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Abstract

The set of programs written in a small subset of pure Prolog called US is shown to accept
exactly the class of regular languages. The language US contains only unary predicates and unary
function symbols. Also, a subset of US called RUS is shown to be equivalent to US in its ability
in accepting the class of regular languages. Every clause in RUS contains at most one function
symbol in the head and at most one literal with no function symbol in the body. The result is very
close to a theorem of Matos (TCS April 1997) but our proof is quite di0erent. Though US and
RUS have the same accepting power, their conciseness of expression is dramatically di0erent: if
we try to write an RUS program equivalent to a US program, the number of predicates in the
RUS program could be O(22

N
) where N is the sum of the number of predicates and the number

of functors in the US program. c© 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Consider a logic programming language containing only a single constant, unary
functors, and unary predicates. We call such a language “Unary-String” logic language
(US) because we can represent arbitrary :nite strings on an alphabet by using the set
of functors as our alphabet and the single constant as the terminator of the strings.
In this paper we examine how powerful US programs are as acceptors of formal

languages. Since there are only unary functors in a US program P, a Herbrand model
[9] of P is a set of ground terms, each of which contains a string of functors (terminated
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by a constant). Then any predicate q in P de:nes a set of strings (a language), for each
word f1f2 : : : fk of which the term q(f1f2 : : : fk(0))) is in the model. Operationally,
the word f1f2 : : : fk belongs to the language de:ned by q if the goal ← q(f1f2 : : :
fk(0)) has a refutation w.r.t. P. So a US program works as a machine recognising
languages.
For a predicate q de:ned by several clauses, the set of ground terms satisfying q

in the model can be thought of as a union of sets of ground terms each of which is
associated with one of the de:ning clauses. Conjunctive bodies indicate at least the
power to express intersection of languages. Recursively de:ned predicates suggest at
least the power of Kleene closure of concatenation. Together these observations suggest
that at least the class of regular languages can be recognised by US programs. However,
we can introduce extra function symbols in a clause body like an input stack, and we
can make recursion at any position in a clause body. These observations suggest that
US might accept something more complex than regular sets, but the main result of this
paper is a proof that:

Proposition. US programs accept exactly the class of regular languages.

In other words, the expressive power of US in accepting languages coincides with
the class of regular languages. A similar result has been published by Matos [6] but
our approach here is quite di0erent. Further comparisons with Matos’ result will be
given in Section 5.
Since any regular language can be speci:ed by a :nite automaton, in order to prove

the conjecture, we show a one-to-one mapping between the set of :nite automata and
the set of US programs. An automaton A is equivalent to a logic program P if refutation
of a ground goal w.r.t. P implies that the path associated with functors in the goal
leads A to a :nal state, and vice versa.
The proof consists of two parts. Firstly, in Section 3 we show that any deterministic

:nite automaton (DFA) can be converted into an equivalent US program. In fact, we
convert DFA’s into programs written in a subset of US called the “Regular Unary
String” language (RUS). Because of a strong similarity between transition rules of
DFA’s and RUS clauses, this part is relatively easy. Secondly, in Section 4 we prove
that any US program can be converted to an equivalent non-deterministic :nite automa-
ton (NFA) with 	-moves. Since we have to cope with pre:xes in clause bodies and
conjunction of body literals, the second part is much harder than the :rst one. From
the two translation results, we conclude that US programs accept exactly the class of
regular languages.
In Section 2 the small logic languages US and RUS are explained. Also brief de:ni-

tions of :nite automata are given, partly for introducing some notational conventions.
Section 3 de:nes a conversion scheme from an arbitrary DFA to an RUS program
and proves the equivalence. The conversion scheme from US programs to NFA’s is
presented and proved in Section 4. Finally, Section 5 discusses related work, then
concludes.
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Pus = clause
| clause Pus

clause = head :
| head← body:

head = atom
body = atom

| atom; body
atom = name (term)
term = 0

| X
| name (term)

goal = ← atom

Fig. 1. Syntax of US.

2. Preliminaries

This section de:nes the two logic languages US and RUS, and introduces nota-
tions for derivations and refutations of logic programs, used in the later sections. Also
the section includes brief de:nitions of DFA’s and NFA’s with 	-moves, and a few
notations for graph representations of the automata.
In many cases we use the terminology in [5] for logic programming. For automata

theory, we adopt notations in [4].

2.1. US

Unary String logic language (US) is a language of de:nite logic programs [8] con-
taining only one constant 0 which is the terminator of strings of the object language,
only one variable X which represents suKxes of strings, countably many unary func-
tors, and countably many unary predicates. The syntax of US is given in Fig. 1.
The language does not contain negations nor any extra-logical predicates. Extra-

logical predicates such as read, write, assert, retract impede logical reading of pro-
grams, on which our conjecture relies. Negation might be understood in connection
with complementation of regular sets, but we have left it for future work.
Furthermore, we assume that the constant 0 may appear only in unit clauses. Ground

body literals might work as guards before computing the intersection of the other non-
ground goals, but do not seem to provide especially interesting consequences, and we
exclude them.
Thus, examples of legal clauses of US include

p(f(0)):
p(f(g(X ))):
p(f(g(X )))← q(g(X )); r(h(k(X ))):
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Prus = clause
| clause Prus

clause = head :
| head ← body:

head = name (term)
term = 0

| X
| name (X )

body = name (X )

Fig. 2. Syntax of RUS.

but not

p(f(g(X )))← q(g(0)); r(h(k(X ))):

An atom of US is denoted p(f1 : : : fn(!) : : :), or p( Mf(!)), where ! is either 0
or X. Clauses are denoted by symbols C0; C1; : : :, and symbols G0; G1; : : : denote goals.
A derivation of a goal G0 w.r.t. a program P is a :nite or in:nite sequence of goals

G0
C1−→G1

C2−→G2 → · · · ;
where Ci’s are clauses in P and Gi is derived from Gi−1 and Ci by one step resolution.

