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1. Introduction

A character of a finite grou is monomial if it is induced from a linear character of
a subgroup of5. A groupG is anM-group if all its complex irreducible characters (the
set Ir(G)) are monomial.

In [2], Dornhoff asked if normal subgroups &f-groups were agaiM -groups. In [1],
Dade (and independently Van der Wall [9]) gave an example affagroup which has
a normal subgroup which was not af-group. Dade’s example depended very strongly
on the use of the prime 2. Therefore, the question of whether normal subgroups of odd
M-groups were again -groups was left open.

Itis called that a grougs has a Sylow tower it; has a normal series of Hall subgroups
G; < G such thatGo =1, G, = G, and|G; : G;_1| is a power of a prime, for each
i=1,...,n.In[3], Gunter showed that normal subgroupsWfgroups with Sylow tower
wereM-groups. Furthermore, in [8], Parks showed that ifs an oddM -group andV <G
with N nilpotent andG/N supersolvable, then every normal subgroupGofs an M-
group. After | submitted this paper for publication, | was informed that M. Loukaki recently
proved that normal subgroups of odd order monorpal; }-groups are monomial.

Now, in this paper the following is shown.

Theorem. Let p be a prime and letG be anM-group. Assume that there exist normal
subgroupsk and L of G such that

(i) |IG/K| dividesp;
(i) K/L is nilpotentp’-group;
(i) L is abelianp-group.

Then every normal subgroup of G is an M-group.
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All of Park’s, Gunter’s, Loukaki's, and our result apply to families of groups where the
result does not hold “one character at a time.” (By Berger's example in [5].)

If ¢ is a character o6, we denote the set of its irreducible constituents bydfy)).

Let N <« G andéd € Irr(N). We write I (9) to denote the inertia groug € G | 68 =6}.

Let a groupA act on a groups. We say thatA-invariant characteg € Irr(G) is A-
primitive if it is not induced from anyA-invariant character of anyA-invariant proper
subgroup. Furthermore, we say thats A-monomial if it is induced from am -invariant
linear character of an-invariant subgroup.

2. Preliminaries
In this section we shall give some lemmas which will be used to prove the theorem.

Lemma 1. Let a groupA act on a groupG. Let N be a normalA-invariant subgroup of

G and assume that/N is nilpotent andN has abelian Sylow subgroups. Suppose also
that(|A|,|G/N|) = 1.If x € Irr(G) is A-invariant, then the degrees of any two A-primitive
characters that induceg coincide.

This is essentially Theoreri of [7]. There it is required that|A|, |G|) = 1, but the
same proof works in our case.

Lemma 2 [3]. Let G be anM-group with a Sylow tower. Then every normal subgroup of
G is again anM-group.

Lemma 3 [8, p. 939, Lemma 3.4]Let A <« G and suppose thay € Irr(G). Let g €
Irr(A]xa). Let x1 € Irr(Ig(p)) be such that(x1)x is a multiple ofe, and such that
(x1)¢ = x. Suppose that is monomial and thap is linear. Theny; is monomial.

Lemma 4 (see the proof of [8, p. 940, Step 1et N < G and suppose that € Irr(G). Let
celrr(N|xn).LetAC N, A<G,andA’ = 1. Choosep € Irr(A|z4). Letx1 € Irr(Ig (@),
z1 € Irr(Iy ((@)) be such that(x1)4, (¢1)4 are multiples ofp, and such thatxlG =X,

¢ = ¢, respectively. Thety | (x1) 1y (p)-

Lemma5[10, Lemma 2.1]JAssumeV <G, H C G, NH =G,andN N H = M. Assume
that¢ € Irr(N) is invariant in G and ¢y € Irr(M). Theny < xy defines a one-to-one
correspondence betweém(G|¢©) andlirr(H |(¢a) ™).

