Weight of duals of BCH codes and exponential sums

Eric Férard*
Université de la Polynésie Française, B.P. 6570, Polynésie 98702, France
Received 21 June 2000; revised 5 June 2001; accepted 25 February 2002
Communicated by Oscar Moreno

Abstract

We consider a binary BCH code C_{m} of length $2^{m}-1$. If m is odd, we improve the bound on the distance of the dual of C_{m} previously given by Carlitz-Uchiyama, Serre and MorenoMoreno. © 2002 Elsevier Science (USA). All rights reserved.

1. Introduction

Let C_{m} be a binary BCH code of length $q-1=2^{m}-1$ with designed distance $\delta=2 t+1$. The weight w of a non-zero codeword of the dual of C_{m} satisfies the Carlitz-Uchiyama bound

$$
\left|w-2^{m-1}\right| \leq(t-1) 2^{m / 2}
$$

We shall only consider the case where m is odd. We attempt to improve this bound. In [8], MacWilliams and Sloane suggest a stronger result

$$
\begin{equation*}
\left|w-2^{m-1}\right| \leq(t-1) 2^{(m-1) / 2} . \tag{1}
\end{equation*}
$$

One can show that this inequality is true for $\delta=3,5,7$. Moreover, when $\delta=3,5$, 7, this bound is reached. Rodier [11] showed that this inequality is not true for codes

[^0]of designed distance $\delta=9,25, \ldots$. A similar result was independently obtained by Càceres and Moreno [2].

If p is a prime number and l an integer, we denote by $\mathbf{F}_{p^{l}}$ a finite field of order p^{l}. If K is a field and L a finite extension of K, we denote by $\operatorname{Tr}_{L / K}$ the trace from L to K.

Let c be a codeword of the dual of C_{m}. Its weight $w(c)$ is linked to the value of some exponential sums. Indeed, the codeword c can be written in the form

$$
c=\left(\operatorname{Tr}_{\mathbf{F}_{q} / \mathbf{F}_{2}}(f(\alpha))\right)_{\alpha \in \mathbf{F}_{q}^{*}},
$$

where f is a polynomial with coefficients in \mathbf{F}_{q} of degree at most $2 t-1$ and $f(0)=0$ (see [8]). Since $\operatorname{Tr}_{\mathbf{F}_{q} / \mathbf{F}_{2}}\left(\alpha^{2}\right)=\operatorname{Tr}_{\mathbf{F}_{q} / \mathbf{F}_{2}}(\alpha)$, we can always suppose that f is zero or of odd degree. We define the exponential sum $S(f)$ by

$$
S(f)=\sum_{x \in \mathbf{F}_{q}}(-1)^{\operatorname{Tr}_{\mathrm{F}_{q} / \mathbf{F}_{2}}(f(x))}
$$

Since the weight of c is the number of $\alpha \in \mathbf{F}_{q}$ such that $\operatorname{Tr}_{\mathbf{F}_{q} / \mathbf{F}_{2}}(f(\alpha))=1$, we have

$$
w(c)=\frac{q-S(f)}{2}
$$

If the degree of f is odd, the exponential sum $S(f)$ satisfies the Weil bound

$$
|S(f)| \leq(\operatorname{deg} f-1) \sqrt{q}
$$

We may note that this bound corresponds to the Carlitz-Uchiyama bound. To improve the Carlitz-Uchiyama bound, we have chosen to study the exponential sums and the Weil bound. We can deduce from (1) that we have

$$
|S(f)| \leq(\operatorname{deg} f-1) \sqrt{q} / \sqrt{2}
$$

for polynomials of degree 1,3 and 5 . Moreover, this bound is reached. Therefore, we shall only consider polynomials of degree greater than or equal to 7 .

The number of points N of the projective model of the curve $y^{2}+y=f(x)$ over \mathbf{F}_{q} is given by

$$
N=q+1+S(f)
$$

Therefore, in this particular case, we may also improve the Weil bound.
Let us fix some notations. If v is a real number, we denote by $[v]$ its integer part. Let u be an integer with binary expansion

$$
u=\sum_{i=1}^{r} 2^{u_{i}} .
$$

We define the binary weight $\sigma(u)$ of u by

$$
\sigma(u)=r .
$$

If $Q(x)$ is a polynomial with coefficients in \mathbf{F}_{q}, we define its binary weight $\sigma(Q)$ as being the maximum of the binary weights of the exponents of Q.

In 1984, Serre [15] improved the Weil bound as

$$
|S(f)| \leq \frac{\operatorname{deg} f-1}{2}[2 \sqrt{q}]
$$

Using the Serre method and the divisibility properties of the exponential sums Moreno and Moreno improved this last bound as

$$
|S(f)| \leq(\operatorname{deg} f-1) 2^{\mu-1}\left[2^{1-\mu} \sqrt{q}\right]
$$

where $\mu=[m / \sigma(f)]$.

