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Abstract. This paper introduces a novel insight to the problem of Automatic Speech Recognition (ASR). 
Worldwide many practical systems had been developed for ASR. Most of these systems were based on Hidden 
Markov Models (HMM). This is state-of-the-art paradigm in ASR. Despite the fact that HMMs are successful 
under a diversity of conditions, they do suffer from some limitations that limit their applicability to real-world 
noisy environments. As a result, several researchers moved to Artificial Neural Networks (ANNs) as an 
alternative technique for ASR, in order to overcome the limitations encountered in pure HMM implementation. 
Soon after, interest moved over to hybrid systems that combine HMMs and ANNs within a single unifying 
hybrid architecture. In this study a hybrid DTW/ANN ASR system will be introduced, explained, implemented 
and analyzed, which has been given the name Relative Distance Vector Neural Network (RDVNN) Model. 
 Adequate experiments had been performed to reveal the main characteristics of the present novel 
hybrid ASR system. The results are believed to be encouraging and the system is easy to implement. For 
speaker dependent the accuracy is near perfect (error rate is less than 1%). For speaker independent models the 
results attained are comparable with most world-wide results known for the state-of-the-art ASR small task 
systems. Many aspects of the RDVNN technique are illustrated through experimental work to demonstrate 
these findings. One of the main advantages of the RDVNN method is that it can be applied to various other 
similar problem domains. 
 
 

1.  Introduction 
 

The early models applied traditional pattern matching techniques to speech recognition. 
However, faced with the temporal variation in speech signals, most of the early models 
resorted to dynamic time warping techniques [1-4]. The performance of dynamic time 
warping techniques proved to be reasonable in the case of speaker independent isolated 
word systems but their performance in case of the more complex speaker independent 
continuous recognition systems have been less than satisfactory.  
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During the 1980’s, researchers switched from traditional simple models to more 
complex statistical models like Hidden Markov Models (HMM's). Despite their 
improvement over other models, HMM's suffer from a number of limitations and 
problems. 
 

Towards the late 1980's and being faced by these limitations, some researchers 
turned to Artificial Neural Networks (ANN's) [4-10]. Work in this area has been mainly 
motivated by the success of neural networks in the area of pattern recognition in general. 
It has been hoped that ANN's will help greatly in the basic speech classification process 
if properly trained.  
 

One of the first problems met by researchers in this direction was the temporal 
dynamic nature of speech patterns which makes them very different from classical static 
patterns. To solve this problem a number of models have been suggested. Two important 
examples of these are the Time Delay Neural Network (TDNN) technique [11] and the 
recurrent neural network [12, 13]. 
 

Although neural networks are good classifiers that can easily generalize and 
despite the introduction of the TDNN and related models, ANN's did not succeed in 
providing a general framework for ASR that will take into consideration long sequences 
of acoustic features. This led to the appearance of hybrid ANN/HMM and ANN/DP 
ASR models during the early 1990's [14-16]. A number of researchers started to believe 
that combining ANN's with HMM's or DP will yield the best of these approaches. 
Examples of these are the models developed by Bourland and Wellekens [12], Bengio 
[8], Niles and Silverman [14], Tebelskis [7], and Terntin [15]. A survey of these models 
may be found in [6, 8].   
 

In most ANN/DP approaches, the DP algorithm has been used as a postprocessor  
[10] to integrate ANN results with some prior knowledge of the temporal structure of the 
input sequences. In this study a new hybrid ANN/DTW model is introduced, tested and 
analyzed [18]. The main difference between the present model and the previous models 
is that the DTW algorithm is used as a preprocessor rather than a postprocessor. Further, 
the new model relies on a second level feature space based on the traditional first level 
speech features. The model consists of a DTW front-end and a feedforward ANN 
backend. The DTW front-end is used to compute a set of relative distance feature vectors 
representing the time-warped distances between the input utterance (words) and the 
elements of a chosen reference set (speaker’s reference template set). The tests 
performed proved that the model is robust and accurate. 
 

Test data had been selected from five test data corpora, including TIMIT, 
CTIMIT [19], and TIDIGITS [20]. 
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The RDVNN model is introduced in the next section. After that the corpora are 
described followed by the presentation of the experiments and discussions. Finally come 
the conclusions and the recommendations.   