A refutation is a :nite derivation of which the last goal is empty:

G0
C1−→G1

C2−→G2 → · · · Cn−→

2.2. RUS

Regular unary string (RUS) logic language is a subset of US in which
• every clause has at most one atom in its body,
• every unit clause has no functor symbol,
• every non-unit clause has exactly one functor symbol in its head, and
• there is no functor symbol in any clause body.
The syntax of RUS is given in Fig. 2. The language is quite restrictive. Every RUS
clause must have one of the following forms:

p(0):
p(X ):
p(g(X ))← q(X ):

So

p(f(g(0))):
p(X )← q(f(X )):

are not allowed in RUS.
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2.3. Finite-state automata

A deterministic :nite automaton A is a 5-tuple (Q; �; �; q0; F) where Q is a :nite
set of states, � is a :nite input alphabet, q0 ∈ Q is the initial state, F ⊆Q is the set
of :nal states, and � is a transition function of type Q×�→Q.
Each :nite automaton can be depicted as a graph, each node of which corresponds to

a state and each edge from a state p to a state q annotated by a symbol f corresponds
to a transition (p; f)→ q. We use graph notation

p
f→ q

to represent the transition (p; f)→ q. In order to represent a sequence of transitions
(or a path) from p to q associated with a string Mf=f1 : : : fn, we write

p
f1→ ◦→ · · · →◦ fn→ q

or p
f1 :::fn−→ q

or p
Mf−→ q:

A :nite automaton accepts a string f1 : : : fn if the sequence of transitions from the
initial state q0 associated with the string leads to a :nal state of the automaton. We
use a star superscript to indicate a :nal state:

q0
f1→ ◦→ · · · →◦ fn→ q∗

or if the name of the :nal state is not relevant we use �:

q0
f1→ ◦→ · · · →◦ fn→ �

NFA with 	-moves: An automaton is non-deterministic when some of its states have
more than one transition for the same input symbol. The type of transition function �
becomes Q×�→ 2Q, where 2Q denoted the power set of Q.
An empty transition is a transition which does not consume any input symbol,

denoted as p 	→ q. The transition function � of an NFA with 	-moves has type: Q× (�∪
{	})→ 2Q.
It is well known that any non-deterministic :nite automaton with empty transitions

can be converted into an equivalent deterministic :nite automaton [4].
State transition system (STS): In order to make a clear matching between logic

programs and recognising machines, occasionally we use a term: state transition system
(STS). An STS is an automaton without initial state: i.e. for any FA (deterministic or
non-deterministic) A=(Q; �; �; q0; F), we de:ne an STS S =(Q; �; �; F). We can de:ne
many di0erent automata based on S by choosing a speci:c state in Q as an initial state.
In the subsequent arguments, strictly speaking, logic programs correspond to STS

and a pair of a logic program and a predicate name corresponds to a pair of STS and
an initial state, namely an automaton.
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Fig. 3. A DFA A accepting strings containing an even number of a’s and b’s.

3. Deriving an RUS program from an FSA

This section considers translation of :nite automata into Regular Unary String logic
programs. The Section 3.1 describes how to construct an RUS program from an ar-
bitrary :nite automaton. Then in Section 3.2 we prove the equivalence between the
original DFA and the derived RUS program.

3.1. Derivation of RUS program

From a :nite automaton A=(Q; �; �; q0; F) we construct an RUS program P rus as
follows:
1. For each state q∈Q, introduce a unary predicate q.
2. For each symbol in alphabet f∈�, introduce a unary functor f.
3. For each transition rule (p; f)→ q, we add a clause p(f(X ))← q(X ) to P rus.
4. For each :nal state qj ∈F , we add a unit clause qj(0) to P rus.
5. The initial state q0 speci:es the predicate of initial goals. An input string f1 : : : fn

given to A is represented by an initial goal ← q0(f1 : : : fn(0) : : :).

Example 1. The graph in Fig. 3 represents a DFA accepting strings on {a; b} con-
taining an even number of a’s and an even number of b’s, taken from [4]. The arrow
pointing to the node p denotes the initial state. The state p is also the only :nal state
of A. The program in Fig. 4 is the RUS program derived from A through the above
procedure.

We claim that the derived program P rus is equivalent to the :nite automaton A, in
the sense of the following theorem.

Theorem 1. A goal ← q0(f1 : : : fn(0) : : :) (n¿0) has a refutation w.r.t. P rus if and
only if A accepts the string f1 : : : fn from the initial state q0.
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p(0):
p(a(X ))← s(X ):
p(b(X ))← q(X ):
q(a(X ))← r(X ):
q(b(X ))←p(X ):
r(a(X ))← q(X ):
r(b(X ))← s(X ):
s(a(X ))←p(X ):
s(b(X ))← r(X ):

Fig. 4. RUS program of A.

