A characterization of the external lines of a hyperoval cone in PG(3, q), q even

Mauro Zannetti
Department of Electrical and Information Engineering, University of L'Aquila, Via G. Gronchi, 18, I-67100 L'Aquila, Italy

A R T I C L E I N F O

Article history:

Received 27 March 2010
Received in revised form 15 October 2010
Accepted 29 October 2010
Available online 30 November 2010

Keywords:
Projective space
Hyperoval cone
Combinatorial characterization

Abstract

In this article, the lines not meeting a hyperoval cone in $\operatorname{PG}(3, q), q$ even, are characterized by their intersection properties with points and planes.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Let PG(3,q) be the projective space of dimension 3 and order q, where q is a prime power. A k-set L of lines is a set of k lines in $\operatorname{PG}(3, q)$. As usual, we call a star of lines the set of all lines through one point, the centre of the star. Let m_{j} denote non-negative integers, with $0 \leq m_{1}<m_{2}<\cdots<m_{s} \leq q^{2}+q+1$. A set L is said to be of type $\left(m_{1}, m_{2}, \ldots, m_{s}\right)$ with respect to stars (of lines), if any star contains either m_{1}, or m_{2}, \ldots, or m_{s} lines of L, and all such stars do exist; see [2]. A j-secant star of L will be a star containing exactly j lines of L. Denote by t_{j} the number of m_{j}-secant stars. Then the following hold; see [5]

$$
\left\{\begin{array}{l}
\sum_{j=1}^{s} t_{j}=\vartheta_{3} \tag{1.1}\\
\sum_{j=1}^{s} m_{j} t_{j}=k \vartheta_{1} \\
\sum_{j=1}^{s} m_{j}\left(m_{j}-1\right) t_{j}=k(k-1)-2 \tau
\end{array}\right.
$$

τ being the number of unordered pairs of skew lines in L and $\vartheta_{i}=\frac{q^{i+1}-1}{q-1}$ the number of points of PG (i, q). Also the type of L with respect to ruled planes, i.e. planes considered as sets of their lines, can be defined and equations similar to (1.1) can be written; see [5]. An external plane is a plane such that no line of L belongs to it.

A plane hyperoval is a $(q+2)$-set of points in a plane π, no three of which are collinear. A hyperoval cone of $\operatorname{PG}(3, q), q$ even, consists of the points on the lines joining a plane oval to a point V, called the vertex, not belonging to π; see [4].

Quadrics in PG $(3, q)$ are very interesting objects with many combinatorial properties. One is that lines can only meet a quadric in a few ways. So we may consider a family of lines that all meet a particular quadric in the same way. This family of lines has remarkable properties. An important question is whether we may use these properties to characterize them. The following result [1] enters into this scheme of things.

[^0]Result ([1] Barwick and Butler). Let L be a non-empty set of lines in $\operatorname{PG}(3, q), q$ even, such that the following hold.
(I) Every point lies on 0 or $\frac{1}{2} q^{2}$ lines of L.
(II) Every plane contains $0, q^{2}$, or $\frac{1}{2} q(q-1)$ lines of L.

Then L is the set of external lines to a hyperoval cone of $\operatorname{PG}(3, q)$.
In this paper, we give a characterization of the set of external lines of a hyperoval cone of $\operatorname{PG}(3, q), q$ even, as a set of type $(0, a, b)$ with respect to ruled planes and of type (m, n) with respect to stars of lines, which is the set of external lines to a hyperoval cone of $\operatorname{PG}(3, q), q$ even. In particular, we prove the following.
Theorem. In $\operatorname{PG}(3, q), a\left(\frac{q^{4}}{2}-\frac{q^{3}}{2}\right)$-set of lines, q even, having exactly $\frac{q^{4}(q-2)(q-1)^{2}(q+1)}{8}$ pairs of skew lines and $\frac{(q+1)(q+2)}{2}$ external planes, of type $(0, a, b)$ with respect to ruled planes and of type (m, n) with respect to stars of lines, is the set of external lines to a hyperoval cone.