2. Backgrounds on abelian varieties

Let p be a prime number. Let \mathbf{Q}_{p} be the field of p-adic numbers. Let Ω be the completion of the algebraic closure of \mathbf{Q}_{p}. We denote by $\operatorname{ord}_{p}(\cdot)$ the valuation over Ω normalized by $\operatorname{ord}_{p}(p)=1$. We denote by $|\cdot|_{p}$ the absolute value over Ω defined by $|x|_{p}=p^{-\operatorname{ord}_{p}(x)}$.

Let $P=\sum_{i=1}^{r} c_{i} t^{i}$ be a polynomial with coefficients in \mathbf{Q}_{p}. The Newton polygon of P is the convex hull of the points $\left(i, \operatorname{ord}_{p} c_{i}\right)$ (see [4]).

Proposition 1. If a segment of the Newton polygon of P has a slope λ and horizontal length N, then P has precisely N roots y_{i} with $\operatorname{ord}_{p}\left(y_{i}\right)=-\lambda($ counting multiplicities $)$.

Proof. See [4].
Put $q=p^{m}$. Let $k=\mathbf{F}_{q}$ be a finite field of q elements.
We now recall some results on abelian varieties. The reader is referred to Tate [17,18] and Waterhouse [19]. Let A be an abelian variety over k of dimension g. The characteristic polynomial h_{A} of the Frobenius endomorphism π_{A} of A over k is a monic of degree $2 g$ over \mathbf{Z}. This polynomial determines the isogeny class of A.

Theorem 1 (Tate). Two abelian varieties defined over k are isogenous if and only if their Frobenius endomorphisms have the same characteristic polynomial.

Let $E=\operatorname{End}_{k}(A) \otimes \mathbf{Q}$ be the endomorphism algebra of A. It is a semisimple algebra with center $F=\mathbf{Q}\left[\pi_{A}\right]$.

There is a unique factorization of A, up to k-isogeny, into a product of powers of non- k-isogenous simple abelian varieties A_{j}. This factorization corresponds to the decomposition of E into simple factors E_{j} and therefore to the expression of its center F as a product of fields F_{j}. The F_{j} in turn correspond to the irreducible factors P_{j} of h_{A} over \mathbf{Q}. From the previous theorem we deduce the following result.

Theorem 2. Let $h_{A}=\Pi P_{j}^{m_{j}}$ be the factorization of h_{A} in \mathbf{Q}. For each j, there exists an integer e_{j} dividing m_{j} and a simple abelian variety A_{j} over k, whose characteristic polynomial of the Frobenius endomorphism is $P^{e_{j}}$, such that A is isogenous to

$$
\Pi A_{j}^{m_{j} / e_{j}} .
$$

We assume that A is simple. Then $F=\mathbf{Q}\left(\pi_{A}\right)$ is a field. Weil has shown that π_{A} is an algebraic integer such that for all embeddings $\phi: \mathbf{Q}\left(\pi_{A}\right) \rightarrow \mathbf{C}$, we have $\left|\phi\left(\pi_{a}\right)\right|=q^{1 / 2}$. We will call such an algebraic integer, a Weil number. Honda has made explicit the correspondence between Weil numbers and the simple abelian varieties over k.

Theorem 3 (Honda [3,18]). There is a one-to-one correspondence between the isogeny classes of simple abelian varieties over k and the classes of conjugates over \mathbf{Q} of Weil numbers.

Since A is simple, the characteristic polynomial of π_{A} is equal to

$$
h_{A}=P^{e},
$$

where P is a \mathbf{Q}-irreducible polynomial. Then the algebra of endomorphism E is an algebra of division of dimension e^{2} over its center $F=\mathbf{Q}\left(\pi_{A}\right)$.

If v is a place of F, we denote by $\operatorname{inv}_{v}(E)$ the invariant of E at v (see [13]). If v is above p, we denote by $\operatorname{ord}_{v}(\cdot)$ the valuation on F associated to v normalized by $\operatorname{ord}_{v}(p)=1$.

Theorem 4 (Tate). Let A be a simple abelian variety over k. Let v be a place of F. Let F_{v} be the completion of F at v. The invariant of E at v is congruent to

- 0 if v is complex or if v is lying over $l \neq p$,
- $1 / 2$ if v is real,
- $\frac{\operatorname{ord}_{v}\left(\pi_{A}\right)\left[F_{v}: \mathbf{Q}_{p}\right]}{\operatorname{ord}_{v}(q)}$ if v is lying over p,
modulo \mathbf{Z}.
Proposition 2. The sum of all the invariants of E is congruent to zero modulo \mathbf{Z}. The least common denominator of all the invariants of E is e.