 
 
 

2.  Architecture and Operation of the RDVNN: 
 

As shown in Fig. 1 the RDVNN consists of two major components: a front-end 
dynamic time warping (DTW) component and a backend feedforward neural component. 
The DTW front-end computes (a second level set of features) a relative distance vector 
(RDV) based on the input utterance feature vectors. The RDV vectors represent the 
relative distances between the input utterance feature vectors and the feature vectors of 
the reference template set. The RDV vectors are then used to train the feeedforward 
network. The training algorithm used is the backprobagation algorithm. 
 
 
 

 
Fig. 1. The relative distance vector neural network (RDVNN) model diagram. 
 
 
 



Elgasim Elamin Elnima 

 

 

4 

 

 
2.1 Computation of the RDV vector 

Generally, given a reference template set consisting of N templates (each 
template representing an utterance) and the input utterance x, the front-end of the 
RDVNN computes the relative distance between x and each of the reference templates 
dk, say, where k is the index of the template (1 <= k <= N). The computed relative 
distances form a new feature vector of dimension N.  The algorithm may be summarized 
as follows: 

     For  k := 1 to  N  do 
         d[k]  :=  DTW(x, Template[k]); 

 
where  DTW(x, Template[k])   is a call for the dynamic time warping function. 
  The RDV vector, computed above, has the same size as the reference template set. 
 
2.2 Training the feedforward component 

The back-end neural component, as shown in Fig. 2, is a multi-layer feedforward 
neural network [6, 10]. The structure and organization of the training data set greatly 
depends on the purpose for which the recognition system is used. In the case of speaker 
dependent models and speaker verification systems, the data usually consists of multiple 
recordings for the utterances pronounced by the same speaker. In this case, one version 
of the recordings is used as a reference template set, while the remaining recordings are 
used to compute distance vectors. 

 
As for speaker independent systems, the training set usually consists of multiple 

recordings for multiple speakers of different ages and gender. In this case, one recording 
for any of the speakers can be assumed as the reference template set. 
The training procedure may be summarized as follows: 
 

 Given reference template set consisting of M recordings for all speakers, each 
recording consisting of N utterances, plus a reference template set for one of the 
speakers: 

1. For each utterance x in the training set use the DTW front-end to compute M 
RDV vectors. 

2. Present the M RDV’s to the feedforward neural network component together 
with the correct output. 

 
2.3 Test and recall 

The testing and recall procedure is straightforward and may be summarized as 
follows: 
Given a test utterance u: 

1. Use the DTW front-end of the RDVNN to compute the corresponding RDV 
vector. 
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2. Present the RDV vector to the feedforward component which should return the 
expected utterance.  

 

 
 
 

Fig.2. Back-end feedforward neural component of the RDVNN. 
 
 
 

 
3 Speech Databases 

 
 

Five sets of speech databases have been used to investigate the performance of 
the RDVNN. All five corpuses have been used for speaker independent tests, but the 
KSULAD corpus has been used for speaker dependent tests as well. 

 
3.1 Local arabic digits corpus (KSULAD) 

The Local Arabic Digits corpus consists of 1050 utterances recorded by five male 
speakers. Each speaker has been asked to record 21 repeats of each of the ten digits from 
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0 to 9, pronounced in Arabic. The general properties of the KSULAD corpus are 
summarized in Table 1 below: 
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Table 1.   Local arabic digits (KSULAD) corpus characteristics 
 

General characteristics 
Speech corpus 
Speakers 
Utterances 
Speech file format 
Sampling rate 
Sample resolution 

Locally recorded Arabic digits 
5 Males  
1050 ( 210 per speaker) 
Windows .wav format 
11025 Hz 
8 – bit 

 
 

To train and test the RDVNN, the wave form utterances would be transformed 
into Mel-frequency Cepstral Coefficients (MFCC) feature vectors whose parameters are 
shown in Table 2: 

 
Table 2. Local arabic digits (KSULAD corpus) MFCC specifications 
 

MFCC specifications ( KSULAD corpus ) 

DC component DC component is estimated over all the utterance and 
subtracted. 