2. Proof of the theorem

Suppose that L is a k-set of lines in $\operatorname{PG}(3, q)$ of type (m, n) with respect to stars of lines. According to (1.1), we get

$$
\left\{\begin{array}{l}
t_{m}+t_{n}=(q+1)\left(q^{2}+1\right) \tag{2.1}\\
m t_{m}+n t_{n}=k(q+1) \\
m(m-1) t_{m}+n(n-1) t_{n}=k(k-1)-2 \tau .
\end{array}\right.
$$

Thus, a two-character set with respect to stars of lines depends on four parameters, k, τ, m, and n, and a complete classification seems to be extremely difficult; see [3,6]. Therefore, in order to give a characterization, we fix two of these parameters, k and τ.

For $k=\left(\frac{q^{4}}{2}-\frac{q^{3}}{2}\right)$ and $\tau=\frac{q^{4}(q-2)(q-1)^{2}(q+1)}{8}$ system (2.1) becomes

$$
\left\{\begin{array}{l}
t_{m}+t_{n}=(q+1)\left(q^{2}+1\right) \tag{2.2}\\
m t_{m}+n t_{n}=\left(\frac{q^{4}}{2}-\frac{q^{3}}{2}\right)(q+1) \\
m(m-1) t_{m}+n(n-1) t_{n}=\frac{q^{3}}{2}(q-1)\left(\frac{q^{2}}{2}-1\right)(q+1)
\end{array}\right.
$$

From the first two equations of (2.2), we get

$$
\left\{\begin{array}{l}
t_{m}=\frac{(q+1)\left[q^{3}(q-1)-2 n\left(q^{2}+1\right)\right]}{2(m-n)} \tag{2.3}\\
t_{n}=\frac{(q+1)\left[2 m\left(q^{2}+1\right)-q^{3}(q-1)\right]}{2(m-n)}
\end{array}\right.
$$

Since $t_{n}>0$, by the second equation of (2.3), we get

$$
m<\frac{q^{2}}{2}-\frac{q}{2}-\frac{1}{2}+\frac{q+1}{2 q^{2}+2} .
$$

Therefore, $0 \leq m<\frac{q^{2}}{2}-\frac{q}{2}+1$.
If we solve system (2.2), choosing m as a parameter and t_{m}, t_{n}, and n as variables, and examining the cases $m=0$ and $m=1$ separately, we get the following. For $m=0$, we have $n=\frac{q^{2}}{2}$; q being even, we have that n is an integer, and hence this is an acceptable solution. For $m=1$, we have $n=\frac{q^{3}(q-1)\left(q^{2}-2\right)}{2\left(q^{4}-q^{3}-2 q^{2}-2\right)}=\frac{q^{2}}{2}+\frac{2 q^{2}(q+1)}{2\left(q^{4}-q^{3}-2 q^{2}-2\right)}$, which is not a non-negative integer.

For $m \neq 0$ and $m \neq 1$, we get

$$
\begin{equation*}
n=\frac{q^{3}(q-1)\left(2 m-q^{2}\right)}{2\left[2 m\left(q^{2}+1\right)-q^{3}(q-1)\right]} . \tag{2.4}
\end{equation*}
$$

Since $1<m<\frac{q^{2}}{2}-\frac{q}{2}+1$, we can suppose that $m=m(q)$, (i.e. m is a polynomial function of q); hence

$$
m=\alpha q^{2}+\beta q+\gamma
$$

By substituting m into (2.4), we get $n=\frac{(2 \alpha-1) q^{6}+(2 \beta-2 \alpha+1) q^{5}+(2 \gamma-2 \beta) q^{4}-2 \gamma q^{3}}{2(2 \alpha-1) q^{4}+2(2 \beta+1) q^{3}+4(\alpha+\gamma) q^{2}+4 \beta q+4 \gamma}$.

