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a b s t r a c t

In this article, the lines not meeting a hyperoval cone in PG(3, q), q even, are characterized
by their intersection properties with points and planes.
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1. Introduction

Let PG(3, q) be the projective space of dimension 3 and order q, where q is a prime power. A k-set L of lines is a set of k
lines in PG(3, q). As usual, we call a star of lines the set of all lines through one point, the centre of the star. Let mj denote
non-negative integers, with 0 ≤ m1 < m2 < · · · < ms ≤ q2 + q + 1. A set L is said to be of type (m1,m2, . . . ,ms) with
respect to stars (of lines), if any star contains eitherm1, orm2,. . . , orms lines of L, and all such stars do exist; see [2]. A j-secant
star of L will be a star containing exactly j lines of L. Denote by tj the number of mj-secant stars. Then the following hold;
see [5]:

s−
j=1

tj = ϑ3

s−
j=1

mjtj = kϑ1

s−
j=1

mj(mj − 1)tj = k(k − 1) − 2τ ,

(1.1)

τ being the number of unordered pairs of skew lines in L and ϑi =
qi+1

−1
q−1 the number of points of PG(i, q). Also the type of

L with respect to ruled planes, i.e. planes considered as sets of their lines, can be defined and equations similar to (1.1) can
be written; see [5]. An external plane is a plane such that no line of L belongs to it.

A plane hyperoval is a (q + 2)-set of points in a plane π , no three of which are collinear. A hyperoval cone of PG(3, q), q
even, consists of the points on the lines joining a plane oval to a point V , called the vertex, not belonging to π ; see [4].

Quadrics in PG(3, q) are very interesting objects with many combinatorial properties. One is that lines can only meet a
quadric in a fewways. So wemay consider a family of lines that all meet a particular quadric in the sameway. This family of
lines has remarkable properties. An important question is whether we may use these properties to characterize them. The
following result [1] enters into this scheme of things.
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Result ([1] Barwick and Butler). Let L be a non-empty set of lines in PG(3, q), q even, such that the following hold.

(I) Every point lies on 0 or 1
2q

2 lines of L.
(II) Every plane contains 0, q2, or 1

2q (q − 1) lines of L.

Then L is the set of external lines to a hyperoval cone of PG(3, q).

In this paper, we give a characterization of the set of external lines of a hyperoval cone of PG(3, q), q even, as a set of type
(0, a, b) with respect to ruled planes and of type (m, n) with respect to stars of lines, which is the set of external lines to a
hyperoval cone of PG(3, q), q even. In particular, we prove the following.

Theorem. In PG(3, q), a


q4

2 −
q3

2


-set of lines, q even, having exactly q4(q−2)(q−1)2(q+1)

8 pairs of skew lines and (q+1)(q+2)
2 external

planes, of type (0, a, b) with respect to ruled planes and of type (m, n) with respect to stars of lines, is the set of external lines to
a hyperoval cone.

2. Proof of the theorem

Suppose that L is a k-set of lines in PG(3, q) of type (m, n) with respect to stars of lines. According to (1.1), we gettm + tn = (q + 1)(q2 + 1)
mtm + ntn = k(q + 1)
m (m − 1) tm + n(n − 1)tn = k(k − 1) − 2τ .

(2.1)

Thus, a two-character set with respect to stars of lines depends on four parameters, k, τ , m, and n, and a complete
classification seems to be extremely difficult; see [3,6]. Therefore, in order to give a characterization, we fix two of these
parameters, k and τ .

For k =


q4

2 −
q3

2


and τ =

q4(q−2)(q−1)2(q+1)
8 system (2.1) becomes

tm + tn = (q + 1)(q2 + 1)

mtm + ntn =


q4

2
−

q3

2


(q + 1)

m (m − 1) tm + n(n − 1)tn =
q3

2
(q − 1)


q2

2
− 1


(q + 1) .

(2.2)

From the first two equations of (2.2), we get
tm =

(q + 1)

q3(q − 1) − 2n(q2 + 1)


2(m − n)

tn =
(q + 1)


2m(q2 + 1) − q3(q − 1)


2(m − n)

.

(2.3)

Since tn > 0, by the second equation of (2.3), we get

m <
q2

2
−

q
2

−
1
2

+
q + 1

2q2 + 2
.

Therefore, 0 ≤ m <
q2

2 −
q
2 + 1.

If we solve system (2.2), choosing m as a parameter and tm, tn, and n as variables, and examining the cases m = 0 and
m = 1 separately, we get the following. For m = 0, we have n =

q2

2 ; q being even, we have that n is an integer, and hence

this is an acceptable solution. For m = 1, we have n =
q3(q−1)(q2−2)

2(q4−q3−2q2−2)
=

q2

2 +
2q2(q+1)

2(q4−q3−2q2−2)
, which is not a non-negative

integer.
Form ≠ 0 andm ≠ 1, we get

n =
q3(q − 1)(2m − q2)

2

2m(q2 + 1) − q3(q − 1)

 . (2.4)

Since 1 < m <
q2

2 −
q
2 + 1, we can suppose thatm = m(q), (i.e. m is a polynomial function of q); hence

m = αq2 + βq + γ .