Sampling frequency 11025 Hz 
Reemphasis None 
Window size 256 sample 
Spectral analysis FFT 
Frequency warping  Mel-scale 
Mel-fliter banks 32 
Mel-filter shape Triangular 
Cepstral features 12 + (energy sometimes ) 
Cepstral filtering None 
Feature normalization In limited number of experiments 
 
 
 
3.2 The Otago university corpus 

The Otago university corpus consists of 630 utterances recorded by 21 speakers. 
Each speaker has been asked to record 3 repeats of each of the 10 digits from 0 to 9, 
pronounced in English. The general characteristics of speech data in the Otago corpus 
are given in table 3 below: 
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Table 3. The Otago university digits corpus characteristics 
 

Otago Data Set ( Digits Corpus ) ,  New Zealand 
http://kel.otago.ac.nz/hyspeech/corpusinfo.html 
General characteristics 

Speech corpus 
Speakers 
Utterances 
Speech file format 
Sampling rate 
Sample resolution 

 
Otago English Digits Corpus 
Total =21;   11 Male , 10 Female 
630 ( 30 per speaker) 
Windows PCM(raw) format 
22050 Hz 
16 – bit signed 

Training set 
    Speakers 

 
15 speakers [1:4, 7, 9, 11, 12, 16:21] 

Test set 
    Speakers 

 
 4 Speakers [ 5, 10, 13, 15 ] 

 
 
The MFCC feature parameters for the Otago university corpus are similar to the 

ones given in Table 2 except that the window size is 512 samples. 
 
3.3 The TIMIT corpus 

The TIMIT contains a total of 6300 sentences, 10 sentences spoken by each of 
630 speakers from 8 major dialect regions of the United States. All utterances of 
sentences SA1 and SA2 are used in this study. The complete training set consists of 462 
speakers, and the complete test set comprises 168 speakers. 
 

The Sampling Frequency is 16000 Hz, other parameters are similar to the ones 
given in Table 2. 
 
3.4 The cellular TIMIT speech corpus (CTIMIT) 

It is important to evaluate the performance of RDVNN technique with data 
recorded in noisy and non-ideal environments like CTIMIT corpus [19]. CTIMIT 
(Version 1.0 alpha, February, 1996) was developed by Lockheed-Martin Sanders, Inc. 
The CTIMIT corpus is a cellular-bandwidth adjunct to the TIMIT Acoustic-Phonetic 
Continuous Speech Corpus (NIST Speech Disc CD1- .1/NTIS PB91-505065, October 
1990). CTIMIT has 8 kHz sampling rate, but other parameters are similar to the ones 
given in Table 2. 
 
3.5 The TIDIGITS corpus 

The data used is a single-word TIDIGITS (ISIP) speech that consists of 880 
training utterances, and 880 test utterances, down sampled to 8 kHz, with 40 men and 40 
women. MFCC parameters are similar to the ones given in Table 2. 
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4. The RDVNN in a Detailed Example 
 

In this section, the RDVNN technique is explained in more depth making use of a 
detailed example from the TIMIT corpus. 
 

We will start at the sentence wave file (sa1.wav) spoken by the second speaker in 
the training set of the TIMIT corpus, his abbreviated name is “ADC0” and he is a male 
from dialect area 3. The wave file has a number of related files. One of them is sa1.wrd, 
which lists the word labeling of the sentence. In the above mentioned sentence the word 
GREASY is the 7th word, which has a length of 6953 samples. Transforming the wave 
form of the word GREASY to MFCC parameters (12 parameters) generates 26 frames, 
each frame contains 12 MFCC parameters.  The number of elements in the 26 frames is 
12 x 26 = 312 elements, compared to 6953 samples for the wave form. 

 
The last stage of preprocessing is the computation of DTW distances to produce 

the RDV vector. This process would produce a vector of length equal to the number of 
words to be recognized. Now each word will be represented by an RDV vector of 11 
parameters only. The artificial neural network will be trained on this optimized RDV 
vectors (see Fig. 3).  
 

Figure 3 graphs the RDV vectors for the word (Water) in sentence sa1 for the first 
seven speakers (ADC0, ADD0, AEB0, AEM0, AEO0, AFM0, and AFM0) from the 
TIMIT corpus. The discriminative nature of the RDV vectors is clear from this figure. 
 