Putting $N(q)=(2 \alpha-1) q^{6}+(2 \beta-2 \alpha+1) q^{5}+(2 \gamma-2 \beta) q^{4}-2 \gamma q^{3}$ and $D(q)=2(2 \alpha-1) q^{4}+2(2 \beta+1) q^{3}+$ $4(\alpha+\gamma) q^{2}+4 \beta q+4 \gamma, n=\frac{N(q)}{D(q)}$.

As n is an integer, the remainder $R(q)$ of the division by $\frac{N(q)}{D(q)}$ must be zero for any q.
The remainder $R(q)$ of the division by $\frac{N(q)}{D(q)}$ is

$$
\begin{aligned}
R(q)= & \left\{\frac{2\left[\alpha(2 \gamma+1)-2 \beta^{2}-2 \beta-\gamma-1\right]}{(2 \alpha-1)^{2}}+2 \alpha+2\right\} q^{3}-\left\{\frac{2[\alpha+\beta(2 \gamma+1)+\gamma]}{(2 \alpha-1)^{2}}-2 \alpha-2 \beta\right\} q^{2} \\
& +\left\{\frac{4\left[2 \alpha^{2}(\beta+\gamma)-\alpha(2 \beta+\gamma)-\beta^{2}\right]}{(2 \alpha-1)^{2}}\right\} q+\left\{\frac{4 \gamma\left(2 \alpha^{2}-2 \alpha-\beta\right)}{(2 \alpha-1)^{2}}\right\} .
\end{aligned}
$$

If $\alpha \neq \frac{1}{2}$ and $R(q)$ must be zero for any q, we need that the coefficients of the polynomial $R(q)$ must be zero for any q.
Thus we obtain a system of four equations and three variables (α, β, γ), which gives the following solution: $\alpha=0$, $\beta=0, \gamma=0$; we exclude this solution because it gives $m=0$, and we have just studied it.

If $\alpha=\frac{1}{2}$, then $m=\frac{1}{2} q^{2}+\beta q+\gamma$; hence $n=\frac{\beta q^{5}+(\gamma-\beta) q^{4}-\gamma q^{3}}{(2 \beta+1) q^{3}+(2 \gamma+1) q^{2}+2 \beta q+2 \gamma}$.
Putting $N(q)=\beta q^{5}+(\gamma-\beta) q^{4}-\gamma q^{3}$ and $D(q)=(2 \beta+1) q^{3}+(2 \gamma+1) q^{2}+2 \beta q+2 \gamma, n=\frac{N(q)}{D(q)}$.
As n is an integer, the remainder $R(q)$ of the division by $\frac{N(q)}{D(q)}$ must be zero for any q.
The remainder $R(q)$ of the division by $\frac{N(q)}{D(q)}$ is

$$
\begin{aligned}
R(q)= & \left\{\frac{2\left[4 \beta^{2}+8 \beta^{3}+2 \beta^{2}(1-3 \gamma)-\beta(4 \gamma+1)+\gamma(\gamma+1)(2 \gamma+1)\right]}{(2 \beta+1)^{3}}\right\} q^{2} \\
& +\left\{\frac{2\left[4 \beta^{4}+4 \beta^{3} \gamma+2 \beta^{2}(3 \gamma-1)+4 \beta \gamma-\gamma^{2}\right]}{(2 \beta+1)^{3}}\right\} q+\left\{\frac{4 \gamma\left[2 \beta^{3}-\beta+\gamma(\gamma+1)\right]}{(2 \beta+1)^{3}}\right\} q .
\end{aligned}
$$

If $\beta \neq-\frac{1}{2}$ and $R(q)$ must be zero for any q, we need that the coefficients of the polynomial $R(q)$ must be zero for any q.
Thus we obtain a system of three equations and two variables (β, γ). The only acceptable solution is $\beta=0, \gamma=0$, for which $m=\frac{1}{2} q^{2}$ and $n=0$; a contradiction, because $m<n$.