We note that if A is simple, the characteristic polynomial of π_{A} is not in general irreducible. It is so if and only if there are no real places in $\mathbf{Q}\left(\pi_{A}\right)$ and for each irreducible factor P_{v} of h_{A} over \mathbf{Q}_{p}, m divides $\operatorname{ord}_{p}\left(P_{v}(0)\right)$.

The abelian variety A is no longer supposed to be simple. If $\omega_{1}, \bar{\omega}_{1}, \ldots, \omega_{g}, \bar{\omega}_{g}$ are the roots of h_{A} in \mathbf{C}, then the characteristic polynomial of π_{A} over $\mathbf{F}_{q^{\prime}}$ is given by

$$
h_{A}^{(l)}(t)=\prod_{i=1}^{g}\left(t-\omega_{i}^{l}\right)\left(t-\bar{\omega}_{i}^{l}\right) .
$$

We shall say here that A is supersingular if $h_{A}^{(l)}(1)$ is prime to p for all positive integers l (cf. [12,20]). Oort gave another definition of a supersingular abelian variety: A is supersingular if A is isogenous over a finite extension of k to the power of a supersingular elliptic curve (see [6]). For abelian varieties of dimensions 1 and 2, these two definitions are equivalent. Note that if A is supersingular in Oort's meaning, then A is supersingular. But if A is an abelian variety of dimension greater than or equal to 3 , the opposite is not true.

From now on in this section, we only consider the case where $p=2$ and m is an odd integer. We shall need the list of all the characteristic polynomials of the Frobenius endomorphisms of simple supersingular abelian varieties of dimensions 1 and 2.

Proposition 3 (Deuring-Waterhouse [19]). Let m be an odd integer. Let $q=2^{m}$. The characteristic polynomials of the Frobenius endomorphisms of supersingular elliptic curves over \mathbf{F}_{q} are
(i) $t^{2} \pm \sqrt{2 q t}+q$,
(ii) $t^{2}+q$.

Proposition 4 (Rück-Xing [21]). Let m be an odd integer. Let $q=2^{m}$. The characteristic polynomials of the Frobenius endomorphisms of supersingular simple abelian varieties of dimension 2 over \mathbf{F}_{q} are
(i) $t^{4} \pm q t^{2}+q^{2}$,
(ii) $t^{4} \pm \sqrt{2 q} t^{3}+q t^{2} \pm \sqrt{2 q^{3}} t+q^{2}$,
(iii) $\left(t^{2}-q\right)^{2}$.

Now, let us examine the case where the characteristic polynomial of the Frobenius endomorphism of an abelian variety has a real root.

Proposition 5 (Waterhouse [19]). Let m be an odd integer. Let $q=2^{m}$. Let A be an abelian variety over \mathbf{F}_{q}. If π_{A} has a real conjugate, then $\left(t^{2}-q\right)^{2}$ divides $h_{A}(t)($ in $\mathbf{Z}[t])$.

3. Abelian varieties with quadratic Weil numbers

Let $q=p^{m}$. We generalize a result of Xing (see [20, Propositions 2 and 3]).
Proposition 6. Let e be an integer, $e \geqslant 3$. Let $h(t)=\left(t^{2}+\beta t+q\right)^{e}$ be a polynomial with integer coefficients and $|\beta|<2 \sqrt{q}$. Then h is the characteristic polynomial of the Frobenius endomorphism of a simple abelian variety over \mathbf{F}_{q} if and only if e divides m and if there exists an integer $i, 1 \leqslant i<e l 2$, prime to e such that

$$
\operatorname{ord}_{p}(\beta)=i m / e
$$

Proof. Put $f=t^{2}+\beta t+q$. We assume that h is the characteristic polynomial of the Frobenius endomorphism of a simple abelian variety A over \mathbf{F}_{q}. Let π be a root of f. Put $F=\mathbf{Q}(\pi)$ and $E=\mathbf{Q} \otimes \operatorname{End}_{\mathbf{F}_{q}}(A)$. Since F is totally imaginary, if v is a place which is not above p, the invariant of E at v is zero (Theorem 4). Hence, p splits in two places in F because the sum of all the invariants of E is congruent to zero modulo \mathbf{Z} and e, which is greater than or equal to 3 , is their least common denominator (Proposition 2). Therefore, f can be written as a product

$$
f(t)=\left(t-y_{1}\right)\left(t-y_{2}\right)
$$

with $y_{1}, y_{2} \in \mathbf{Q}_{p}$. Denote by v_{i} the place corresponding to the embedding of F into \mathbf{Q}_{p} which maps π on y_{i}. For $i=1,2$, we have

$$
\operatorname{inv}_{v_{i}}(E) \equiv \operatorname{ord}_{p}\left(y_{i}\right) / m \bmod \mathbf{Z}
$$