 

5. Experimental Framework 
 

In the following sections we would present and discuss a series of experiments 
that demonstrate the robustness of the RDVNN technique. The experiments are based on 
two types of models. The first type trains all words to be recognized in one neural 
network model (one model for all words). The second type uses independent model for 
each word (per word model). 
 

The network topology generally consists of three layers, the first layer is the input 
layer and its number of nodes is, usually, equal to the dimension of the RDV vector. The 
second (hidden) layer has a number of nodes that can be varied through a series of values 
for testing purposes. The output layer is kept constant at a number of nodes that equals 
two for the per-word model, or equal to the number of utterances to be recognized when 
the one model for all words is used. 
 

The maximum number of epochs (5 – 40), and goal (0.05 – 0.001), are set 
according to the needs of the experiment under test. 
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Fig. 3. The word WATER: 7 speakers (TIMIT corpus). 
 
 
Unless otherwise stated, first speaker data set was used as reference template set. Also, a 
reference template set might be selected according to one of the optimization procedures 
discussed in sections 6.4 and 6.5.  In all neural network training, one of the following 
configurations (training methods) had been used. 
 
5.1 Network training methods 

Three methods for training the neural network have been adopted, these are 
briefly described below: 
 
 (i) The all-data training method 

In this method all the training sets would be used for training in one huge batch. 
 

1 2 3 4 5 6 7 8 9 10 11 
0 

0.5

1 

1.5 

2 

2.5

3 

3.5 
x 10 5 

RDV Element 

D
TW

 d
is

ta
nc

es
 



 The Relative Distance Vector Neural Network (RDVNN) Model: . . . 

 

11

 

(ii) Small batches training method 
In this method, the training data is divided into small batches. Training takes 
place by giving each batch a number of epochs (e.g. 2 epochs). This process is 
then repeated for all batches in the set. The length of the batch can be varied. A 
suitable batch size can be determined through experimentation.  This method is 
used for large corpuses, e.g. the TIMIT. 

 
(iii) Multistage training method 

In this method, the network is trained in two stages or more. The first stages are 
similar to the batch training method, and the last stage is an all-data training 
method. This combination proves to be useful in reducing the training time. 
The goal of the first stage may be different from the goal of the second stage (i.e. 
0.005 for the first stage and 0.001 for the second Stage) 

 
 

6.  Results of Experiments and Discussions 
 
6.1 KSULAD and Otago corpuses 

A short account will be given for the local and Otago data sets. The local data set 
(KSULAD) achieved nearly 100% recognition rate for speaker dependent case and 
achieved an average of 98.5% recognition rate for speaker independent case.  
 

Otago data set achieved over 95% average recognition rate for speaker 
independent case, which can be improved to around 99% recognition rate when 
reference template set optimization is used (sections 6.4 and 6.5). The above results are 
based on a one model for all words network configuration. 
 
6.2 TIMIT corpus (one model per word) 

This experiment used a model for each word (11 models) training method. The 
DTW applied to training and test data produced 73% recognition rate. The summary of 
18 runs is shown in Table 4. 
 
6.3 Improved template experiments 

In this process we select a common template that is contributed by one or more 
speakers. The aim of this is to find a better template which can produce more recognition 
rate at DTW stage and consequently may produce higher recognition rate at the final 
stage. The search is limited to a subset of speakers; we select candidates every 16th 
speaker restricting the search to 29 speakers from the total training set of 462 speakers. 
A network model is trained for each of the 11 words separately. The same test is 
repeated for different hidden layer values. The output layer is kept at 2 nodes. Two 
criteria for selecting such an improved template have been investigated, these are: 

1. Simple counting method, and 
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2. Discriminative method. 
Table 4.  Recognition rate summary (18 runs) (the output layer is 2 nodes) 
 

Net topology, 
hidden layer Train% Test% Average (test) 