Lemma 6 [6, p. 30, Corollary 1.4]Assume that every characteristic abelian subgroup of
G is cyclic. Letps, ..., p, be the distinct prime divisors ¥ | for F = F(G) and let
Z C Z(F)with|Z]| = p1...pr. Thenthere exisk, T C G such that

() F=ET,Z=ENT,andT = Cr(E).
(i) The Sylow subgroups @&f are extra-special or cyclic of prime order.
(iii) If every characteristic abelian subgroup 6fis in Z(F), thenT = Z(F).
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3. Proof of theorem

In this section we shall prove the theorem stated in the IntroductiorG lbet a minimal
counterexample an¥ <« G a nonM-group with|G : N| as small as possible. The¥is
a maximal normal subgroup @ . Therefore|G : N| is a prime number. Sinc& /L is
nilpotent andL is abelian, every subgroup &f is an M-group (by Theorem 6.23 of [4])
and, in particularG = NK. PutR= K N N.We have thalG : K| = |N : R| = p.

Let ¢ € Irr(N) be a non-monomial character. SinGeis an M-group, by Mackey'’s
theorem we deduce thatdoes not extend t6. x = ¢ € Irr(G).

If p divides¢ (1) then, sinceR has a normal abelian Syloprsubgroup, we deduce that
¢ is induced from some character ffand, sinceR is an M-group, it follows that; is
monomial. We conclude thgthasp’-degree.

Let U € N anda € Irr(U) be a primitive character such that’ = ¢. Since¢ has
p’-degree, there existB € Syl,(N) such thatP € U. Note thatV = PR andG = PK.

Casel. |G/N|# p.

In this case,p does not dividex (1) and xx € Irr(K). Hence,y = (¢r)X = xx is
irreducible andP-invariant. Furthermoref = ((«™¥) )X = (@unr)®)X = (@ynr)X. In
particularayng is irreducible andP-invariant.

Suppose thatiyng is not P-primitive. Thenaynx = BY7X for some P-invariant
characteiB € Irr(H), whereH is a P-invariant proper subgroup @ N K. Sincex has
p’-degree,p 1 |[U N K : H|, and soH contains a Sylowp-subgroup ofU N K. Thus
|PH : H| = p. SinceB is P-invariant,8°# = p1 + --- + B,,, where eactp;, 1<i < p,
is an irreducible character dfH. Hence(ayng)V = Y = (BP#)V = B{ +--- + Y.
On the other handpyng)? = a1+ -+ + ap, Where eachy;, 1<i < p, is an irreducible
character ofU. Sincea = «; for somei, o« = ,BJU for somej. Since PH is a proper
subgroup o, this contradicts that is primitive. Thusauyng is P-primitive.

If ¥ is P-monomial, thenx(1) = 1 by Lemma 1. Theg = oV is monomial, which is
a contradiction.

On the other hand, sincg is monomial,x = A¢ for some linear character of
a subgrouprl’. Since x has p’-degree, we may assume tHEtD P. Theny = xx =
A%k = (Arnx)X. SinceT N K is P-invariant subgroup ok andirnk is P-invariant,
Y is P-monomial, which is a contradiction.

G,x=¢¢

Xk ==yl K N, ¢=al
U «a

P

Ay UNK
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Step 1. 0,(N) C L.

Proof. If O,(N) € L, thenG has a normal Sylow-subgroup. Henc& has a Sylow
tower, and savV is anM-group by Lemma 2, which is a contradiction. ThQg(N) C L.
If O,(N)=L,thenN =K. SinceK is an M-group, and so isV, which is a contra-
diction. O

Let H be a Hallp’-subgroup ofG, and setL; = L N N(= Op,(N)).
Step 2. C,(H) # 1.

Proof. SinceH CN,[H,L]1CNNL=Lq,and henc& =C(H)L1.

If Cp,(H)=1,thenL =Cy(H) x Ly and|Cr(H)| = p. By the Frattini argument,
G = LNg(H), and soC.(H) <« G. ThenG/Cr(H) >~ N. SinceG is an M-group,
G/CL(H) is also anM-group, and so iV, which is a contradiction. O

Let o1 € Irr(L1) be alinear character withy|¢7,. We setK1 = Kerg;.
Step 3. K1 2 Cr,(H). In particular, g1 # 1.

Proof. Suppose thaky 2 Cr,(H). We setG = G/Cr,(H) sinceCr,(H) < G. Theng;

is regarded as a characterlof € G, and so¢ is also a character a¥. Since|G| < |G|,

N is an M-group by induction. Thers is monomial, which is a contradiction. Thus
K12 Cr,(H). Inparticularg; #1. O

Step 4. K1 2 [H, L1].

Proof. If [H, L1] =1, thenH < N, and soH <1 G. ThenG has a Sylow tower, and hence
N is anM-group by Lemma 2, which is a contradiction.

