=0}^{p} b_{i}(\mathbf{w}) b_{i}(\mathbf{v}) \theta_{i} / \theta\right]^{X} \\
& =\left[(1+\theta)\left(1-w_{0}\right)\left(1-v_{0}\right)-\sum_{i=0}^{p} \theta_{i} b_{i}(\mathbf{w}) b_{i}(\mathbf{v})\right]^{-\alpha} \\
& =\left(1-\sum_{j=0}^{p} a_{j}^{2} w_{j} v_{j}\right)^{-\alpha} .
\end{aligned}
$$

Thus $E m_{\mathrm{h}}(\mathbf{X}) m_{\mathbf{k}}(\mathbf{X})=\delta_{\mathrm{hk}} a_{0}^{2 k_{0}} \cdots a_{p}^{2 k_{p}}{k_{0}}!\cdots k_{p}!\Gamma(\alpha+k) / \Gamma(\alpha)$,

$$
\delta_{\mathbf{h k}}= \begin{cases}0 & \text { if } \quad \mathbf{h} \neq \mathbf{k}, \\ 1 & \text { if } \\ \mathbf{h}=\mathbf{k},\end{cases}
$$

and $M_{\mathbf{k}}(\mathbf{X})=\left\{\Gamma(\alpha) /\left(\Gamma(\alpha+k) k_{0}!\cdots k_{p}!\right)\right\}^{1 / 2} a_{0}^{-k_{0}} \cdots a_{p}^{-k_{p}} m_{\mathbf{k}}(\mathbf{X})$ are the orthonormal functions.

Transform

Denote $E f(\mathbf{X}) s_{0}^{X_{0}} \cdots s_{p}^{X_{p}}$ by $f^{*}(\mathbf{s})$ for any function f for which $E|f(\mathbf{X})|<\infty$. It is straightforward to show

$$
\begin{aligned}
G^{*}(\mathbf{s}, \mathbf{w}) & =\left\{(1+\theta)\left(1-w_{0}\right)-\sum_{i=0}^{p} \theta_{i} s_{i}\left(1-w_{0}(1+\theta) / \theta+\sum_{j=1}^{p} v_{i}^{(j)} w_{j}\right)\right\}^{-\alpha} \\
& =\left\{\left(1+\theta-S_{0}\right)-(1+\theta)\left(\theta-S_{0}\right) w_{0} / \theta-\sum_{j=1}^{p} S_{j} w_{j}\right\}^{-\alpha}
\end{aligned}
$$

where $S_{j}=\sum_{i=0}^{p} s_{i} \theta_{i} v_{i}^{(j)}, j=0,1, \ldots, p$. Thus

$$
m_{\mathbf{k}}^{*}(\mathbf{s})=a_{0}^{2 k_{0}}\left(1+\theta-S_{0}\right)^{-\alpha-k}\left(\theta-S_{0}\right)^{k_{0}}\left(\prod_{j=1}^{p} S_{j}^{k_{j}}\right) \Gamma(\alpha+k) / \Gamma(\alpha)
$$

Completeness

Suppose $E f(\mathbf{X}) M_{\mathbf{k}}(\mathbf{X})=0$ for every index vector \mathbf{k}, then this is equivalent to

$$
E f(\mathbf{X}) G(\mathbf{X}, \mathbf{w})=0 \quad \text { for all } \quad \mathbf{w} \in D
$$

This means that

$$
\sum_{x \geqslant 0} f(\mathbf{x}) \Gamma(\alpha+x) \prod_{i=0}\left(\phi_{i}^{x_{i}} / x_{i}!\right)=0
$$

where $\phi_{i}=\theta_{i}\left\{1-w_{0}(1+\theta) / \theta+\sum_{j=1}^{p} v_{i}^{(j)} w_{j}\right\} /\left(1-w_{0}\right)(1+\theta)$, for $i=0,1, \ldots, p$, which is a one-to-one and onto transformation of \mathbf{w} on account of the complete orthogonal functions $\left\{\vartheta^{(j)}\right\}$ on $\left\{\theta_{i}\right\}$. Hence $E f(\mathbf{X}) M_{\mathbf{k}}(\mathbf{X})=0$ for every $\mathbf{k} \geqslant 0$ is equivalent to $f(\mathbf{x}) \equiv 0$ for all \mathbf{x}.