If $\alpha=\frac{1}{2}$ and $\beta=-\frac{1}{2}, m=\frac{1}{2} q^{2}-\frac{1}{2} q+\gamma$; hence $n=\frac{-q^{5}+(2 \gamma+1) q^{4}-2 \gamma q^{3}}{2(2 \gamma+1) q^{2}-2 q+4 \gamma}$.
Putting $N(q)=-q^{5}+(2 \gamma+1) q^{4}-2 \gamma q^{3}$ and $D(q)=2(2 \gamma+1) q^{2}-2 q+4 \gamma, n=\frac{N(q)}{D(q)}$.
As n is an integer, the remainder $R(q)$ of the division by $\frac{N(q)}{D(q)}$ must be zero for any q.
The remainder $R(q)$ of the division by $\frac{N(q)}{D(q)}$ is

$$
R(q)=\left\{\frac{4 \gamma\left(8 \gamma^{4}-12 \gamma^{2}-4 \gamma+1\right)}{(2 \gamma+1)^{4}}\right\} q+\frac{8 \gamma^{2}\left(4 \gamma^{3}+8 \gamma^{2}+2 \gamma-1\right)}{(2 \gamma+1)^{4}}
$$

If $\gamma \neq-\frac{1}{2}$ and $R(q)$ must be zero for any q, we need that the coefficients of the polynomial $R(q)$ must be zero for any q.
Thus we obtain a system of two equations and one variable (γ). The only acceptable solution is $\gamma=0$, for which $n=-\frac{1}{2} q^{3}$, a contradiction.

If $\alpha=\frac{1}{2}, \beta=-\frac{1}{2}$ and $\gamma=-\frac{1}{2}$, it follows that $m=\frac{1}{2} q^{2}-\frac{1}{2} q-\frac{1}{2}$, and it is not an integer; therefore, $m=0$ and $n=\frac{q^{2}}{2}$. Thus L is a $\left(\frac{q^{4}}{2}-\frac{q^{3}}{2}\right)$-set of type $\left(0, \frac{q^{2}}{2}\right)$ with respect to stars of lines.

Now suppose that L is a $\left(\frac{q^{4}}{2}-\frac{q^{3}}{2}\right)$-set of type $(0, a, b)$ in $\operatorname{PG}(3, q)$ with respect to ruled planes. According to (1.1), we get

$$
\left\{\begin{array}{l}
t_{0}+t_{a}+t_{b}=\left(q^{3}+q^{2}+q+1\right) \tag{2.5}\\
a t_{a}+b t_{b}=\left(\frac{q^{4}}{2}-\frac{q^{3}}{2}\right)(q+1) \\
a(a-1) t_{a}+b(b-1) t_{b}=\frac{q^{3}}{2}(q-1)\left(\frac{q^{2}}{2}-1\right)(q+1)
\end{array}\right.
$$

with $t_{0}=\frac{(q+1)(q+2)}{2}$. From the first two equations of (2.5), we get

$$
\begin{aligned}
& t_{a}=\frac{q(q+1)\left[q^{2}(q-1)-b(2 q-1)\right]}{2(a-b)} \\
& t_{b}=\frac{q(q+1)\left[a(2 q-1)-q^{2}(q-1)\right]}{2(a-b)}
\end{aligned}
$$

Since $t_{b}>0$ and $a<b$, we have

$$
a<\frac{q^{2}(q-1)}{2 q-1} \quad \text { and hence a } \quad<\frac{q^{2}}{2}-\frac{q}{4}-\frac{1}{8}-\frac{1}{8(2 q-1)} .
$$

We can suppose that $a<\frac{q^{2}}{2}-\frac{q}{4}-\frac{1}{8}$.
If we solve system (2.5), choosing a as a parameter and t_{a}, t_{b}, and b as variables and excluding the cases $a=0$ because $a>0$ and $a=1$ because in this case b is not a positive integer, we get

$$
\begin{equation*}
b=\frac{q^{2}(q-1)\left(2 a-q^{2}\right)}{2\left[a(2 q-1)-q^{2}(q-1)\right]} . \tag{2.6}
\end{equation*}
$$

