Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/disc

A characterization of the external lines of a hyperoval cone in PG(3, q), q even

Mauro Zannetti

Department of Electrical and Information Engineering, University of L'Aquila, Via G. Gronchi, 18, I-67100 L'Aquila, Italy

ARTICLE INFO

ABSTRACT

In this article, the lines not meeting a hyperoval cone in PG(3, *q*), *q* even, are characterized by their intersection properties with points and planes. © 2010 Elsevier B.V. All rights reserved.

Article history: Received 27 March 2010 Received in revised form 15 October 2010 Accepted 29 October 2010 Available online 30 November 2010

Keywords: Projective space Hyperoval cone Combinatorial characterization

1. Introduction

Let PG(3, q) be the projective space of dimension 3 and order q, where q is a prime power. A k-set L of lines is a set of k lines in PG(3, q). As usual, we call a star of lines the set of all lines through one point, the centre of the star. Let m_j denote non-negative integers, with $0 \le m_1 < m_2 < \cdots < m_s \le q^2 + q + 1$. A set L is said to be of type (m_1, m_2, \ldots, m_s) with respect to stars (of lines), if any star contains either m_1 , or m_2 ,..., or m_s lines of L, and all such stars do exist; see [2]. A *j*-secant star of L will be a star containing exactly *j* lines of L. Denote by t_j the number of m_j -secant stars. Then the following hold; see [5]:

$$\begin{cases} \sum_{j=1}^{s} t_{j} = \vartheta_{3} \\ \sum_{j=1}^{s} m_{j}t_{j} = k\vartheta_{1} \\ \sum_{j=1}^{s} m_{j}(m_{j} - 1)t_{j} = k(k - 1) - 2\tau, \end{cases}$$
(1.1)

 τ being the number of unordered pairs of skew lines in *L* and $\vartheta_i = \frac{q^{i+1}-1}{q-1}$ the number of points of PG(*i*, *q*). Also the type of *L* with respect to ruled planes, i.e. planes considered as sets of their lines, can be defined and equations similar to (1.1) can be written; see [5]. An external plane is a plane such that no line of *L* belongs to it.

A plane hyperoval is a (q + 2)-set of points in a plane π , no three of which are collinear. A hyperoval cone of PG(3, q), q even, consists of the points on the lines joining a plane oval to a point V, called the vertex, not belonging to π ; see [4].

Quadrics in PG(3, q) are very interesting objects with many combinatorial properties. One is that lines can only meet a quadric in a few ways. So we may consider a family of lines that all meet a particular quadric in the same way. This family of lines has remarkable properties. An important question is whether we may use these properties to characterize them. The following result [1] enters into this scheme of things.

E-mail addresses: mauro.zannetti@univaq.it, fspmnz@tin.it.

⁰⁰¹²⁻³⁶⁵X/ $\$ – see front matter $\$ 2010 Elsevier B.V. All rights reserved. doi:10.1016/j.disc.2010.10.025

Result ([1] Barwick and Butler). Let *L* be a non-empty set of lines in PG(3, *q*), *q* even, such that the following hold.

(I) Every point lies on 0 or $\frac{1}{2}q^2$ lines of *L*.

(II) Every plane contains 0, $\overline{q^2}$, or $\frac{1}{2}q(q-1)$ lines of *L*.

Then *L* is the set of external lines to a hyperoval cone of PG(3, q).

In this paper, we give a characterization of the set of external lines of a hyperoval cone of PG(3, q), q even, as a set of type (0, a, b) with respect to ruled planes and of type (m, n) with respect to stars of lines, which is the set of external lines to a hyperoval cone of PG(3, q), q even. In particular, we prove the following.

Theorem. In PG(3, q), a $\left(\frac{q^4}{2} - \frac{q^3}{2}\right)$ -set of lines, q even, having exactly $\frac{q^4(q-2)(q-1)^2(q+1)}{8}$ pairs of skew lines and $\frac{(q+1)(q+2)}{2}$ external planes, of type (0, a, b) with respect to ruled planes and of type (m, n) with respect to stars of lines, is the set of external lines to a hyperoval cone.

