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1. Introduction

Let PG(3, q) be the projective space of dimension 3 and order g, where q is a prime power. A k-set L of lines is a set of k
lines in PG(3, q). As usual, we call a star of lines the set of all lines through one point, the centre of the star. Let m; denote
non-negative integers, with0 < m; < m, < --- < my < q*> + q + 1. Aset L is said to be of type (my, my, ..., m,) with
respect to stars (of lines), if any star contains either my, or my,..., or mg lines of L, and all such stars do exist; see [2]. A j-secant
star of L will be a star containing exactly j lines of L. Denote by t; the number of m;-secant stars. Then the following hold,;
see [5]:

S
2 5="7s
j=1
S
Yo miG = ki, (1.1)
j=1

S
> mi(m — g = k(k — 1) — 2z,
j=1

T being the number of unordered pairs of skew lines in L and ¢; = ql+:1 the number of points of PG(i, g). Also the type of

L with respect to ruled planes, i.e. planes considered as sets of their lines, can be defined and equations similar to (1.1) can
be written; see [5]. An external plane is a plane such that no line of L belongs to it.

A plane hyperoval is a (q 4+ 2)-set of points in a plane 77, no three of which are collinear. A hyperoval cone of PG(3, q), q
even, consists of the points on the lines joining a plane oval to a point V, called the vertex, not belonging to r; see [4].

Quadrics in PG(3, q) are very interesting objects with many combinatorial properties. One is that lines can only meet a
quadric in a few ways. So we may consider a family of lines that all meet a particular quadric in the same way. This family of
lines has remarkable properties. An important question is whether we may use these properties to characterize them. The
following result [ 1] enters into this scheme of things.
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Result (/1] Barwick and Butler). Let L be a non-empty set of lines in PG(3, g), g even, such that the following hold.
(I) Every point lies on 0 or %qz lines of L.
(I) Every plane contains 0, g2, or %q (@ — 1) lines of L.

Then L is the set of external lines to a hyperoval cone of PG(3, q).

In this paper, we give a characterization of the set of external lines of a hyperoval cone of PG(3, q), g even, as a set of type
(0, a, b) with respect to ruled planes and of type (m, n) with respect to stars of lines, which is the set of external lines to a
hyperoval cone of PG(3, q), q even. In particular, we prove the following.

4 3 4 (g— —1)2 . .
Theorem. InPG(3, q),a (% - %)-set of lines, q even, having exactly % pairs of skew lines and (q“)zw external

planes, of type (0, a, b) with respect to ruled planes and of type (m, n) with respect to stars of lines, is the set of external lines to
a hyperoval cone.

2. Proof of the theorem

Suppose that L is a k-set of lines in PG(3, q) of type (m, n) with respect to stars of lines. According to (1.1), we get

tm 4t = (@+ 1)@ + 1)
mty, + nt, = k(g + 1) (2.1)
mm—1)ty,+nn—Dt, =k(k—1) — 21.

Thus, a two-character set with respect to stars of lines depends on four parameters, k, T, m, and n, and a complete
classification seems to be extremely difficult; see [3,6]. Therefore, in order to give a characterization, we fix two of these
parameters, k and t.

4 3 4 2
Fork = (% - %) and T = % system (2.1) becomes

tm+tn=(Q+l)(q2+l)
4 3
mtm‘i‘ntn: (%_%> (Q+1)

a q
m(m—])tm—}—n(n—l)tn:E(q—l) <5—1> q@+1.

From the first two equations of (2.2), we get

@+ D[d@—1) —2nc + 1]
2(m —n)
- (@+D[2m@+1) —¢*@q— 1)]'
2(m —n)
Since t, > 0, by the second equation of (2.3), we get

? q 1 q+1
m<-———-—= .
2 2 2 2¢2+2

m

(2.3)

2
Therefore,0 <m < & — 4 +1.
If we solve system (2.2), choosing m as a parameter and t,,, t,, and n as variables, and examining the cases m = 0 and

2
m = 1 separately, we get the following. For m = 0, we have n = %; q being even, we have that n is an integer, and hence

. . _ _ Pa-n(@@-2) _ ¢ 2¢%(q+1) o .
this is an acceptable solution. For m = 1, we have n = Ne—P20—2) — 2 + NP —207=3)" which is not a non-negative
integer.