3.2. Veri:cation of the derivation

Because there is a direct mapping from transition rules into clauses, the proof is
straightforward.

Proof. If: Suppose the automaton A accepts a string f1 : : : fn from the initial state q0,

i.e. there is a path: q0
f1→ · · · fn→ q∗n in the graph. Then the transition function � contains

n transitions (qj; fj+1)→ qj+1 (06j6n− 1).
From Rules 3 and 4 in Section 3.1, the derived program must contain clauses:

Cj = qj(fj+1(X ))← qj+1(X ) (06j6n− 1);

Cn = qn(0)

and from Rule 5, the accepted string is represented by an initial goal:

G0 =← q0(f1 : : : fn(0) : : :):

By applying clauses Cj (06j6n) successively to the initial goal, we obtain a derivation

G0
C0→ G1

C1→ · · · Cn−1→ Gn
Cn→

where

Gj =← qj(fj+1 : : : fn(0)) (06j6n− 1)

Gn =← qn(0):

So the derivation is a refutation of the initial goal.
Only if : Suppose a goal G0 =← q0(f1 : : : fn(0) : : :) has a refutation w.r.t. the derived

program, i.e. there is a refutation of G0:

G0
C0→ G1

C1→ G2
C2→ · · · →

We have to :nd an accepting path of f1 : : : fn from q0.
If n=0 the initial goal is ← q0(0). In order to derive an empty goal, the program

must contain either q0(X ) or q0(0). However, since every unit clause in the derived
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program is constructed from Rule 4, the clause must be q0(0). Then q0 is a :nal state
of A and there is a path of length 0 (q∗0 ) accepting the empty string.
If n¿0, because of the form of the initial goal and the general form of non-unit

clauses in the derived program, the :rst clause in the refutation must be C0 = q0(f1(X ))
← q1(X ) for some predicate q1. Thus, the automaton contains the states q0, q1 and a
transition rule (q0; f1)→ q1.
From G0 and C0 we derive the next goal G1 =← q1(f2 : : : fn(0) : : :). The same argu-

ment as for G0 holds for G1, and the automaton contains another state q2 and another
transition rule (q1f2)→ q2, and so on, inductively. In general the automaton contains
transition rules (qj; fj+1→ qj+1 for all 06j6n− 1. In order to refute the second last
goal ← qn(0) the program contains a unit clause qn(0), and hence, qn is a :nal state.

If we combine the transitions above, we can construct a path

q0
f1→ q1

f2→ q2
f3→ · · · fn→ q∗n

So, the string f1 : : : fn from q0 is accepted by the :nite automaton.

4. Deriving an FSA from a US program

In the previous section we have shown that any DFA is equivalent to an RUS
program which is also a US program since RUS is a proper subset of US. In this
section we prove that any US program is equivalent to an NFA with 	-moves. Here
we frequently use the term STS de:ned in Section 2.3.
In order to construct the :nite automaton A equivalent to (a pair of a predicate

name and) a US program Pus, Section 4.1 describes construction of a basis STS A0

representing all clause heads in Pus. The STS A0 contains all possible segments of
paths containing no 	-move. In other words, any paths in the :nal automaton but
not in A0 contain at least one 	-move. Section 4.2 considers how to interpret body
literals in non-unit clauses. In Section 4.3 the procedure to construct the automaton A
is de:ned. Non-unit clauses are iteratively augmented into A0. In order to accommodate
conjunctive bodies, we calculate intersection of automata, each of which corresponds
to a conjunct of the body. The construction is proved correct in Section 4.4.

4.1. Construction of A0

Given a US program we construct the equivalent :nite automaton A in two steps.
In this subsection we focus attention on clause heads in the program, and construct a
basis A0. The subsequent two subsections extend A0 to A.

The STS A0 contains every ‘essential’ transition in A, in the sense that although we
ignore all body literals in the program, every possible move in the :nal automaton A
is a sequence of paths in A0 glued together by 	-moves. Also, every additional state
in A is a ‘collective shadow’ of states in A0, as we shall see in Section 4.3.



T. Matsushita, C. Runciman / Theoretical Computer Science 266 (2001) 59–79 67

An STS A0 = (Q; �; �; F) is constructed from Pus as follows:
• The input alphabet � is the set of all functors in Pus.
• For each predicate q de:ned in Pus, Q contains a unique state {[q]}. We call such
a state with a single element of unit length a predicate state.
• For each clause head q(h1 : : : hn(!) : : :) (n¿1), Q contains n derived states {[q; h1]},
{[q; h1; h2]}; : : : ; {[q; h1; h2; : : : ; hn]}. We call the last state {[q; h1; h2; : : : ; hn]} includ-
ing the full sequence of functor symbols, the bottom state of the clause head.
Di0erent clause heads introduce di0erent sequences of states, even if they have

the same predicate names and sequences of functors. If two clauses bring about
the same name, they are distinguished from each other by superscripts if necessary.
For example, {[q1; h1; h2]} and {[q2; h1; h2]}. We abbreviate {[q; h1; h2; : : : ; hk ]} to
{[q; Mh]} when details of the hi are not relevant.