Let \mathbf{e}_{h} be the vector $\left(\delta_{j h}\right), h=0,1, \ldots, p$. It will be shown that $\left\{m_{k e_{0}+r e_{j}}(\mathbf{X})\right.$; $k=0,1, \ldots, r=0,1, \ldots\}$ is a complete orthogonal polynomial set in X_{0} and X alone if and only if $v_{1}^{(j)}=v_{2}^{(j)}=\cdots=v_{p}^{(j)}$ and $v_{0}^{(j)} \neq v_{1}^{(j)}$.

To prove this, write $X_{0}=Y_{0}, X=Y, X_{i}=Y_{i}$ for $i=2,3, \ldots, p$ in (2). Then, for any w_{0} and w_{j},

$$
\begin{aligned}
G\left(\mathbf{Y}, w_{0}, w_{j}\right)= & \sum_{k, r} m_{k e_{0}+r e_{j}}(\mathbf{X}) w_{0}^{k_{w_{j}} r} / k!r! \\
= & \left(1-w_{0}\right)^{-Y_{-\alpha}}\left(1-w_{0}(1+\theta) / \theta+v_{0}^{(j)} w_{j}\right)^{Y_{0}} \\
& \cdot\left(1-w_{0}(1+\theta) / \theta+v_{1}^{(j)} w_{j}\right)^{Y-Y_{0}} \\
& \cdot \prod_{i=2}^{n}\left[1+\frac{\left(v_{i}^{(j)}-v_{1}^{(j)}\right) w_{j}}{1-w_{0}(1+\theta) / \theta+v_{1}^{(j)} w_{j}}\right]^{Y_{i}} .
\end{aligned}
$$

If $v_{1}^{(j)}=\cdots=v_{p}^{(j)}$ and $v_{1}^{(j)} \neq v_{0}^{(j)}$, then the result is obvious and conversely if $G\left(\mathbf{Y}, w_{0}, w_{j}\right)$ is a function of Y and Y_{0} for any $Y_{2}, \ldots, Y_{p}, w_{0}$ and w_{j}; then this implies

$$
\prod_{i=2}^{p}\left[1+\left(v_{i}^{(j)}-v_{1}^{(j)}\right) w_{j} /\left\{1+w_{0}(1+\theta) / \theta+v_{1}^{(j)} w_{j}\right\}\right]^{Y_{i}}=1
$$

which gives $v_{i}^{(j)}=v_{1}^{(j)}$ for $i=2,3, \ldots, p$ and $v_{0}^{(j)} \neq v_{1}^{(j)}$, because otherwise, it will be a function of Y only.

Polynomial Structure

Define the degree of a multidimensional polynomial

$$
\sum_{\mathbf{a}} q(\mathbf{a}) z_{0}^{a_{0}} \cdots z_{p}^{a_{p}}
$$

to be the degree of the polynomial $\sum_{a} q(a) u^{a}$.
If $\chi_{j}=\sum_{i=0}^{p} v_{i}^{(j)} X_{i}, j=0,1, \ldots, p$, then any polynomial of degree δ in \mathbf{X} is a polynomial of degree δ in χ, and vice versa.

$$
\begin{aligned}
& E \chi_{0}^{\delta_{0}} \cdots \chi_{p}^{\delta_{p}} G(\mathbf{X}, \mathbf{w}) \\
& \quad=E \sum_{\beta \leqslant \delta} a_{\beta} \mathbf{X}^{(\beta)} G(\mathbf{X}, \mathbf{w}) \\
& \quad=\sum_{\beta \leqslant \delta} a_{\beta}(\alpha+\beta-1)^{(\beta)} \prod_{i=0}^{p}\left[\theta_{i}\left(1-w_{0}(1+\theta) / \theta+\sum_{j=1}^{p} v_{i}^{(j)} w_{j}\right)\right]^{\beta_{i}} \\
& \quad=(\alpha+\delta-1)^{(\delta)} \prod_{l=0}^{p}\left\{\sum_{i=0}^{p} v_{i}^{(l)} \theta_{i}\left(1-w_{0}(1+\theta) / \theta+\sum_{j=1}^{p} v_{i}^{(j)} w_{j}\right)\right\}^{\delta_{l}}+H(\mathbf{w}) \\
& \quad=(\alpha+\delta-1)^{(\delta)} \theta^{\delta_{0}}\left(1-w_{0}(1+\theta)(\theta)^{\delta_{0}} \prod_{l=1}^{p} a_{l}^{2 \delta_{i}} w_{l}^{\delta_{l}}+H(\mathbf{w})\right.
\end{aligned}
$$