Form = 0 and m # 1, we get
. P@-H@em—g) 24)
2[2m@+ 1) — (g — 1]
Sincel <m < % — % + 1, we can suppose that m = m(q), (i.e. m is a polynomial function of q); hence

m=aq’ + Bq+y.

Ra—1%+@2B—20+1)°+Q2y —28)q* 2y ¢®

By substituting m into (2.4), we get n = 2o D2 )P T4ty dfatay
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Putting N(q) = Qo — Dg® + 28 -2+ 1)q° + 2y — 28)q* —2y¢® and D(q) = 2QRa — D¢* + 228+ 1) q° +
4(a+y)a* +4Bg+4y,n =153

As n is an integer, the remainder R(q) of the division by Iggq; must be zero for any q.

The remainder R(q) of the division by ggg;
_|2le@y+1D 287 -28—y 1] s [2le+B@y+1)+v] 2
R(q)—{ (20[_1)2 +2a+2}q —{ 20— 1)2 —Za—Zﬂlq
N 4202 (B+y) —a2B+y) — ] N 4y (20® — 20 — )
Qa — 1) 1 2o — 1)? '

Ifa # % and R(q) must be zero for any g, we need that the coefficients of the polynomial R(q) must be zero for any q.
Thus we obtain a system of four equations and three variables («, 8, y), which gives the following solution: « = 0,
B =0, y = 0; we exclude this solution because it gives m = 0, and we have just studied it.

-1 _ 172 . — BP+(y=B)a* —y e’
Ifa = 5, thenm = 5q° + Bq + y; hencen = (2B+1)q3+(2y+])q2+2ﬂq+2y

Putting N(q) = B¢° + (v — B)¢* — ya* and D(q) = 2B + 1) ¢* + 2y + 1) ¢* + 2Bq + 2y, n = 5 5.

As n is an integer, the remainder R(q) of the division by ';((qi must be zero for any q.

The remainder R(q) of the division by D(‘”

R@ [ [4ﬁ2+8ﬁ3+2ﬂ2(1—37/)—ﬁ(4y+l)+y(y+1)(2y+1)]]q2

eB+1)°
4 3 2 _ .2 3 _
+{2[4;8 +4B%y +28> By — 1) + 4By y]}q+{4y[2ﬁ ﬁ+y(7/+1)]}q

@B +1)° @B+ 1)°

If g # —% and R(q) must be zero for any g, we need that the coefficients of the polynomial R(q) must be zero for any q.
Thus we obtain a system of three equations and two variables (8, y ). The only acceptable solutionis 8 = 0, y = 0, for
whichm = %qz and n = 0; a contradiction, because m < n.
_1 1. 1.2 1 . _ —C+Qy+Dg-2y¢
Ifot— iandﬂ——* m= Eq - *q+y,hencen— W
Putting N(9) = —¢° + 2y + 1) ¢* — 2y¢* and D(q) =2 2y + 1) ¢* — 2q + 4y, n = 52

As n is an integer, the remainder R(q) of the division by géq; must be zero for any q.

The remainder R(q) of the division by ZEZ;
R o | Bri=12 —ay )| sy (a2 syt 2y 1)
q) = 1 '
2y 1 1) Qy +1)*

Ify # —% and R(q) must be zero for any g, we need that the coefficients of the polynomial R(q) must be zero for any q.
Thus we obtain a system of two equations and one variable (y). The only acceptable solution is y = 0, for which
n = —1q°, a contradiction.

2
Ifo =1, B=—1andy = —1, itfollows thatm = 1¢* — 2g — 1 and it s not an integer; therefore,m = Oand n = £..

Thus Lisa <— - —) -set of type ( ) with respect to stars of lines.

w

Now suppose that Lis a (74 - %)—set of type (0, a, b) in PG(3, q) with respect to ruled planes. According to (1.1), we get

to+tatty=(+@+q+1)
¢ ¢
at, + bty = (5 - —) @q@+1 (2.5)
3 2
a(a—l)ta+b(b—1)tb—f(q—1)<*—1> q+1,

with ty = W From the first two equations of (2.5), we get
_a@+ 1D [¢*@—1D - b2qg—1)]
e 2(a—Db)
a@+ 1 [aRqg—1) —¢@—1]
2(a—b) '

)

p =
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Since t, > 0 and a < b, we have
q 1 1

@—1 q
< ———- andhencea < ——-—— — _.
2q—1 2 4 8 8(2q—1)

If we solve system (2.5), choosmg a as a parameter and tg, tp, and b as variables and excluding the cases a = 0 because
a > 0 and a = 1 because in this case b is not a positive integer, we get

?(q—1) (2a - ¢?)