• For each unit clause q(h1 : : : hn(!) : : :). n¿0, the bottom state {[q; h1; : : : ; hn]}∗ is a
:nal state. We use a star superscript to indicate a :nal state.
• For each unit clause with a variable q(h1 : : : hn(X ) : : :). n¿0, the bottom state
{[q; h1; : : : ; hn]}∗ has a set of looping arcs, one for each symbol in �, i.e.

∀fj ∈�; {[q; h1; h2; : : : ; hn]}∗ fj→{[q; h1; h2; : : : ; hn]}∗

are transitions in �.
• Finally, for each clause head q(h1 : : : hn(X ) : : :) (n¿1),

{[q]} h1→ {[q; h1]}
{[q; h1]} h2→ {[q; h1; h2]}

...

{[q; h1; : : : ; hn−1]} hn→ {[q; h1; : : : ; hn−1; hn]}
are transitions in �.
The STS A0 is a set of linear sequences of states. Every derived state has exactly

one in-coming move. Every derived state, except bottom states of unit clauses with
variables, has at most one out-going move. The number of states is equal to the sum
of the number of predicates de:ned in the program and the number of occurrences of
functors in all clause heads of the program.

Example 2. Consider the program P1 in Fig. 5. The STS A0 derived from P1 contains
two predicate states, {[p]} and {[q]}, and seven further derived states:

{[p1; a]}∗; {[p2; a]}; {[p2; a; b]}; {[p3; a]}; {[q; b]}; {[q; b; c]} and {[q; b; c; d]}:
There is just one :nal state {[p1; a]}∗. The graph in Fig. 6 is A0 of P1.

4.2. Interpretation of body literals

Now we consider subgoals in non-unit clauses. A clause p( Mf(X ))← q(Mh(X )) can
be read declaratively as: “If for some term t; q(Mh(t)) is true, then p( Mf(t)) is true as
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p(a(0)):

p(a(b(X ))) ← p(a(X )):

p(a(X )) ← q(b(c(X ))):

q(b(c(d(X )))) ← p(a(b(X ))):

Fig. 5. Program P1.

Fig. 6. A0 of P1.

well.” In order to convert the clause into a set of state transitions, we paraphrase “p(t)
is true” is “t leads the machine from p to a :nal state”. Thus we re-write the above
sentence as

If a path Mt preceded by a path Mh leads the automaton from {[q]} to a :nal state,
then the same path Mt preceded by another path Mf leads the machine from {[p]}
to a :nal state.

The variable X in the body literal q(Mh(X )) denotes a set of paths each of which begins
from one of the goal states of the literal, de:ned below.

De$nition 1 (Goal states). The goal states of a body literal q(h1 : : : hn(X ) : : :), denoted
as GS{q(h1 : : : hn(X ) : : :)}, is a set of states reachable from the predicate state {[q]} via
successive moves associated with functors h1; : : : ; hn in this order, possibly interspersed
with 	-moves.

Thus, we connect the bottom state {[p; Mf]} of the clause head with each goal state
in GS{q(Mh(X ))} by an 	-move. By this connection the string Mf is connected to the
strings represented by X starting from each goal state in GS{q(Mh(X ))}. Hence, if there
is a path from any state of GS{q(Mh(X ))} to a :nal state, we obtain an accepting path
from {[p]}.
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Example 3. Consider the three clauses and a goal

p(a(X ))← q(b(X )):

q(b(c(X )))← r(d(X )):

r(d(e(0))):
←p(X ):

Given the program and the query, Prolog systems give the answer X = a(c(e(0))).
In the derived automaton we connect the bottom state {[p; a]} of the :rst clause

by an 	-move to the state {[q; b]}. We similarly connect {[q; b; c]} by an 	-move to
{[r; d]}. We obtain

{[p]} a→ {[p; a]}
	 ↓

{[q]} b→ {[q; b]} c→ {[q; b; c]}
	 ↓

{[r]} d→ {[r; d]} e→ {[r; d; e]}∗:
The two downward arrows associated with 	 represent two reversed implications in the
:rst and the second clauses. The accepting path

{[p]} a→{[p; a]} 	→{[q; b]} c→{[q; b; c]} 	→{[r; d]} e→{[r; d; e]}∗

admits the string ace, corresponding to the above answer by Prolog systems.

In this example we can easily :nd the states to be connected to a bottom state. In
general, however, a body literal may contain a longer list of functors than that of any
clause head unifying with the literal. Suppose we replace the body predicate q(b(X ))
in the :rst clause by a literal q(b(c(e(X )))). It is not immediately apparent what the
goal states of this new literal are. After connecting {[q; b; c]} to {[r; d]}, however, we
have a goal state {[r; d; e]} of the new literal.
Computing goal states. By examining refutations of a body literal q(Mh(X )), we can

derive its goal states GS{q(Mh(X ))}.
In some resolution steps in a refutation, pre:xes of Mh in the initial goal are removed

from chosen literals by clauses unifying with them. We want to know the clauses which
remove the last functor of Mh, because the heads of such clauses contain the goal states
we are searching for.
Consider a literal q(Mh(X )) and its refutation

G0 =← q(Mh(X )) C1−→G1
C2−→G2

C3−→· · · Ck−→

If the clause C1 is a unit clause, G1 is in fact the :nal , and C1 contains a goal state.
Otherwise G1 consists of subgoals g1; : : : ; gn (n¿0). The original goal G0 is reduced
to an empty goal when g1; : : : ; gn are all reduced to empty goals. Then, the sequence
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of goals G0; G1; : : : ; can be represented as a proof tree [8], in which nodes at depth j
denote the subgoals in Gj from left to right order. Every leaf of the tree is an empty
goal, and each edge connects a literal with either its descendant subgoals, or (possibly
an instance of) the same literal in the next goal.