Since $a<\frac{q^{2}}{2}-\frac{q}{4}-\frac{1}{8}$, we can suppose that $a=a(q)$, (i.e. a is a polynomial function of q); hence $a=\alpha q^{2}+\beta q+\gamma$. By substituting a into (2.6), we get

$$
b=\frac{(2 \alpha-1) q^{5}+(2 \beta-2 \alpha+1) q^{4}+(2 \gamma-2 \beta) q^{3}-2 \gamma q^{2}}{2(2 \alpha-1) q^{3}+2(2 \beta-\alpha+1) q^{2}+2(2 \gamma-\beta) q-2 \gamma} .
$$

Putting $N(q)=(2 \alpha-1) q^{5}+(2 \beta-2 \alpha+1) q^{4}+(2 \gamma-2 \beta) q^{3}-2 \gamma q^{2}$ and $D(q)=2(2 \alpha-1) q^{3}+2(2 \beta-\alpha+1) q^{2}+$ $2(2 \gamma-\beta) q-2 \gamma$, we have $b=\frac{N(q)}{D(q)}$.

As b is an integer, the remainder $R(q)$ of the division by $\frac{N(q)}{D(q)}$ must be zero. The remainder $R(q)$ of the division by $\frac{N(q)}{D(q)}$ is

$$
\begin{aligned}
R(q)= & \left\{\frac{\alpha(8 \gamma+1)-8 \beta^{2}-4 \beta-4 \gamma-1}{4(2 \alpha-1)^{2}}-\frac{\alpha}{4}+\frac{1}{4}\right\} q^{2} \\
& -\left\{\frac{\alpha^{2} \beta+\alpha(\alpha-\beta)-\beta(\beta-2 \gamma)}{(2 \alpha-1)^{2}}\right\} q-\frac{\gamma\left(\alpha^{2}-\alpha-\beta\right)}{(2 \alpha-1)^{2}} .
\end{aligned}
$$

If $\alpha \neq \frac{1}{2}$ and $R(q)$ must be zero for any q, we need that the coefficients of the polynomial $R(q)$ must be zero for any q.
Thus we obtain a system of three equations and three variables (α, β, γ), which gives the following solutions:
$\alpha=0, \beta=0, \gamma=0$, a contradiction;
$\alpha=1, \beta=0, \gamma=0$, for which we have $a=q^{2}$ and $b=\frac{1}{2} q(q-1)$; a contradiction, because $a<b$.
If $\alpha=\frac{1}{2}$, we get $b=\frac{2 \beta q^{4}+2(\gamma-\beta) q^{3}-2 \gamma q^{2}}{(4 \beta+1) q^{2}+2(2 \gamma-\beta) q-2 \gamma}$.
As b is an integer, the remainder $R(q)$ of the division by $\frac{N(q)}{D(q)}$ must be zero. The remainder $R(q)$ of the division by $\frac{N(q)}{D(q)}$ is

$$
R(q)=\left\{\frac{-4\left[4 \beta^{4}+2 \beta^{3}+2 \beta^{2} \gamma+2 \beta \gamma-\gamma^{2}(8 \gamma+3)\right]}{(4 \beta+1)^{3}}\right\} q-\frac{4 \gamma\left[4 \beta^{3}+2 \beta^{2}+\gamma(4 \gamma+1)\right]}{(4 \beta+1)^{3}} .
$$