7 99.363 99.188 

99.392 7 99.766 99.449 

7 99.837 99.538 

8 99.814 99.606 

99.570 8 99.828 99.567 

8 99.810 99.538 

9 99.857 99.597 

99.572 9 99.857 99.523 

9 99.887 99.597 

10 99.834 99.577 

99.571 10 99.837 99.597 

10 99.843 99.538 

11 99.875 99.587 

99.565 11 99.889 99.562 

11 99.830 99.547 

12 99.864 99.577 

99.590 12 99.871 99.606 

12 99.866 99.587 

Average 99.818 99.543 99.543 

 
6.3.1 The simple counting template selection method 

In this process, for each word, we select a speaker who attains the highest 
recognition rate in the DTW stage when compared to other speakers in the set. The 
template produced by this method was given the name “bestc”. The average DTW 
recognition for this template was 81.15%, compared to 99.622% average recognition for 
the network part. Table 5 presents the network simulation summary for five runs. 
 
6.3.2 Discriminative template selection method 

We design this process in the hope that the reference template set selected has 
some discriminative characteristics. i.e. templates that give low DTW distances when 
compared against words of the same class and give high distances when compared with 
words of other classes. This feature is approximated by the ratio: 
         qRatio = Sum1 / sum2 ; 
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Where: 
       sum1:  Sum of the squares of the DTW distances for the words of the same class, 
      sum2:  Sum of the DTW distances for the words that do not belong to the tested 
 class. 
 
 
Table 5. Summary for template selection methods bestc & bestq 
 

Hidden layer size 
 

simple counting method ( bestc ) discriminative method ( bestq ) 

Train% Test% Train% Test% 

9 99.835 99.597 99.889 99.646 
10 99.844 99.606 99.955 99.715 
11 99.894 99.636 99.902 99.685 
13 99.909 99.631 99.936 99.656 
14 99.916 99.641 99.966 99.695 

Average 99.880 99.622 99.930 99.679 
Max 99.952 99.641 99.966 99.715 

Min 99.835 99.597 99.889 99.646 
 
 
In this process, for each word, we select the template of the speaker who attains the 
lowest qRatio when compared to other speakers in the set. However, by implementing 
this technique we can increase the discrimination of the DTW stage. This approach 
proved to give better results than the former simple counting approach. The reference 
template sets produced by this method were given the name “bestq”. The DTW 
recognition for these templates was 84.9%, compared to 99.679% average recognition 
for the network part (see the last two columns on Table 5). 
 
6.4 Using two reference template sets 

In this experiment the RDV vector was based on two speakers' reference template 
set, which will double the size of the RDV vector. 

 
A network model is trained for each of the 11 words separately. The same test is 

repeated for a series of hidden layer values. The output layer is kept at 2 nodes. 
The results depicted in Table 6, show that this approach achieves a small improvement. 
 
 In conclusion the two template approach improves the average recognition by 
about 0.2%, but it has the drawback of increasing processing time and also doubles the 
input vector size. 
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Table 6. Summary for the two reference template sets method 
 

Net topology, hidden 
layer 

Train % Test % 

7 99.916 99.739 
10 99.930 99.744 
12 99.973 99.779 
14 99.966 99.798 
17 99.968 99.779 
18 99.971 99.788 
19 99.957 99.774 
20 99.968 99.784 
21 99.980 99.813 
22 99.971 99.793 

Average 99.960 99.779 
 
 
6.5 The first 12 speakers' templates of the TIMIT corpus 

In this experiment we explore the effect of choosing a reference template 
arbitrarily. The template set was selected for each one of the first 12 speakers of TIMIT 
corpus in turn. Here, in this experiment, all speakers attain DTW recognition between 
52% and 74% with an average of 64.86%. On the other hand the network recognition 
rate is always greater than 99.2% for all speakers, with a maximum of 99.48%, and an 
average of 99.39%.  
From these results it is obvious that: 

- Higher DTW recognition rate did not always lead to a higher network 
recognition gain. 

- The DTW recognition rate varies extremely depending on speaker’s reference 
template set used. On the other hand the corresponding network results are 
rather stable. 