Example 4 (Proof tree). Assuming the left to right selection rule [8] of Prolog sys-
tems, a refutation of a literal G0 =←p(f(g(X ))) by clauses C1; : : : ; C6 is represented
as a proof tree:

Refutation Proof tree

G0 ← p(f(g(X ))): p(f(g(X )))

C1 p(f(X ))← q(h(X )); r(k(X )): ↓ ↘
G1 ← q(h(g(X ))); r(k(g(X ))): q(h(g(X ))) r(k(g(X )))

C2 q(h(g(l(X ))))← s(X ): ⇓ ↓
G2 ← s(X ); r(k(g(l(X )))): s(X ) r(k(g(l(X ))))

C3 s(0): ↓ ↓
G3 ← r(k(g(l(0)))): r(k(g(l(0))))

C4 r(k(X ))← t(X ); u(X ): ↓ ↘
G4 ← t(g(l(0))); u(g(l(0))): t(g(l(0))) u(g(l(0)))

C5 t(X ): ⇓ ↓
G5 ← u(g(l(0))): u(g(l(0)))

C6 u(g(l(X ))): ⇓
G6

Since every leaf of the tree is an empty goal, for each path from the root to a leaf,
there is exactly one edge connecting a subgoal containing a suKx of f(g(X )) with
either a subgoal which does not contain any suKx, or an empty goal. Thick down
arrows (⇓) indicate these edges. Each clause used in such a resolution step must either
contain a suKx of f(g(X )) in its head, or else be a unit clause with a non-ground
term. The goal state derived from this refutation is the compound state, each element
of which is a state in A0 corresponding to one of these clause heads.
In the above example, because the head of C1 contains only a pre:x of the argument

of G0, both subgoals in G1 contain g. Whereas, in the second resolution step, the head
of C2 has the argument h(g(l(X ))) which contains g. Thus the state {[q; h; g]} is a
component of the goal state. From the resolution step involving G4 and C5, another
component {[t]} is derived. The last component {[u; g]} comes from clause C6. The
goal state from this refutation is

{[q; h; g]; [t]; [u; g]}:
The goal states GS{g} of a goal g is a set of such compound states, one from each

refutation of g.
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Example 5. Consider a program

p( Mf(X ))← q(Mh(X )): :: C1

q(Mh( Mg(X )))← s( Ma(X )): :: C2

q(Mh1(X ))← r( Mf(X )): :: C3

r( Mf(Mh2( Mg(X ))))← t(Mb(X )): :: C4

where in C3 and C4 (Mh1; Mh2) is a partition of Mh. We search for goal states of the literal
q(Mh(X )) in C1. One derivation starts with a step using C2.

← q(Mh(X )) C2−→← s( Ma(X )):

The last goal does not contain suKx of Mh, since the term Mh( Mg(X )) in C2 is an instance
of the term Mh(X ) in the literal. The state {[q1; Mh]} is a goal state of q(Mh(X )).
There is another derivation

← q(Mh(X ))
C3−→← r( Mf(Mh2(X ))) C4−→← t(Mb(X )):

The clause C3 is used in the :rst step removing Mh1, then the clause C4 is used, removing
Mh2. So the state {[r; Mf; Mh2]} is another goal state of q(Mh(X )), and GS{q(Mh(X ))}=
{{[q1; Mh]}; {[r; Mf; Mh2]}}.

4.3. Construction of A

Since every body literal in a clause has a variable X in common, conjunction of
literals implies that terms satisfying individual literals must share a suKx denoted by X .
In the context of a :nite automaton, a clause p( Mf(X ))← q1(Mh1(X )); : : : ; qk(Mhk(X )) can
be interpreted as:

If there is a path Mt such that, for all 16j6k each path Mhj followed by Mt leads the
automaton from {[qj]} to a :nal state simultaneously, then the path Mf followed
by Mt leads the machine from {[p]} to a :nal state.

So we need to check whether the k paths, one from each literal, share a sequence
of alphabet symbols. In other to convert the conjunctive goal q1(Mh1(X )); : : : ; qk(Mhk(X ))
into a graph, then, we must examine all possible k-tuples of paths, since each literal
denotes a set of paths starting from corresponding goal states.
Suppose each conjunct qj(Mhj(X )) has lj goal states, i.e.

GS{qj(Mhj(X ))}= {s1j ; : : : ; slj
j } (16j6m):

Then we consider each of (l1×· · ·×lk) states {sm1
1 ∪ · · · ∪ smk

k } (16j6k; 16mj6lj).
If it is not in A, then add it to the graph and add an 	-move connecting the bottom
state {[p; Mf]} with it.
Then we examine whether every component of the state has an out-going arc with the

same symbol. If so, we consider another compound state consists of destination states
of each component. If it is not in A add it and connect with the previous state by an
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Procedure Expand(s; e)

1. If s is not in A, then add s to A.
2. If e is not in A, then add e to A.

3. If every component of s= {a1; : : : ; am} has a transition with the same symbol,
say, g, then
(a) consider the state t = {b1; : : : ; bm} such that (aj

g→ bj) are in A, and
(b) recursively apply Expand(t; s

g→ t) to A.
4. Else if a component ak of s has an empty move which is not in E, then
(a) add the empty move to E,
(b) consider the state t = {a1; : : : ; ak−1; b; ak+1; : : : ; am} where (ak

	→ b) is the
empty move,

(c) recursively apply Expand(t; s 	→ t) to A.
5. Else if every component aj in s is a :nal state, then make s a :nal state.