2. Proof of the theorem

Suppose that L is a k-set of lines in PG(3, q) of type (m, n) with respect to stars of lines. According to (1.1), we get

$$\begin{aligned} t_m + t_n &= (q+1)(q^2+1) \\ mt_m + nt_n &= k(q+1) \\ m(m-1) t_m + n(n-1)t_n &= k(k-1) - 2\tau. \end{aligned}$$

Thus, a two-character set with respect to stars of lines depends on four parameters, k, τ , m, and n, and a complete classification seems to be extremely difficult; see [3,6]. Therefore, in order to give a characterization, we fix two of these parameters, *k* and τ . $a^{4}(a - 2)(a - 1)^{2}(a + 1)$

For
$$k = \left(\frac{q^{4}}{2} - \frac{q^{3}}{2}\right)$$
 and $\tau = \frac{q^{4}(q-2)(q-1)^{2}(q+1)}{8}$ system (2.1) becomes

$$\begin{cases}
t_{m} + t_{n} = (q+1)(q^{2}+1) \\
mt_{m} + nt_{n} = \left(\frac{q^{4}}{2} - \frac{q^{3}}{2}\right)(q+1) \\
m(m-1)t_{m} + n(n-1)t_{n} = \frac{q^{3}}{2}(q-1)\left(\frac{q^{2}}{2} - 1\right)(q+1).
\end{cases}$$
(2.2)

From the first two equations of (2.2), we get

$$\begin{cases} t_m = \frac{(q+1) \left[q^3 (q-1) - 2n(q^2+1) \right]}{2(m-n)} \\ t_n = \frac{(q+1) \left[2m(q^2+1) - q^3(q-1) \right]}{2(m-n)}. \end{cases}$$
(2.3)

Since $t_n > 0$, by the second equation of (2.3), we get

$$m < rac{q^2}{2} - rac{q}{2} - rac{1}{2} + rac{q+1}{2q^2+2}.$$

Therefore, $0 \le m < \frac{q^2}{2} - \frac{q}{2} + 1$. If we solve system (2.2), choosing *m* as a parameter and t_m , t_n , and *n* as variables, and examining the cases m = 0 and m = 1 separately, we get the following. For m = 0, we have $n = \frac{q^2}{2}$; *q* being even, we have that *n* is an integer, and hence this is an acceptable solution. For m = 1, we have $n = \frac{q^3(q-1)(q^2-2)}{2(q^4-q^3-2q^2-2)} = \frac{q^2}{2} + \frac{2q^2(q+1)}{2(q^4-q^3-2q^2-2)}$, which is not a non-negative integer.

For $m \neq 0$ and $m \neq 1$, we get

$$n = \frac{q^3(q-1)(2m-q^2)}{2\left[2m(q^2+1)-q^3(q-1)\right]}.$$
(2.4)

Since $1 < m < \frac{q^2}{2} - \frac{q}{2} + 1$, we can suppose that m = m(q), (i.e. *m* is a polynomial function of *q*); hence $m = \alpha q^2 + \beta q + \gamma.$

By substituting *m* into (2.4), we get $n = \frac{(2\alpha-1)q^6 + (2\beta-2\alpha+1)q^5 + (2\gamma-2\beta)q^4 - 2\gamma q^3}{2(2\alpha-1)q^4 + 2(2\beta+1)q^3 + 4(\alpha+\gamma)q^2 + 4\beta q + 4\gamma}$.

Putting $N(q) = (2\alpha - 1)q^6 + (2\beta - 2\alpha + 1)q^5 + (2\gamma - 2\beta)q^4 - 2\gamma q^3$ and $D(q) = 2(2\alpha - 1)q^4 + 2(2\beta + 1)q^3 + (2\beta - 2\alpha + 1)q^4 + (2\beta - 2\alpha + 1)q^4$ $4(\alpha + \gamma)q^2 + 4\beta q + 4\gamma, n = \frac{N(q)}{D(q)}.$

As *n* is an integer, the remainder R(q) of the division by $\frac{N(q)}{D(q)}$ must be zero for any *q*. The remainder R(q) of the division by $\frac{N(q)}{D(q)}$ is

$$\begin{split} R(q) &= \left\{ \frac{2\left[\alpha \left(2\gamma + 1\right) - 2\beta^2 - 2\beta - \gamma - 1\right]}{\left(2\alpha - 1\right)^2} + 2\alpha + 2 \right\} q^3 - \left\{ \frac{2\left[\alpha + \beta \left(2\gamma + 1\right) + \gamma\right]}{\left(2\alpha - 1\right)^2} - 2\alpha - 2\beta \right\} q^2 \\ &+ \left\{ \frac{4\left[2\alpha^2 \left(\beta + \gamma\right) - \alpha \left(2\beta + \gamma\right) - \beta^2\right]}{\left(2\alpha - 1\right)^2} \right\} q + \left\{ \frac{4\gamma \left(2\alpha^2 - 2\alpha - \beta\right)}{\left(2\alpha - 1\right)^2} \right\}. \end{split}$$

If $\alpha \neq \frac{1}{2}$ and R(q) must be zero for any q, we need that the coefficients of the polynomial R(q) must be zero for any q. Thus we obtain a system of four equations and three variables (α, β, γ) , which gives the following solution: $\alpha = 0$, $\beta = 0, \gamma = 0$; we exclude this solution because it gives m = 0, and we have just studied it.