where $\left\{\alpha_{\beta}\right\}$ is a set of constants and $H(\mathbf{w})$ is a polynomial in \mathbf{w} of degree at most $\delta-1$. Thus $E \chi_{0}^{\delta_{0}} \cdots \chi_{p}^{\delta_{\mathbf{p}}} M_{\mathbf{k}}(\mathbf{X})=0$ if either $k>\delta$, or $\mathbf{k} \neq \delta$ with $k=\delta$, which implies that

$$
M_{\mathbf{k}}(\mathbf{X})=c_{\mathbf{k}} \chi_{0}^{k_{0}} \cdots \chi_{p}^{k_{p}}+Q(\mathbf{X})
$$

where $c_{\mathbf{k}}$ is a nonzero constant and $Q(\mathbf{X})$ is a polynomial of degree at most $k-1$. The above representation means that $\left\{M_{\mathbf{k}}(\mathbf{X})\right\}$ can be constructed by applying the

Gram-Schmidt orthogonalization process to the sequence

$$
1, \chi_{0}^{a_{0}} \chi_{1}^{a_{1}} \cdots \chi_{p}^{a_{p}}, \chi_{0}^{b_{0}} \chi_{1}^{b_{1}} \cdots \chi_{p}^{b_{p}}, \ldots
$$

where each of the products is distinct,

$$
\sum a_{i} \leqslant \sum b_{i} \leqslant \cdots \text { and the ordering when } \sum a_{i}=\sum b_{i} \text { is arbitrary. }
$$

Clearly, the $M_{\mathbf{k}}(\mathbf{X})$ are polynomials of maximum degree k and if $P_{\mathbf{h}}(\mathbf{X})$ is any polynomial of degree $h<k$, then $E M_{\mathrm{k}}(\mathbf{X}) P_{\mathrm{h}}(\mathbf{X})=0$ and so any other set of orthogonal polynomials $\left\{N_{\mathrm{h}}(\mathbf{X})\right\}$ can be written as

$$
N_{\mathrm{h}}(\mathbf{X})=\sum_{k=h}\left(E N_{\mathrm{h}}(\mathbf{X}) M_{\mathbf{k}}(\mathbf{X})\right) M_{\mathbf{k}}(\mathbf{X})
$$

Runge-Type Identity

Suppose \mathbf{X}_{1} and \mathbf{X}_{2} are independent random vectors having the distribution (1) with parameters α_{1} and α_{2}, then

$$
G\left(\mathbf{X}_{1}+\mathbf{X}_{2}, \mathbf{w} ; \alpha_{1}+\alpha_{2}\right)=G\left(\mathbf{X}_{1}, \boldsymbol{\omega} ; \alpha_{1}\right) G\left(\mathbf{X}_{2}, \mathbf{w} ; \alpha_{2}\right)
$$

Thus

$$
m_{\mathrm{k}}\left(\mathbf{X}_{1}+\mathbf{X}_{2} ; \alpha_{1}+\alpha_{2}\right)=\sum_{\mathrm{h}+\mathrm{l}=\mathrm{k}}\binom{k_{0}}{h_{0}} \cdots\binom{k_{p}}{h_{p}} m_{\mathrm{h}}\left(\mathbf{X}_{1} ; \alpha_{1}\right) m_{\mathrm{l}}\left(\mathbf{X}_{2} ; \alpha_{2}\right) .
$$

A Runge-type identity holds for a class of polynomials and the reader is referred to Eagleson [1] for background material.

Bilinear Sums

Define

$$
g_{h}(\mathbf{x}, \mathbf{y})=\sum_{k=h} M_{\mathbf{k}}(\mathbf{x}) M_{\mathbf{k}}(\mathbf{y})
$$

The transform of $g_{h}(\mathbf{x}, \mathbf{y})$ is

$$
\begin{aligned}
g_{h}^{*}(\mathbf{s}, \mathbf{t})= & {[\Gamma(\alpha+h) / \Gamma(\alpha) h!]\left(1+\theta-S_{0}\right)^{-\alpha-h}\left(1+\theta-T_{0}\right)^{-\alpha-h} } \\
& \cdot\left\{\left(\theta-S_{0}\right)\left(\theta-T_{0}\right)(1+\theta) / \theta+\sum_{i=1}^{p} S_{i} T_{i} / a_{i}\right\}^{h}, \\
= & {[\Gamma(\alpha+h) / \Gamma(\alpha) h!]\left(1+\theta-S_{0}\right)^{-\alpha}\left(1+\theta-T_{0}\right)^{-\alpha} } \\
& \cdot\left\{1-\left[(1+\theta)-\sum_{i=0}^{p} \theta_{i} s_{i} t_{i}\right] /\left(1+\theta-S_{0}\right)\left(1+\theta-T_{0}\right)\right\}^{h},
\end{aligned}
$$

where

$$
S_{j}=\sum_{i=0}^{p} \theta_{i} s_{i} v_{i}^{(j)}, \quad T_{j}=\sum_{i=0}^{p} \theta_{i} t_{i} v_{i}^{(j)}, \quad j=0,1,2, \ldots, p
$$