Fig. 7. The procedure Expand.

edge associated with the symbol. Every compound state has at most one outgoing arc
with a symbol. We can view the part of the automaton corresponding to a conjunctive
body as a shadow of a part of A0, because every path in the new part has a set of
copies in A0. We repeat the process until no new state or arc can be added to the graph.
We construct A from A0 by converting all non-unit clauses one by one, iteratively. The
automaton A is a :xpoint of this iteration.
Using an auxiliary procedure Expand, the formal procedure to derive A from A0 is

de:ned as follows.
1. Initialise A=A0 and E =&: E is a set of empty moves from bottom states already

considered.
2. Repeatedly apply the following procedure to A until we reach a :xpoint.

(a) For each non-unit clause p( Mf(X )) ← q(Mh1(X )); : : : ; qn(Mhn(X )) construct the
cross product S = S1 × · · · × Sn where Sj =GS{qj(Mhj(X ))}.

(b) For each (s1; : : : ; sn)∈ S
(i) construct s= s1 ∪ · · · ∪ sn = {a1; : : : ; am} where aj are states in A0.
(ii) Apply the procedure Expand(s; {[p; Mf} 	→ s) to A.

The procedure Expand is de:ned in Fig. 7.
Termination of the process: A0 has N states, where N is the number of occurrences

of functors plus the number of predicates de:ned in Pus. Every compound state in A
is denoted by a set of names in A0. So, the number of states in A cannot exceed the
size of power set of the set of names in A0, i.e. 2N . Since the number of possible
transitions is :nite and the number of actual transitions in the graph increases at each
step, the process always terminates.

Example 6. Consider the US program P in Fig. 8. Fig. 9 is the basis A0 of the
program P. As there are two clauses for the predicate q, the state {[q]} has two
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p(f(g(X ))) ← q(X ): :: C1

q(h(0)): :: C2

q(f(X )) ← r(h(X )): :: C3

r(h(g(X ))) ← q(X ): :: C4

s(X ) ← p(X ); q(X ): :: C5

Fig. 8. A US program P.

Fig. 9. A0 of P.

outgoing edges. The double circle in the top-right corner is a :nal state, derived from
the unit clause q(h(0)).
Fig. 10 shows the con:guration 02 the :rst iteration of the conversion of non-unit

clauses. In total four 	-moves (dashed arrows) are added to A∗, i.e.

{[p; f; g]} 	→ {[q]} for C1;

{[q; f]} 	→ {[r; h]} for C3;

{[r; h; g]} 	→ {[q]} for C4; and

{[s]} 	→ {[p]; [q]} for C5:

The state {[p]; [q]} is the :rst compound state generated for the conjunctive body of
the clause C5. From this state, we start tracing two paths, one from {[p]}, another
from {[q]} in parallel.
In Fig. 11, since both {[p]} and {[q]} have outgoing edge associated with f, a

new compound state {[p; f]; [q; f]} and an edge with f are added to A. The move
{[p; f]; [q; f]} 	→{[p; f]; [r; h]} is caused by the 	-move {[q; f]} 	→{[r; h]} in A0. From
{[p; f]; [r; h]} we can proceed by an edge associated with g to {[p; f; g]; [r; h; g]}.
Another 	-move {[p; f; g]; [r; h; g]} 	→{[q]; [r; h; g]} is caused by {[p; f; g]} 	→{[q]} in
A0. Finally, the move {[r; h; g]} 	→{[q]} in A0 leads the automaton from {[q]; [r; h; g]}
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Fig. 10. The :rst iteration.

Fig. 11. The :nal graph.

to {[q]}. Note that in the last move, the two names in the source state reduce to one,
because of union operation in building a name of a state. The subgraph starting from
the state {[p]; [q]} is the intersection of subgraphs from {[p]} and {[q]}.

4.4. Veri:cation of the construction

The following theorem states that the constructed automaton A is equivalent to Pus.

Theorem 2. The :nite automaton A; constructed from Pus by the procedure described
in the previous section; accepts a string f1 : : : fn from a state q if and only if the
goal ← q(f1 : : : fn(0) : : :) has a refutation w.r.t. Pus.