If $\alpha = \frac{1}{2}$, then $m = \frac{1}{2}q^2 + \beta q + \gamma$; hence $n = \frac{\beta q^5 + (\gamma - \beta)q^4 - \gamma q^3}{(2\beta + 1)q^3 + (2\gamma + 1)q^2 + 2\beta q + 2\gamma)}$. Putting $N(q) = \beta q^5 + (\gamma - \beta)q^4 - \gamma q^3$ and $D(q) = (2\beta + 1)q^3 + (2\gamma + 1)q^2 + 2\beta q + 2\gamma, n = \frac{N(q)}{D(q)}$. As *n* is an integer, the remainder R(q) of the division by $\frac{N(q)}{D(q)}$ must be zero for any *q*.

The remainder R(q) of the division by $\frac{N(q)}{D(q)}$ is

$$R(q) = \left\{ \frac{2\left[4\beta^{2} + 8\beta^{3} + 2\beta^{2}\left(1 - 3\gamma\right) - \beta\left(4\gamma + 1\right) + \gamma\left(\gamma + 1\right)\left(2\gamma + 1\right)\right]}{(2\beta + 1)^{3}} \right\} q^{2} + \left\{ \frac{2\left[4\beta^{4} + 4\beta^{3}\gamma + 2\beta^{2}\left(3\gamma - 1\right) + 4\beta\gamma - \gamma^{2}\right]}{(2\beta + 1)^{3}} \right\} q + \left\{ \frac{4\gamma\left[2\beta^{3} - \beta + \gamma\left(\gamma + 1\right)\right]}{(2\beta + 1)^{3}} \right\} q.$$

If $\beta \neq -\frac{1}{2}$ and R(q) must be zero for any q, we need that the coefficients of the polynomial R(q) must be zero for any q. Thus we obtain a system of three equations and two variables (β, γ) . The only acceptable solution is $\beta = 0$, $\gamma = 0$, for which $m = \frac{1}{2}q^2$ and n = 0; a contradiction, because m < n.

If
$$\alpha = \frac{1}{2}$$
 and $\beta = -\frac{1}{2}$, $m = \frac{1}{2}q^2 - \frac{1}{2}q + \gamma$; hence $n = \frac{-q^5 + (2\gamma + 1)q^4 - 2\gamma q^3}{2(2\gamma + 1)q^2 - 2q + 4\gamma}$.
Putting $N(q) = -q^5 + (2\gamma + 1)q^4 - 2\gamma q^3$ and $D(q) = 2(2\gamma + 1)q^2 - 2q + 4\gamma$, $n = \frac{N(q)}{D(q)}$.

As *n* is an integer, the remainder R(q) of the division by $\frac{N(q)}{D(q)}$ must be zero for any *q*.

The remainder R(q) of the division by $\frac{N(q)}{D(q)}$ is

$$R(q) = \left\{\frac{4\gamma \left(8\gamma^4 - 12\gamma^2 - 4\gamma + 1\right)}{(2\gamma + 1)^4}\right\} q + \frac{8\gamma^2 \left(4\gamma^3 + 8\gamma^2 + 2\gamma - 1\right)}{(2\gamma + 1)^4}$$

If $\gamma \neq -\frac{1}{2}$ and R(q) must be zero for any q, we need that the coefficients of the polynomial R(q) must be zero for any q. Thus we obtain a system of two equations and one variable (γ). The only acceptable solution is $\gamma = 0$, for which

 $n = -\frac{1}{2}q^3$, a contradiction.

If $\alpha = \frac{1}{2}$, $\beta = -\frac{1}{2}$ and $\gamma = -\frac{1}{2}$, it follows that $m = \frac{1}{2}q^2 - \frac{1}{2}q - \frac{1}{2}$, and it is not an integer; therefore, m = 0 and $n = \frac{q^2}{2}$. Thus *L* is a $\left(\frac{q^4}{2} - \frac{q^3}{2}\right)$ -set of type $\left(0, \frac{q^2}{2}\right)$ with respect to stars of lines.