If K1 2 [H,L1]# 1, then we have a contradiction by an argument similar to that
above. O

Next we setN1 = Iy (¢1). By Clifford’s theorem, there exists@ € Irr(N1) such that
01lCDN, and;f’ = ¢. ¢ is not monomial and neither ig.

SetG1 = Ig(¢1). Sinceyy | xr,, there exists g1 € Irr(G1) such thatpy | (x1)z, and
xf = x by Clifford’s theorem. By Lemmas 3 and 4; is monomial andz | (x1)w; -

SettingG1 = G1/K1 givesG1 > N1. If N1 is nilpotent, thenV, is anM-group, and so
¢1 is monomial, which is a contradiction. In particulaf has a Hallp’-subgroupH; # 1.
Since[H1, L1]=1andL1H1 < N1, H1 charN1 < G1, and henced1 < G1. Therefore
there exists a subgroufy, of G1 such thatL; C L, € N1 and L, is an abelian normal
subgroup ofG1. Let ¢; € Irr(Ly), with ¢z | (¢Vg,- Then 15 g5 is a linear character.
Let K2 = Kergo with K1 € K2. Then 1# Ly/K7 is cyclic. We setGz = I, (¢2) and
N2 = Iy, (¢2). By Clifford’s theorem, there exists @ € Irr(G2) such thaips | (x2)1, and
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XzGl = x1. Similarly, there exists & € Irr(N2) such that, | (£2)1, andgzN1 =¢1. Then
¢1is not monomial and so i. Furthermore{ | (x2)n, by Lemma 4.
Now we setGo = G2/ K>.

Step 5. There exists a subgroups such thatlL, C L3 € N2 and L3 is an abelian normal
subgroup ofG».

Proof. Suppose false. S&1 = Cr,(H) x ([L1, H] N K1). SinceL1/Ky is cyclic, so is
[L1, H]/([L1, H1N K1). HenceL1/R1 is cyclic. Let H1 be a Hallp’-subgroup ofvV;. By
the Frattini argumenty = L1 Ny (H), and henceéd} C H for somev € L;. Thus we may
assume thakl; C H.

Since[L1, H1] € K1 and[L1, H11 € [L1, H], [L1, H11 € K1 N[L1, H] € R1. Hence
Hy C{x € N|[x,L1] C R1} = Iy(n1), whereu1 € Irr(L1/Ry) is faithful. Let S be
a Hall p’-subgroup ofly (1) with Hy € S. By an argument similar to that above,
we may assume thaf € H. Since[S,L1] € R; and [S,L1] € [H, L1], [S,L1]
[H,L1] N Ry = [H,L1]1 N (Cr,(H) x ([H,L1] N K1)) = [H, L1] N K1 € K1. Hence
SC{xeN|[x,Li] € K1} = In(¢1) = N1. This implies thatS = Hj.

Since N = LiNy(H) and L1 € N1, N1 = L1Ny,(H). If N1 = L1Hi, thenN1 =
L1 x Hp is nilpotent, and saV; is an M-group. This contradicts the fact that e
Irr(N1) is not monomial. Hencel; C Ny, (H). Leta € Ny, (H) be ap-element with
a ¢ L1H1.Sincela, [H, L1]NK1] € [H, L1]NK1 S Riand[a, Cr,(H)] € Cr,(H) C Ry,
[a, L1] € R1. Hencea € Iy (u1). By condition (i) of the theoremy1 = L1H1{a), and so
N1=1In(p1).

SinceL, € L1 x Hy, Ly = L1 x (LN H1). Henceps = g1, for somei € Irr(LoN Hy)
(1 is regarded as a characterlof N Hy). Settinguz = uik givesuz € Irr(L2/R1). Then
Iny (n2) = Iny (1) = Iny (92) = N2

If N2 is nilpotent, thenN3 is an M-group. This contradicts the fact thag is not
monomial. LetF = F(N») and letH, be a Hall p’-subgroup ofN,. By conditions (i),
(i) of the theorem|N,/F| = p andF = H»L». HenceN, = F (x) for somep-element
x € No with X” € F. Since every characteristic abelian subgroupyefs cyclic, there exist
E, T < N, which satisfy the conditions (i)—(iii) of Lemma 6. By Lemma 6(iil),= Z(F).
If E is abelian, therF = Z(F) andN2 = Cy,(L1) = Cy,(F) C F. HenceN is nilpotent,
which is a contradiction. ThuB is non-abelian. By Lemma 6(iiff = (E1 x --- x E,)L2,
where Hy N K, C E; € Hp, 1<i < r, and eachE; is an extra-special group of order
qz"’+l for a primeg;, and an integet;. Let Eo=FE1--- E,.