 
6.6 One network model for all words  

Network models can be designed separately for each word. Alternatively, all 
words can be trained and recognized by one network model (classification). In this 
experiment, the one model for all words we run 11 times with the number of nodes of the 
hidden layer varied across a number of settings. The network model is trained for all the 
11 words in one common model. The template set used is bestq which was described in 
section 6.3.2. For the Network topology, the hidden layer had been tested over node 
values ( 11 , 12 , 13, 15, 17, 22 ), while the output layer is fixed at 11 nodes. The results 
were depicted in Table 7. 
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Table 7. Summary; TIMIT train(462) test(168); template (bestq) 
 

Network hidden 
layer size 

Train% Test% 

11 99.075 98.431 
11 98. 839 98.647 
11 99.134 98.593 
12 99.174 98.377 
12 99.193 98.000 
13 98.800 98.052 
13 99.351 98.864 
15 99.154 98.323 
17 99.271 98.268 
22 99.859 98.106 
22 98.406 98.214 

Average 99.149 98.311 
Max 99.859 98.864 
Min 98.406 98.000 

 
 

These results show that high recognition was achieved by this type of models which 
means that we can use any of the two models and the choice between them would 
depend on other factors like stability and execution time.    
 
6.7 Tests on TIMIT with a vocabulary of 21 words 

Previous experiments use a limited vocabulary set of 11 words. In this experiment 
the vocabulary size is extended to 21 words instead, including both sentences SA1 and 
SA2, and will incorporate all data from the training set (462 speakers) and testing set 
(168 speakers) of the TIMIT corpus.  A network model is trained for each of the 21 
words separately. The output layer is kept at 2 nodes. The results are summarized in 
Table 8. 
 
Table 8. Summary for 21 words of sentences SA1 and SA2 of the TIMIT 
 

Net topology, 
hidden layer 

Train % Test % 

4 99.536 99.333 
5 99.615 99.393 
10 99.767 99.424 
11 99.774 99.402 
17 99.823 99.449 
Average 99.703 99.4002 
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These results reassure the high recognition rate even when the vocabulary size is 
doubled. 
6.8 Cellular TIMIT speech corpus (CTIMIT) 

Tests with CTIMIT corpus will let us know the extent to which the RDVNN 
technique works with cellular collected databases. This experiment uses 21 words 
including both sentence SA1 and sentence SA2 of the CTIMIT corpus. The training data 
contains 143 speakers, and the test set data contains 44 speakers. 
 

A network model is trained for each of the 21 words separately. The same test is 
repeated 10 times for each of the first five speakers in the training set of the CTIMIT 
corpus. For the Network topology, the hidden layer was fixed at 8 nodes, while the 
output layer is kept at 2 nodes. The results are summarized in Table 9.  
 
Table 9. Summary of DTW and RDVNN recognition Rates for the first 5 reference speakers, Training 

speakers = 143 , Test speakers = 44 
 
No Reference 

speaker 
DTW recognition rate DRVNN recognition rate 
Train % Test % Train % Test % 

1 ADD0 25.708 26.407 99.326 97.820 
2 AEB0 16.517 17.641 99.351 97.722 
3 AEM0 27.306 29.437 99.286 97.939 
4 AEO0 33.899 33.983 99.477 97.939 
5 AFM0 40.892 43.182 99.534 98.320 
Average 28.864 30.130 99.395 97.948 
Max 40.892 43.182 99.534 98.320 
Min 16.517 17.641 99.286 97.722 
 
The minimum recognition rate is 97.9%. Examination of the depicted results shows that 
the RDVNN technique performs well in these types of environment. Certainly there is 
some degradation in recognition rate from the corresponding TIMIT data.   
 
6.9 TIDIGITS corpus experiment 

In this experiment, tests were carried on the 10 English digits. A one model for all 
words was used throughout these tests. Table 10 presents recognition results where the 
training and testing data is for the same gender. Table 11 presents recognition results for 
men and women. 
 