Now suppose that *L* is a $\left(\frac{q^4}{2} - \frac{q^3}{2}\right)$ -set of type (0, a, b) in PG(3, q) with respect to ruled planes. According to (1.1), we get

$$t_{0} + t_{a} + t_{b} = (q^{3} + q^{2} + q + 1)$$

$$at_{a} + bt_{b} = \left(\frac{q^{4}}{2} - \frac{q^{3}}{2}\right)(q + 1)$$

$$a(a - 1)t_{a} + b(b - 1)t_{b} = \frac{q^{3}}{2}(q - 1)\left(\frac{q^{2}}{2} - 1\right)(q + 1),$$
(2.5)

with $t_0 = \frac{(q+1)(q+2)}{2}$. From the first two equations of (2.5), we get

$$t_{a} = \frac{q(q+1) \left[q^{2}(q-1) - b(2q-1)\right]}{2 (a-b)},$$

$$t_{b} = \frac{q(q+1) \left[a(2q-1) - q^{2}(q-1)\right]}{2 (a-b)}.$$

Since $t_b > 0$ and a < b, we have

$$a < \frac{q^2(q-1)}{2q-1}$$
 and hence $a < \frac{q^2}{2} - \frac{q}{4} - \frac{1}{8} - \frac{1}{8(2q-1)}$

We can suppose that $a < \frac{q^2}{2} - \frac{q}{4} - \frac{1}{8}$. If we solve system (2.5), choosing *a* as a parameter and t_a , t_b , and *b* as variables and excluding the cases a = 0 because a > 0 and a = 1 because in this case b is not a positive integer, we get

$$b = \frac{q^2(q-1)\left(2a-q^2\right)}{2\left[a(2q-1)-q^2(q-1)\right]}.$$
(2.6)

Since $a < \frac{q^2}{2} - \frac{q}{4} - \frac{1}{8}$, we can suppose that a = a(q), (i.e. *a* is a polynomial function of *q*); hence $a = \alpha q^2 + \beta q + \gamma$. By substituting *a* into (2.6), we get

$$b = \frac{(2\alpha - 1)q^5 + (2\beta - 2\alpha + 1)q^4 + (2\gamma - 2\beta)q^3 - 2\gamma q^2}{2(2\alpha - 1)q^3 + 2(2\beta - \alpha + 1)q^2 + 2(2\gamma - \beta)q - 2\gamma}.$$

Putting $N(q) = (2\alpha - 1)q^5 + (2\beta - 2\alpha + 1)q^4 + (2\gamma - 2\beta)q^3 - 2\gamma q^2$ and $D(q) = 2(2\alpha - 1)q^3 + 2(2\beta - \alpha + 1)q^2 + (2\beta - \alpha + 1)q^2$ $2(2\gamma - \beta)q - 2\gamma$, we have $b = \frac{N(q)}{D(q)}$.

As *b* is an integer, the remainder R(q) of the division by $\frac{N(q)}{D(q)}$ must be zero. The remainder R(q) of the division by $\frac{N(q)}{D(q)}$ is

$$R(q) = \left\{ \frac{\alpha (8\gamma + 1) - 8\beta^2 - 4\beta - 4\gamma - 1}{4(2\alpha - 1)^2} - \frac{\alpha}{4} + \frac{1}{4} \right\} q^2 - \left\{ \frac{\alpha^2 \beta + \alpha(\alpha - \beta) - \beta(\beta - 2\gamma)}{(2\alpha - 1)^2} \right\} q - \frac{\gamma (\alpha^2 - \alpha - \beta)}{(2\alpha - 1)^2}.$$

If $\alpha \neq \frac{1}{2}$ and R(q) must be zero for any q, we need that the coefficients of the polynomial R(q) must be zero for any q. Thus we obtain a system of three equations and three variables (α , β , γ), which gives the following solutions:

$$\alpha = 0, \ \beta = 0, \ \gamma = 0$$
, a contradiction;
 $\alpha = 1, \ \beta = 0, \ \gamma = 0$, for which we have $a = q^2$ and $b = \frac{1}{2}q(q-1)$; a contradiction, because $a < b$.

If $\alpha = \frac{1}{2}$, we get $b = \frac{2\beta q^4 + 2(\gamma - \beta)q^3 - 2\gamma q^2}{(4\beta + 1)q^2 + 2(2\gamma - \beta)q - 2\gamma}$.