By substitutingm into (2.4), we get n =
(2α−1)q6+(2β−2α+1)q5+(2γ−2β)q4−2γ q3

2(2α−1)q4+2(2β+1)q3+4(α+γ )q2+4βq+4γ
.
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Putting N(q) = (2α − 1)q6 + (2β − 2α + 1) q5 + (2γ − 2β)q4 − 2γ q3 and D(q) = 2(2α − 1)q4 + 2 (2β + 1) q3 +

4 (α + γ ) q2 + 4βq + 4γ , n =
N(q)
D(q) .

As n is an integer, the remainder R(q) of the division by N(q)
D(q) must be zero for any q.

The remainder R(q) of the division by N(q)
D(q) is

R(q) =


2


α (2γ + 1) − 2β2

− 2β − γ − 1


(2α − 1)2
+ 2α + 2


q3 −


2 [α + β (2γ + 1) + γ ]

(2α − 1)2
− 2α − 2β


q2

+


4


2α2 (β + γ ) − α (2β + γ ) − β2


(2α − 1)2


q +


4γ


2α2

− 2α − β


(2α − 1)2


.

If α ≠
1
2 and R(q) must be zero for any q, we need that the coefficients of the polynomial R(q) must be zero for any q.

Thus we obtain a system of four equations and three variables (α, β, γ ), which gives the following solution: α = 0,
β = 0, γ = 0; we exclude this solution because it givesm = 0, and we have just studied it.

If α =
1
2 , then m =

1
2q

2
+ βq + γ ; hence n =

βq5+(γ−β)q4−γ q3

(2β+1)q3+(2γ+1)q2+2βq+2γ
.

Putting N(q) = βq5 + (γ − β) q4 − γ q3 and D(q) = (2β + 1) q3 + (2γ + 1) q2 + 2βq + 2γ , n =
N(q)
D(q) .

As n is an integer, the remainder R(q) of the division by N(q)
D(q) must be zero for any q.

The remainder R(q) of the division by N(q)
D(q) is

R(q) =


2


4β2

+ 8β3
+ 2β2 (1 − 3γ ) − β (4γ + 1) + γ (γ + 1) (2γ + 1)


(2β + 1)3


q2

+


2


4β4

+ 4β3γ + 2β2 (3γ − 1) + 4βγ − γ 2


(2β + 1)3


q +


4γ


2β3

− β + γ (γ + 1)


(2β + 1)3


q.

If β ≠ −
1
2 and R(q) must be zero for any q, we need that the coefficients of the polynomial R(q) must be zero for any q.

Thus we obtain a system of three equations and two variables (β, γ ). The only acceptable solution is β = 0, γ = 0, for
whichm =

1
2q

2 and n = 0; a contradiction, becausem < n.

If α =
1
2 and β = −

1
2 , m =

1
2q

2
−

1
2q + γ ; hence n =

−q5+(2γ+1)q4−2γ q3

2(2γ+1)q2−2q+4γ
.

Putting N(q) = −q5 + (2γ + 1) q4 − 2γ q3 and D(q) = 2 (2γ + 1) q2 − 2q + 4γ , n =
N(q)
D(q) .

As n is an integer, the remainder R(q) of the division by N(q)
D(q) must be zero for any q.

The remainder R(q) of the division by N(q)
D(q) is

R(q) =


4γ


8γ 4

− 12γ 2
− 4γ + 1


(2γ + 1)4


q +

8γ 2

4γ 3

+ 8γ 2
+ 2γ − 1


(2γ + 1)4

.

If γ ≠ −
1
2 and R(q) must be zero for any q, we need that the coefficients of the polynomial R(q) must be zero for any q.

Thus we obtain a system of two equations and one variable (γ ). The only acceptable solution is γ = 0, for which
n = −

1
2q

3, a contradiction.

If α =
1
2 , β = −

1
2 and γ = −

1
2 , it follows thatm =

1
2q

2
−

1
2q−

1
2 , and it is not an integer; therefore,m = 0 and n =

q2

2 .

Thus L is a


q4

2 −
q3

2


-set of type


0, q2

2


with respect to stars of lines.

Now suppose that L is a


q4

2 −
q3

2


-set of type (0, a, b) in PG(3, q)with respect to ruled planes. According to (1.1), we get

t0 + ta + tb =

q3 + q2 + q + 1


ata + btb =


q4

2
−

q3

2


(q + 1)

a (a − 1) ta + b (b − 1) tb =
q3

2
(q − 1)


q2

2
− 1


(q + 1) ,

(2.5)

with t0 =
(q+1)(q+2)

2 . From the first two equations of (2.5), we get

ta =
q(q + 1)


q2(q − 1) − b(2q − 1)


2 (a − b)

,

tb =
q(q + 1)


a(2q − 1) − q2(q − 1)


2 (a − b)

.
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Since tb > 0 and a < b, we have

a <
q2(q − 1)
2q − 1

and hence a <
q2

2
−

q
4

−
1
8

−
1

8 (2q − 1)
.