2[aq—1) —g?(@— D]
Since a < % —1_ é, we can suppose that a = a(q), (i.e. a is a polynomial function of q); hence a = aq? + fq + y. By
substituting a into (2.6), we get

Qa1+ —2a+1)q"+ 2y —28)q° — 2yq°

20— D@ +22f—a+ D@ +2Qy —Ba—2y
Putting N(q) = Qo — Dg® + 28 — 20+ 1) q* + 2y —28)¢° — 2yq¢*and D(q) = 2Qa — D@ +2Q2B —a+ 1) q* +
22y — B)q— 2y, we have h = Y@

D(g)*
As b is an integer, the remainder R(q) of the division by

(2.6)

N (q)
D(q)

N(g)
D(q)

_fa@y+1D) -8 —4f—4y—1 a 1],
R(q)_{ 4Qa — 1)? _4+4}q

_{a2ﬂ+a(a—ﬂ)—ﬂ(ﬂ—2y)} _v(@—a—§)

Qa — 1)? d Qa—-1?%

Ifa #£ % and R(q) must be zero for any g, we need that the coefficients of the polynomial R(q) must be zero for any q.
Thus we obtain a system of three equations and three variables («, 8, y ), which gives the following solutions:

must be zero. The remainder R(q) of the division by

a =0, B =0, y =0, acontradiction;
a=1, =0, y =0, for whichwe havea = g* and b = %q(q — 1); a contradiction, because a < b.

28¢*+2(y—B)a® 2y ¢
@AB+1)g*+22y—Brg—2y "

As b is an integer, the remainder R(q) of the division by ’;Eq)) must be zero. The remainder R(q) of the division by

R = | AL 28 2%y 128y —y? By + 3] | 4y [462+26% + v 4y + )]
e ap +17° ! @p+17° '

IfB # —% and R(q) must be zero for any g, we need that the coefficients of the polynomial R(q) must be zero for any q.
Thus we obtain a system of two equations and two variables (3, y ), which gives the following acceptable solutions:

Ifo =5, wegeth =

N (q)
D(q ) 1

B =0, y = 0, and hence we get b = 0, a contradiction;
B = —=,y =0, for which we geta = q2 — %q and b = g2, an acceptable solution.

_ 1 _ 1 _ 1.2 1 . _ —*+@y+ e -4y
Ifa = Eal‘ldﬁ —_Z,thena— Eq — 1q+y,henceb— W.

Putting N(q) = —¢* + 4y + 1) ¢> —4yq*andD(q) = 8y + 1)q — 4y, b = %.

(q)

As b is an integer, the remainder R(q) of the division by D(g) Must be zero for any q.

N 4
Dig) !

The remainder R(q) of the division by
512y* 4y + 1)
@y +D*
Ify # —% and R(q) must be zero for any g, we need that the coefficients of the polynomial R(q) must be zero for any q.
Thus we have the following solutions:
1
or y= _Z;

fora =5, 8= —% and y = 0,we getb = ¢ (1 — q) < 0, a contradiction;

R(q) = —

o

)/:

=

2 . .
foro =1, B=—tandy = —] wegeth= 1= < 0,a contradiction.

Thus the last case isa = 3, = —1 and y = — 1, for which we get b = ¢* (1 — q) (2q + 1) < 0, a contradiction.
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Finally, we claim thata = 1¢> — Jgand b = ¢%. So Lisa (% - ?)—set of type (0, 2¢* — g, ¢?) with respect to ruled
planes in PG(3, q), g even.

Then according to Result (I), L is the set of external lines to a hyperoval cone of PG(3, q), g even.
Thus, the theorem is completely proved.
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