Proof. If: Suppose the goal G0 = ← q(f1 : : : fn(0) : : :) has a refutation

G0
C1→G1

C2→G2
C3→ · · · Cm→ (m ¿ 0);
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where C1; : : : ; Cm are clauses in Pus; G1; G2; : : : are successive intermediate goals and
is an empty goal.
We show that there is a sequence of moves, possibly interspersed by 	-moves, from

the state q to a :nal state, associated with symbols f1; : : : ; fn in this order. The proof
is by induction on the length of the derivation.
– Base case: If the goal has a one-step refutation (m=1), then Pus must contain a
unit clause C1 of the form

either q(f1 : : : fn(0) : : :):

or q(f1 : : : fj(X ) : : :) ( j6n):

Then, by construction, the graph contains

either {[q]} f1→{[q; f1]} f2→ · · · fn→{[q; f1; : : : ; fn]}∗;
or {[q]} f1→{[q; f1]} f2→· · · fj→{[q; f1; : : : ; fj]}∗ �→{[q; f1; : : : ; fj]}∗

where the expression �→ denotes the set of loops — one for each alphabet symbol.
Both {[q; f1; : : : ; fn]}∗ and {[q; f1; : : : ; fj]}∗ are :nal states, so in either case there
is a path associated with f1; f2; : : : ; fn from {[q]} to a :nal state.

– Inductive case: Assume that for each goal with a refutation of length at most k− 1,
the automaton A accepts the corresponding string, and G0 = ← q(f1 : : : fn(0) : : :) has
a refutation of length k.
The :rst clause used in the refutation must have the form

q(f1 : : : fi(X ) : : :)← q1(Mh1(X )); : : : ; qm(Mhm(X )) (06i6n; m¿0) (1)

Let nj =#GS{qj(Mhj(X ))} (16j6m). Then the automaton contains n1 × · · · × nm

	-moves from the bottom state {[q; f1; : : : ; fi]} to each of the compound states:

{[q]} f1 :::fi→ {[q; f1; : : : ; fi]} 	→ si1
1 ∪ · · · ∪ sim

m (16ij6nj; 16j6m) (2)

where sij
j ∈GS{qi(Mhj(X ))}.

After one step resolution, G1 is a conjunction of m subgoals:

G1 = ← q1(Mh1(fi+1 : : : fn(0) : : :)); : : : ; qm(Mhm(fi+1 : : : fn(0) : : :)):

Since each subgoal has a refutation of length at most k − 1, from the induction
hypothesis, for each 16j6m A contains an accepting path:

{[qj]}
Mhj→ sj

fi+1 :::fn−→ �
The goal state sj ∈GS{qj(Mhj(X ))} appears in the path because each subgoal in G1

is an instance of a body literal in (1).
Therefore A contains at least one compound state sj ∪ · · · ∪ sm leading to a :nal
state via string fi+1 : : : fn:

s1 ∪ · · · ∪ sm
fi+1 :::fn−→ � (3)
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Combining (2) and (3), A contains at least one path

{[q]} f1 :::fi→ {[q; f1; : : : ; fi]} 	→ s1 ∪ · · · ∪ sm
fi+1 :::fn−→ �

which shows that A accepts the string f1 : : : fn.
‘Only if ’: Suppose A accepts the string f1 : : : fn from an initial state {[q]}. We
prove, by induction on the number of 	-moves in the path, that the goal

G = ← q(f1 : : : fn(0) : : :)

has a refutation in Pus.
– Base case: Firstly, consider the case where there is no 	-move in the accepting path,
i.e. the path consists of exactly n moves:

{[q]} f1→◦ f2→· · · fn−1→ ◦ fn→�
The path can be derived only from a unit clause, since any path constructed from a
non-unit clause must contain at least one 	-move. Then, the program must contain
a unit clause is one of the following two forms:

q(f1 : : : fn(0)):

q(f1 : : : fi(X )) (06i6n)

either of which gives a one step refutation of the goal G.
– Inductive case: Assume that every goal corresponding to an accepting path with at

most k − 1 	-moves has a refutation in Pus, and the path {[q]} f1 :::fn−→ � contains k
	-moves. We show that the goal G =← q(f1 : : : fn(0) : : :) has a refutation. Since the
path contains at least one 	-move, the program contains a clause in the form of

q(f1 : : : fi(X ) : : :)← q1(Mh1(X )); : : : ; qm(Mhm(X )) (m¿0; 06i6n): (4)

Resolution of G with this clause results in a new goal:

← q1(Mh1(fi+1 : : : fn(0) : : :)); : : : ; qm(Mhm(fi+1 : : : fn(0) : : :)): (5)

If every subgoal in (5) has a refutation, so does G.
The clause (4) corresponds to the :rst 	-move of the whole path:

{[q]} f1→· · · fi→{[q; f1; : : : ; fi]} 	→ s1 ∪ · · · ∪ sm
fi+1→ · · · fn→� (6)

where each sj is a goal state of the literal qj(Mhj(X )) in (4).
Then, for each sj, there is a derivation from ← qj(Mhj( Mfi+1 : : : Mfn(0) : : :)) to

← r1(Mg1(Mh
′
1(fi+1 : : : fn(0) : : :))); : : : ; rb(Mgb(Mh

′
b(fi+1 : : : fn(0) : : :))) (7)

such that Mh1′; : : : ; Mhb
′ are suKxes of Mhj and sj = {[r1; Mg1; Mh1′]; : : : ; [rb; Mgb; Mhb

′]}.
The number of 	-moves in the path from s1 ∪ · · · ∪ sm to the :nal state in (6) is
k − 1 which is the sum of the number of 	-moves in each path starting from an
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element of s1 ∪ · · · ∪ sm. Then every path corresponding to a subgoal in (7) has at
most k − 1 	-moves, and hence from the induction hypothesis, each subgoal in (7)
has a refutation.
Since each subgoal in (5) has a refutation, the initial goal has a refutation.