We can suppose that a <
q2

2 −
q
4 −

1
8 .

If we solve system (2.5), choosing a as a parameter and ta, tb, and b as variables and excluding the cases a = 0 because
a > 0 and a = 1 because in this case b is not a positive integer, we get

b =
q2(q − 1)


2a − q2


2


a(2q − 1) − q2(q − 1)

 . (2.6)

Since a <
q2

2 −
q
4 −

1
8 , we can suppose that a = a(q), (i.e. a is a polynomial function of q); hence a = αq2 + βq + γ . By

substituting a into (2.6), we get

b =
(2α − 1)q5 + (2β − 2α + 1) q4 + (2γ − 2β)q3 − 2γ q2

2 (2α − 1) q3 + 2 (2β − α + 1) q2 + 2 (2γ − β) q − 2γ
.

Putting N(q) = (2α − 1)q5 + (2β − 2α + 1) q4 + (2γ − 2β)q3 − 2γ q2 and D(q) = 2(2α − 1)q3 + 2 (2β − α + 1) q2 +

2 (2γ − β) q − 2γ , we have b =
N(q)
D(q) .

As b is an integer, the remainder R(q) of the division by N(q)
D(q) must be zero. The remainder R(q) of the division by N(q)

D(q) is

R(q) =


α (8γ + 1) − 8β2

− 4β − 4γ − 1
4(2α − 1)2

−
α

4
+

1
4


q2

−


α2β + α(α − β) − β(β − 2γ )

(2α − 1)2


q −

γ

α2

− α − β


(2α − 1)2
.

If α ≠
1
2 and R(q) must be zero for any q, we need that the coefficients of the polynomial R(q) must be zero for any q.

Thus we obtain a system of three equations and three variables (α, β, γ ), which gives the following solutions:

α = 0, β = 0, γ = 0, a contradiction;
α = 1, β = 0, γ = 0, for which we have a = q2 and b =

1
2q(q − 1); a contradiction, because a < b.

If α =
1
2 , we get b =

2βq4+2(γ−β)q3−2γ q2

(4β+1)q2+2(2γ−β)q−2γ
.

As b is an integer, the remainder R(q) of the division by N(q)
D(q) must be zero. The remainder R(q) of the division by N(q)

D(q) is

R(q) =


−4


4β4

+ 2β3
+ 2β2γ + 2βγ − γ 2 (8γ + 3)


(4β + 1)3


q −

4γ

4β3

+ 2β2
+ γ (4γ + 1)


(4β + 1)3

.

If β ≠ −
1
4 and R(q) must be zero for any q, we need that the coefficients of the polynomial R(q) must be zero for any q.

Thus we obtain a system of two equations and two variables (β, γ ), which gives the following acceptable solutions:

β = 0, γ = 0, and hence we get b = 0, a contradiction;
β = −

1
2 , γ = 0, for which we get a =

1
2q

2
−

1
2q and b = q2, an acceptable solution.

If α =
1
2 and β = −

1
4 , then a =

1
2q

2
−

1
4q + γ ; hence b =

−q4+(4γ+1)q3−4γ q2

(8γ+1)q−4γ .

Putting N(q) = −q4 + (4γ + 1) q3 − 4γ q2 and D(q) = (8γ + 1) q − 4γ , b =
N(q)
D(q) .

As b is an integer, the remainder R(q) of the division by N(q)
D(q) must be zero for any q.

The remainder R(q) of the division by N(q)
D(q) is

R(q) = −
512γ 4 (4γ + 1)

(8γ + 1)4
.

If γ ≠ −
1
8 and R(q) must be zero for any q, we need that the coefficients of the polynomial R(q) must be zero for any q.

Thus we have the following solutions:

γ = 0 or γ = −
1
4
;

for α =
1
2 , β = −

1
4 and γ = 0, we get b = q2 (1 − q) < 0, a contradiction;

for α =
1
2 , β = −

1
4 and γ = −

1
4 , we get b =

q2

1−q < 0, a contradiction.

Thus the last case is α =
1
2 , β = −

1
4 and γ = −

1
8 , for which we get b = q2 (1 − q) (2q + 1) < 0, a contradiction.
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Finally, we claim that a =
1
2q

2
−

1
2q and b = q2. So L is a


q4

2 −
q3

2


-set of type


0, 1

2q
2
−

1
2q, q

2

with respect to ruled

planes in PG(3, q), q even.
Then according to Result (I), L is the set of external lines to a hyperoval cone of PG(3, q), q even.
Thus, the theorem is completely proved.
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