Thus $g_{h}(\mathbf{x}, \mathbf{y})$ is invariant under any choice of $\left\{v^{(j)}\right\}$.
If $\left\{N_{\mathbf{k}}(\mathbf{X})\right\}$ is any other orthonormal polynomial set

$$
g_{h}(\mathbf{X}, \mathbf{Y})=\sum_{k=h} N_{\mathbf{k}}(\mathbf{X}) N_{\mathbf{k}}(\mathbf{Y})
$$

and if $R(\mathbf{x})$ is a polynomial of degree n, then

$$
R(\mathbf{x})=\sum_{h \leqslant n} E g_{h}(\mathbf{x}, \mathbf{X}) R(\mathbf{X})
$$

Poisson Limit

Suppose $\theta_{i} \rightarrow 0, \alpha \rightarrow \infty$ while $\alpha \theta_{i} \rightarrow \mu_{i}, 0<\mu_{i}<\infty, i=0,1, \ldots, p$. It is easily shown that the distribution of \mathbf{X} converges to that of $p+1$ independent Poisson random variables with means $\mu_{i}, i=0,1, \ldots, p$. Further suppose $\alpha^{-1} v_{i}^{(j)} \rightarrow u_{i}^{(j)}, i=0,1, \ldots, p, j=1,2, \ldots, p$ and $\left\{u^{(j)}\right\}$ is complete on $\left\{\mu_{i}\right\}$; then

$$
G\left(\mathbf{X}, \alpha^{-1} \mathbf{w}\right) \rightarrow e^{w_{0}} \prod_{i=0}^{p}\left(1-w_{0} / \mu+\sum_{j=1}^{p} u_{i}^{(j)} w_{j}\right)^{x_{i}}
$$

which generates a complete set of orthogonal functions on the limit distribution.

Normal Limit

If $\alpha \rightarrow \infty$, while θ remains fixed, the distribution of $\mathbf{Y}=(\mathbf{X}-\alpha \theta) / \alpha^{1 / 2}$ converges to that of $p+1$ normal random variables with variances

$$
\theta_{0}\left(1+\theta_{0}\right), \ldots, \theta_{p}\left(1+\theta_{p}\right)
$$

and covariances $\theta_{0} \theta_{1}, \ldots, \theta_{p-1} \theta_{p}$.

$$
G\left(\alpha^{1 / 2} \mathbf{Y}+\alpha \theta, \alpha^{-1 / 2} \mathbf{w}\right) \rightarrow \exp \left(\sum_{j=0}^{p} \eta_{j} w_{j}-\frac{1}{2} \sum_{j=0}^{p} a_{j}{ }^{2} w_{j}{ }^{2}\right),
$$

where $\eta_{0}=-Y / \theta, \eta_{j}=-\sum_{i=0}^{p} Y_{i} v_{i}^{(j)}, j=1,2, \ldots, p$.
The limiting generating function generates the product set of HermiteChebycheff polynomials on the independent normal variables $\eta_{0}, \eta_{1}, \ldots, \eta_{p}$.

Gamma Limit

Suppose $\theta_{i} \rightarrow \infty, \theta_{i} / \theta \rightarrow \nu_{i}, i=0,1, \ldots, p$ and $\theta v^{(j)} \rightarrow 0, j=1,2, \ldots, p$ while α remains fixed.

The distribution of \mathbf{X} / θ converges to that of a random vector \mathbf{Y}; where $Y_{i}=\nu_{i} Z$ and Z has a gamma (α) distribution.

$$
G(\theta \mathbf{Y}, \mathbf{w}) \rightarrow\left(1-w_{0}\right)^{-\alpha} \exp \left\{-\nu Z w_{0} /\left(1-w_{0}\right)\right\}
$$

which generates the set of Laguerre polynomials on Z.

Acknowledgment

The original version of this paper has been improved on a great deal by a referee's very helpful and extensive comments.

References

[1] Eagleson, G. K. (1964). Polynomial expansions of bivariate distributions. Ann. Math. Statist. 35 1208-1215.
[2] Griffiths, R. C. (1971). Orthogonal polynomials on the multinomial distribution. Austral. J. Statist. 13 27-34; Carregenda 14270.