As *b* is an integer, the remainder R(q) of the division by $\frac{N(q)}{D(q)}$ must be zero. The remainder R(q) of the division by $\frac{N(q)}{D(q)}$ is

$$R(q) = \left\{ \frac{-4\left[4\beta^4 + 2\beta^3 + 2\beta^2\gamma + 2\beta\gamma - \gamma^2(8\gamma + 3)\right]}{(4\beta + 1)^3} \right\} q - \frac{4\gamma \left[4\beta^3 + 2\beta^2 + \gamma(4\gamma + 1)\right]}{(4\beta + 1)^3}.$$

If $\beta \neq -\frac{1}{4}$ and R(q) must be zero for any q, we need that the coefficients of the polynomial R(q) must be zero for any q. Thus we obtain a system of two equations and two variables (β , γ), which gives the following acceptable solutions:

 $\beta = 0$, $\gamma = 0$, and hence we get b = 0, a contradiction; $\beta = -\frac{1}{2}$, $\gamma = 0$, for which we get $a = \frac{1}{2}q^2 - \frac{1}{2}q$ and $b = q^2$, an acceptable solution.

If $\alpha = \frac{1}{2}$ and $\beta = -\frac{1}{4}$, then $a = \frac{1}{2}q^2 - \frac{1}{4}q + \gamma$; hence $b = \frac{-q^4 + (4\gamma + 1)q^3 - 4\gamma q^2}{(8\gamma + 1)q - 4\gamma}$. Putting $N(q) = -q^4 + (4\gamma + 1)q^3 - 4\gamma q^2$ and $D(q) = (8\gamma + 1)q - 4\gamma$, $b = \frac{N(q)}{D(q)}$. As *b* is an integer, the remainder R(q) of the division by $\frac{N(q)}{D(q)}$ must be zero for any *q*.

The remainder R(q) of the division by $\frac{N(q)}{D(q)}$ is

$$R(q) = -\frac{512\gamma^4 (4\gamma + 1)}{(8\gamma + 1)^4}.$$

If $\gamma \neq -\frac{1}{8}$ and R(q) must be zero for any q, we need that the coefficients of the polynomial R(q) must be zero for any q. Thus we have the following solutions:

$$\gamma = 0 \quad \text{or} \quad \gamma = -\frac{1}{4};$$

for $\alpha = \frac{1}{2}$, $\beta = -\frac{1}{4}$ and $\gamma = 0$, we get $b = q^2 (1 - q) < 0$, a contradiction; for $\alpha = \frac{1}{2}$, $\beta = -\frac{1}{4}$ and $\gamma = -\frac{1}{4}$, we get $b = \frac{q^2}{1-q} < 0$, a contradiction.

Thus the last case is $\alpha = \frac{1}{2}$, $\beta = -\frac{1}{4}$ and $\gamma = -\frac{1}{8}$, for which we get $b = q^2 (1 - q) (2q + 1) < 0$, a contradiction.

Finally, we claim that $a = \frac{1}{2}q^2 - \frac{1}{2}q$ and $b = q^2$. So *L* is a $\left(\frac{q^4}{2} - \frac{q^3}{2}\right)$ -set of type $\left(0, \frac{1}{2}q^2 - \frac{1}{2}q, q^2\right)$ with respect to ruled

planes in PG(3, q), q even.

Then according to Result (I), L is the set of external lines to a hyperoval cone of PG(3, q), q even. Thus, the theorem is completely proved.

References

- [1] S.G. Barwick, D.K. Butler, A characterisation of the lines external to an oval cone in PG(3, q), q even, J. Geom. 93 (2009) 21–27.
- [2] M.J. De Resmini, A characterization of the secants of an ovaloid in PG(3, q), q even, q > 2, Ars Combin. 16-B (1983) 33–49.
- [3] N. Durante, D. Olanda, A characterization of the family of secant lines or external lines of an ovoid of PG(3, q), Bull. Belg. Math. Soc. Simon Stevin 12 (2005) 1-4.
- [4] J.W.P. Hirschfeld, Finite Projective Spaces of Three Dimensions, Clarendon Press, Oxford, 1985.
- [5] G. Tallini, The geometry on Grassmann manifolds representing subspaces in a Galois space, Ann. Discrete Math. 14 (1982) 9–38.
- [6] M. Tallini Scafati, The k-sets of PG(r, q) from the character point of view, in: C.A. Baker, L.M. Batten (Eds.), Finite Geometries, Marcel Dekker Inc., New York, 1985, pp. 321-326.