If $\beta \neq-\frac{1}{4}$ and $R(q)$ must be zero for any q, we need that the coefficients of the polynomial $R(q)$ must be zero for any q. Thus we obtain a system of two equations and two variables (β, γ), which gives the following acceptable solutions:
$\beta=0, \gamma=0$, and hence we get $b=0$, a contradiction;
$\beta=-\frac{1}{2}, \gamma=0$, for which we get $a=\frac{1}{2} q^{2}-\frac{1}{2} q$ and $b=q^{2}$, an acceptable solution.
If $\alpha=\frac{1}{2}$ and $\beta=-\frac{1}{4}$, then $a=\frac{1}{2} q^{2}-\frac{1}{4} q+\gamma$; hence $b=\frac{-q^{4}+(4 \gamma+1) q^{3}-4 \gamma q^{2}}{(8 \gamma+1) q-4 \gamma}$.
Putting $N(q)=-q^{4}+(4 \gamma+1) q^{3}-4 \gamma q^{2}$ and $D(q)=(8 \gamma+1) q-4 \gamma, b=\frac{N(q)}{D(q)}$.
As b is an integer, the remainder $R(q)$ of the division by $\frac{N(q)}{D(q)}$ must be zero for any q.
The remainder $R(q)$ of the division by $\frac{N(q)}{D(q)}$ is

$$
R(q)=-\frac{512 \gamma^{4}(4 \gamma+1)}{(8 \gamma+1)^{4}} .
$$

If $\gamma \neq-\frac{1}{8}$ and $R(q)$ must be zero for any q, we need that the coefficients of the polynomial $R(q)$ must be zero for any q.
Thus we have the following solutions:

$$
\gamma=0 \quad \text { or } \quad \gamma=-\frac{1}{4} ;
$$

for $\alpha=\frac{1}{2}, \beta=-\frac{1}{4}$ and $\gamma=0$, we get $b=q^{2}(1-q)<0$, a contradiction;
for $\alpha=\frac{1}{2}, \beta=-\frac{1}{4}$ and $\gamma=-\frac{1}{4}$, we get $b=\frac{q^{2}}{1-q}<0$, a contradiction.
Thus the last case is $\alpha=\frac{1}{2}, \beta=-\frac{1}{4}$ and $\gamma=-\frac{1}{8}$, for which we get $b=q^{2}(1-q)(2 q+1)<0$, a contradiction.

Finally, we claim that $a=\frac{1}{2} q^{2}-\frac{1}{2} q$ and $b=q^{2}$. So L is a $\left(\frac{q^{4}}{2}-\frac{q^{3}}{2}\right)$-set of type $\left(0, \frac{1}{2} q^{2}-\frac{1}{2} q, q^{2}\right)$ with respect to ruled planes in $\operatorname{PG}(3, q), q$ even.

Then according to Result (I), L is the set of external lines to a hyperoval cone of PG(3,q), q even.
Thus, the theorem is completely proved.

References

[1] S.G. Barwick, D.K. Butler, A characterisation of the lines external to an oval cone in PG(3, q), q even, J. Geom. 93 (2009) $21-27$.
[2] M.J. De Resmini, A characterization of the secants of an ovaloid in $\operatorname{PG}(3, q), q$ even, $q>2$, Ars Combin. 16-B (1983) 33-49.
[3] N. Durante, D. Olanda, A characterization of the family of secant lines or external lines of an ovoid of PG(3, q), Bull. Belg. Math. Soc. Simon Stevin 12 (2005) 1-4.
[4] J.W.P. Hirschfeld, Finite Projective Spaces of Three Dimensions, Clarendon Press, Oxford, 1985.
[5] G. Tallini, The geometry on Grassmann manifolds representing subspaces in a Galois space, Ann. Discrete Math. 14 (1982) 9-38
[6] M. Tallini Scafati, The k-sets of $\operatorname{PG}(r, q)$ from the character point of view, in: C.A. Baker, L.M. Batten (Eds.), Finite Geometries, Marcel Dekker Inc., New York, 1985, pp. 321-326.

[^0]: E-mail addresses: mauro.zannetti@univaq.it, fspmnz@tin.it.
 0012-365X/\$ - see front matter © 2010 Elsevier B.V. All rights reserved.
 doi:10.1016/j.disc.2010.10.025