Set Ry = Kerus and No = N2/Ra. Then Ry = Ri(Kerd) = Ri(H1 N K>), and
so Hz = Hz/H]_ N K2 ~ Ho. HenceF(Ng) (El x - x E, )Lz = EOL2 such that
[Eo. L2l = 1, Eo N Ly = Z(Eo). SettingU = Eo(¥), N2 = UZZ ensuresLy <1 No
and Ly N U= Z(Eg) x (¥7). Then there existy; € Irr(E;), 1< i < r, such that
vi(l) = qi » Yo € Irr({x”)), and (U2) 7(Eg) = (ir) | 1//1---1ﬁr1//02(50)x<i.p>- Let y € Irr(U)
with g -+ ¥, | Y By (ir)- Sinceyr - - - Y, Yo is U-invariant and|U/1:fo X (xP)| = p,
(V) Eyxgry = Y1 ¥ribo. Thus there exists & < Irr(U) such that(MZ)Z(Eo)x(}p) |
V' 7By x (i) andy (1) = 4111 gy
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Now No = LoU, Lo N U = Z(Ep) x (¥P), and uz € Irr(Lo) is invariant in Np. By
Lemma 5, there exists @* € Irr(Nz) such that(y*)y = v and u2 | (¥*)z,. Since
In, (u2) = N2, ()N € Irr(N1/R1) with po | (y*)M) 1, r, by Clifford’s theorem.
Similarly, we have that((y*)M)N = ("N e Irr(N) with p1 | (¢*)V).,. Since
Kerpuis 2 Ry 2 Cr (H)#1 andCr,(H) < G, (y*)N is regarded as a character of
N/Cr,(H). By the minimality of |G|, N/Cr,(H) is an M-group sinceN/Cyr,(H) <
G/Cp,(H). Hence(w )N is monomial and s(n// yN1 andy* are monomial by Lemma 3.
Thu51//* ANZ for some linear characterof A, whereRz CAisa subgroup oNNo.

If E; N A is non-abelian, then(E N A)/ = Z(E) Then Z(E) C Keri. Hence
Z(E) - Kerl//* which is a contradiction. Thug; N A is abelian. SchNz |

v*(Q) = ql g, pt |N2 A| Hence N = F(NZ)A and so (E; ﬂA)Z(E) =
(EinA)Z(E;) < N2. Then, inN2 = N2/K2, (E; N A)Z(E;) < N2. By Step 1, there exists
an element ¥ y € L with y ¢ L1. ThenG2 = N2(y). Since[y, Hz] =1inG2=Gy/K>,
(E N A)Z(E )< Go. HenceE NA C Z(E;). This means thaE NAC Z(E ). Thus
|E E; mA| > |E Z(E)| _qIZn, On the other hand, squ E; mA| | AN2 = (1),

|E;: E;NA| < ¢, and hencqiz”’ < g, which is a contradiction. O
Step 6. A contradiction.

Proof. Let @3 € Irr(L3) with ¢3 | (¢2),- Then 1# g3 is a linear character. LeK3 =
Kergs with K2 C K3. Then 1:£ L3/ K3 is cyclic. Furthermore, there existsae Irr(N3)
such thatpz | (£3) 1, and(£3)V2 = ¢p, whereNz = In,(¢3). Thengs is not monomial.
Repeating this argument, there exi&t, L, Nk, ¢k € Irr(Ny/Ky) (k =4, ...) such that

Li—1C Ly € Ny € Ni—1, Li/ Ky is cyclic, andg, is not monomial. Sincé1 C Ly C L3 C

-+ C N3 C N> C Nq, there exists an integerwith L, = N,,. SinceN,/K,, = L,/K,, is
cyclic andg, € Irr(N,/K,), ¢, is monomial, which is a contradiction, and this completes
the proof of the theorem.
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