Table 10.  TIDIGIT same gender recognition 
 

Hidden 
layer size 

Train  MEN Test MEN Train  WOMEN Test WOMEN 
 Train% Test%  Train%  Test% 

20 99.500 98.750 99.750 98.500 
20 99.250 98.750 99.750 99.000 
25 99.000 98.750 100.000 98.750 
25 99.250 99.500 99.500 98.250 
30 99.250 100.000 99.500 98.750 
30 99.750 99.500 100.000 98.500 
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Average 99.333 99.208 99.750 98.625 
 
 
Table 11. TIDIGIT recognition for Men and Women, first Speaker’s Templates first & second Speakers’ 

Templates 
 

Hidden layer 
size 

First speaker’s templates First & second speakers’ templates 
Train%  Test% Train%  Test% 

20 97.875 96.625 99.250 98.500 
20 97.125 96.500 99.125 98.375 
25 97.375 96.500 99.875 98.625 
25 97.625 96.750 99.250 98.500 
30 97.750 97.250 99.625 98.875 
30 97.250 96.750 99.750 98.750 
Average 97.500 96.729 99.479 98.604 

 
Table 10 shows that the RDVNN can give 99.208% average recognition rate for 

training and testing with men, and a corresponding 98.625% average recognition for 
women with women. Speaker independent testes on men and women (Table 11) attain 
96.729% average recognition rate for one speaker reference template set, and 98.604% 
for two speaker reference template set. 
 

Average recognition time per word is around 40 us. Training time can be as low 
as two minutes for a data of 400 utterances, and might reach up to one hour for a data of 
more than 5000 utterances. 
 
 

7. Conclusions and Recommendations 
 
7.1 Conclusions 

This paper presents a novel low complexity hybrid recognition system for 
isolated words in clean or noisy environments. The proposed technique implements a 
DTW front-end followed by a neural network backend. Several experiments have been 
performed to demonstrate the effectiveness of the present RDVNN technique. The 
findings of these experiments are as follows: 

i) The best test data performance of the RDVNN technique was achieved with the 
selection of an optimum template of one more speaker's template set when 
training with a limited number of speakers. However, large corpuses like the 
TIMIT the improvement is less that 0.2% (section 6.3 and 6.4). 

ii) Speaker dependent configuration can attain a near perfect recognition rate of 
100% in most of the runs in contrast to an average recognition of 85% for the 
DTW method as revealed by experiments on the KSULAD corpus.  

iii) It can be deduced from the results of " TIMIT corpus a one model per word" 
experiment (section 6.2) that speaker independent configuration when tested on 
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11 words of TIMIT can attain average recognition rate of 99.606% compared to 
average recognition of 73% for the DTW method. 

iv) Otago data set achieved over 95% average recognition rate for speaker 
independent case, which can be improved to around 99% recognition rate by 
the selection of an optimum template set. 

v) Fine tuning of the network training parameters like batch size produce good 
training results within a shorter time. 

vi) Usually experiments on the TIMIT corpus are run with one template. Results of 
these runs showed that any arbitrarily selected template can produce acceptable 
recognition rate with only very small discrepancies between the different results 
(Using Two Reference Template sets experiment, section 6.4). When two 
reference template sets are used, this approach improved the average 
recognition by about 0.2%, but it has the obvious drawback of increasing 
processing time and also doubles the input vector size. 

vii) Form "The First 12 Speakers' Templates of the TIMIT Corpus" experiment 
(section 6.5), it is observed that:, higher DTW recognition rate did not always 
lead to a higher network recognition gain. The DTW recognition rate changes 
considerably depending on speaker template, but the corresponding network 
results did not follow these broad changes. 

viii) Tests on the two sentences SA1 and SA2 (21 words) of the TIMIT achieved an 
average recognition of 99.4%. In contrast, the average for DTW recognitions is 
64.67% (section 6.7). 

ix) The common model for all words results (depicted in Table 7) shows that high 
recognition was achieved by this type of model which means that we can use 
any of the two types of models and the choice between one of them would 
depend on other factors such as stability and execution time.    

x) From the results of "TIDIGITS corpus Experiment" experiment (section 6.8) it 
is seen that the minimum recognition rate for cellular environment (CTIMIT) 
was 97.72%, and a maximum of 98.32%, with the average of 97.95%. The 
corresponding DTW recognition rates are 17.64%, 43.18%, and 30.13% 
respectively. Also, investigations of the depicted results reveal the fact that the 
RDVNN technique performs well in the cellular environment. Surely, there is a 
small degradation in recognition rate from the corresponding TIMIT data. 

xi) In the TIDIGITS experiments, Table 10 shows that the RDVNN can give 
99.208% average recognition rate for training and testing with men, and a 
corresponding 98.625% average recognition for women. Speaker independent 
tests on men and women (Table 11) attain 96.729% average recognition rate for 
one speaker reference template set and 98.604% for two speaker reference 
template sets. 