5. Discussion and conclusion

5.1. Expressiveness of US and RUS

This subsection considers expressive di0erences between US and RUS. We have
proven two lemmas; any US program can be transformed into an equivalent NFA with
	-moves, and any DFA can be transformed into an equivalent RUS program. Since any
NFA with 	-moves can be converted into an equivalent DFA, we obtain a translation
scheme from US to its subset RUS:

US⇒NFA with 	-moves⇒DFA⇒RUS:

The resulting RUS program and the original US program accept exactly the same
language. So the syntactic restriction of US into RUS does not hamper its expressive
power in describing language acceptors.
However, two equivalent shortest programs written in US and RUS may be quite

di0erent in size. In the automaton A0 derived from the set of clause heads in a US
program, the number of states is the sum of number of predicates (Np) and the number
of occurrences of functors (Nf) in the US program. Since each state in A corresponds
to a subset of sets in A0, the number of possible states in A is 2(Np+Nf).

Moreover, we have to convert the automaton into a DFA. An NFA with 	-moves can
be converted into an equivalent DFA in two steps, i.e. :rst, removing every-	-move
in a NFA, then converting the NFA into an equivalent DFA [4]. When 	-moves are
removed, the number of states does not change, but conversion of an NFA into a DFA
causes, potentially, an exponential increase in the number of states, since the states of
resulting DFA correspond to a subset of states in the NFA. Thus the number of states
in the DFA, could be, in the worst case, 22

(Np+Nf )
!

However, in an automaton derived from a US program, only predicate states, bottom
states, and compound states containing a bottom state of its component, have multiple
outgoing edges. Besides, all outgoing edges from bottom states are 	-moves. After
eliminating 	-moves by the procedure described in [4], the number of states having
multiple outgoing edges, where non-determinism could occur, does not change.

5.2. Expressive power and answer set

Matos gives a di0erent proof of a very similar equivalence theorem [6]. In his termi-
nology monadic logic programs corresponds to US programs in this paper, except that
Mato’s monadic logic programs may contain several constants but our US programs
contain only one constant 0.
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In order to prove equivalence between regular sets and monadic programs, Matos
reduces his monadic logic programs into a subset called linear monadic programs,
which he proves to accept exactly the set of regular languages. The resulting linear
program accepts the same languages as the original general monadic program does.
Firstly he shows that if a monadic program does not contain clauses with conjunctive

bodies, it can be reduced to a set of clauses in which every body predicate has no
functor symbol.
Then any monadic program containing a clause with a conjunctive body is shown to

be reducible to a set of linear clauses plus a clause containing only two body predicate
terms each of which does not contain functors.
Finally, from this program Matos derives simultaneous equations in which every

predicate name is represented by a language variable. By solving these equations he
again reduces the clause with two body predicates into a linear form.
The main di0erence between Mato’s proof and ours is that he avoids direct con-

struction of intersection of automata corresponding to each member of a conjunctive
body as we did, by :rst reducing the clause body to its minimal form, then proving
that we can solve the corresponding algebraic equation.
In both cases the hardest part of the proof is how to handle conjunctive clause bodies.

In our proof, we directly build up the intersection of body predicates by tracing the
path on the graph built from clause heads. The idea that any body predicate term must
have corresponding states (goal states) in the basis (A0) is essential to our proof.

5.3. Di>erent types of correspondences

The correspondence between US programs and regular sets in this paper is very
di0erent from the correspondences between logic programs and grammars more usually
considered in the literature. Papers such as [1–3] discuss the similarity of derivation
trees of grammars and proof trees of logic programs. A proof tree of a de:nite logic
program of propositional form is similar to a derivation tree of a context free grammar
(CFG). Each propositional term in the logic program corresponds to a non-terminals
in the CFG. The arguments of predicate terms in more general logic programs can be
viewed as an embedded stack for an indexed grammar [1], or a set of attributes in
an attribute grammar [3]. Because of this extra information, their proof-tree grammars
are some extension of CFG. However, authors studying such correspondences are not
interested in the answer set of the logic program.
There seem to be few papers discussing the power of logic programming systems in

describing language acceptors. The expressive power of logic language can be discussed
in the context of the process of calculating the answer set as in this paper. Such research
may provide clues about the source of the expressive power of logic languages.

5.4. Accepting power of less restricted string logic programs

This paper is based on a part of the :rst author’s dissertation [7] which contains
two other results about the accepting power to restricted pure Prolog with only unary
function symbols.
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If we allow the language to contain binary predicates, and every clause in the
language contains at most one body literal, it is already powerful enough to describe
acceptors of any recursively enumerable language. In other words, it can describe
Turing machines: the two string arguments in a predicate can serve as the left and the
right part of the tape.
If we now restrict the above binary predicate language so that the set of function

symbols appearing in the :rst and the second arguments is disjoint, then only Context
Free language can be recognised. One of the arguments can serve as a stack, while
the other represents the rest of the input string.

5.5. Conclusion and further work

We have shown that Unary String logic programs accept exactly the set of reg-
ular languages. Also, the set of Regular Unary String logic programs, a subset of
Unary String logic programs, has already enough power to accept the set of regular
languages, although a shortest RUS program may have a number of predicates expo-
nentially greater than the number of predicates and functors of its shortest US counter
part.
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