xii) The RDVNN technique is language independent because it is based on 
matching of relative distances between patterns.  
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7.2 Recommendations 
Results obtained in this study clearly show that the RDVNN technique, as 

developed in this experiment is very efficient in small vocabulary of isolated words. 
However, the technique is very flexible and can easily be extended to other problems. 
This study has several aspects that require profound investigation both in terms of 
different application domains and modification of the existing techniques. Some of these 
are listed below: 

i) Normalization of the input vector may have some effect on the recognition 
accuracy. 

ii) DTW implantations come in a variety of forms. All other forms can be 
examined. 

iii) Acoustic features used are only the basic ones. Sophisticated acoustic feature 
extraction methods might be considered. 

iv) RDVNN technique may be applied to many other problem domains where 
DTW is used. 

v) Other methods that are a substitute for DTW (e.g. Linear Time Alignment and 
Trace Segmentation (TS)) can play a role within the RDVNN technique. 
Though, the attained accuracy may be a little different. 
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 نموذج الشبكات الذكية للبيانات النسبية : طريقة هجينة لتمييز الكلام
 

 القاسم الأمين النعمة
 الملك سعودجامعة كلية علوم الحاسب والمعلومات، ،  نية الحاسبتققسم 

 ، المملكة العربية السعودية١١٥٤٣، الرياض ٥١١٧٨ص ب
 

 م)١١/٠٢/٢٠٠٤م؛ وقبل للنشر في ٢٩/٠٦/٢٠٠٣(قدّم للنشر في 
 

الات العلمية والتطبيقية في مختلف ملخص البحث.  أصبح استخدام الحاسب الآلي يشمل كثيراً من ا
احي الحياة. ومن ضمن هذه الاستخدامات  استخدام الحاسب لتميز الكلمات والأصوات. ولقد نو 

ال تطوراً مطرداً حتى غدت نسبة التميز في كثير من هذه الأنظمة عالية نسبيا مما مكن  شهد هذا ا
 دخولها مرحلة التطبيق الفعلي.

، نذكر منها: الأنظمة التي ةسيأنظمة التميز الآلي للكلمات يمكن تقسيمها إلى أقسام رئي 
وقسم ثالث  (HMMs)والأنظمة التي تستخدم الطرق الإحصائية  (DTW)تعتمد على مقارنة النماذج 

التي تحاكي أسلوب عمل العقل في بعض جوانبه. كما  (ANNs)يقوم على استخدام الشبكات الذكية 
تجمع كثيراً من   (Hybrid)هجينة  للخروج بأنظمة ةيمكن الربط و التوفيق بين هذه الطرق الرئيسي

 الصفات الإيجابية لهذه الأنظمة.
من خلال هذه الدراسة تم تطوير نظام تميز للكلمات المفردة النطق يجمع بين مقارنة النماذج  

 وأنظمة الشبكات الذكية للوصول إلى نظام يحقق  قدراً مناسباً من الدقة في تميز الكلمات والأصوات.
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ظام على عدة قواعد بيانات صوتية منها ما هو محلي ( الأرقام العربية) وقاعدة تم اختبار الن 
والتي أخذت منها   TIMIT(الأرقام الإنجليزية) وقاعدة بيانات  افي نيوزلند Otagoبيانات من جامعة 

 . TIDIGITS و   CTIMITكلمات منفردة من جملتين أساسيتين و توسعت الاختبارات لتشمل 
ام المطور يتمتع بكثير من الميزات الإيجابية؛ نذكر منها: سهولة التطبيق؛ الدقة إن هذا النظ  

العالية؛ الاستقرار في وجود عوامل مختلفة؛ الفاعلية في بيئات مختلفة مثل الهاتف الجوال. وإضافة لكل 
ة. مثل الأنظمة التي تعتمد على   ةمقارنتلك الميزات يمكن تطبيق هذا النظام في مجالات أخرى مشا

 .   (DTW)النماذج 
 .Relative Distance Vector Neural Network (RDVNN)ولقد أطلق على هذا النظام اسم  

 