Consider the Newton polygon of $t^{2}+\beta t+q$. We assume that the point $\left(1, \operatorname{ord}_{p}(\beta)\right)$ is a vertex, i.e. $\operatorname{ord}_{p}(\beta)<m / 2$. Then we may suppose that $\operatorname{ord}_{p}\left(y_{1}\right)=\operatorname{ord}_{p}(\beta)$ and $\operatorname{ord}_{p}\left(y_{2}\right)=m-\operatorname{ord}_{p}(\beta)$. It follows that

$$
\operatorname{inv}_{v_{1}}(E) \equiv \operatorname{ord}_{p}\left(\beta_{i}\right) / m \bmod \mathbf{Z}
$$

and

$$
\operatorname{inv}_{v_{2}}(E) \equiv-\operatorname{ord}_{p}\left(\beta_{i}\right) / m \mathbf{Z}
$$

Since e is the least common denominator of $\operatorname{inv}_{v_{1}}(E)$ and $\operatorname{inv}_{v_{2}}(E)$, there exists an integer $i \geqslant 1$ prime to e such that

$$
\operatorname{ord}_{p}(\beta)=\mathrm{im} / e
$$

Since $\operatorname{ord}_{p}(\beta)<m / 2$, we have $i / e<1 / 2$.

We assume now that the point $\left(1, \operatorname{ord}_{p}(\beta)\right)$ is not a vertex, i.e. $\operatorname{ord}_{p}(\beta) \geqslant m / 2$. Then we have

$$
\operatorname{ord}_{p}\left(y_{1}\right)=\operatorname{ord}_{p}\left(y_{2}\right)=m / 2 \quad \text { and } \quad \operatorname{inv}_{v_{1}}(E)=\operatorname{inv}_{v_{2}}(E)=\frac{1}{2},
$$

which would contradict the hypothesis concerning e.
Conversely, let β be an integer such that $|\beta|<2 \sqrt{q}$. Suppose that e divides m and that there exists an integer $i, 1 \leq i<e / 2$, prime to e such that $\operatorname{ord}_{p}(\beta)=i m / e$. Let π be a root of h. By Theorem 3, we can associate a simple abelian variety over \mathbf{F}_{q} to π. The characteristic polynomial of the Frobenius endomorphism of this variety is equal to the r-power of the minimal polynomial of π over \mathbf{Q} where r is the least common denominator of all the invariants of E at the places of $F=\mathbf{Q}(\pi)$ (Proposition 2).

Since $\operatorname{ord}_{p}(\beta)<m / 2$, the point $\left(1, \operatorname{ord}_{p}(\beta)\right)$ is the only vertex (except the ones on the axis) of the Newton polygon of $t^{2}+\beta t+q$. Hence, there are two places v_{1} and v_{2} above p and

$$
\begin{gathered}
\operatorname{inv}_{v_{1}}(E) \equiv i / e \bmod \mathbf{Z} \\
\operatorname{inv}_{v_{2}}(E) \equiv-i / e \bmod \mathbf{Z}
\end{gathered}
$$

Since the invariants of E at the places which are not above p are zero, we have $r=e$. Therefore, h is the characteristic polynomial of the Frobenius endomorphism of a simple abelian variety over \mathbf{F}_{q}.

The abelian varieties described in this proposition are supersingular.

4. Bound on exponential sums

We now assume that $p=2$ and m is an odd integer.
Let f be a polynomial over \mathbf{F}_{q} of degree $2 g+1$. Let a be the binary weight of f. We suppose that $a \geqslant 3$ and $m \geqslant a$. Let $\mu=[m / a]$. Since $a \geqslant 3$ and $m \geqslant a$, we have $0<\mu<m / 2$.

Theorem 5 (Litsyn et al. [7]). Let f be a polynomial over \mathbf{F}_{q}. Then

$$
\operatorname{ord}_{2} S(f) \geq m / \sigma(f)
$$

For any positive integer r, we denote

$$
S_{r}=\sum_{x \in \mathbf{F}_{q^{r}}}(-1)^{\mathrm{Tr}_{\mathrm{F}_{q^{r}}{ }^{r} \mathbf{F}_{2}}(f(x))}
$$

Let J be the Jacobian of the curve $y^{2}+y=f(x)$ over \mathbf{F}_{q}. It is an abelian variety of dimension g. Let $h=\sum_{i=0}^{2 g} a_{i} t^{2 g-i}$ be the characteristic polynomial of the Frobenius endomorphism of J over \mathbf{F}_{q}. Let $\omega_{1}, \bar{\omega}_{1}, \ldots, \omega_{g}, \bar{\omega}_{g}$ be the roots of h in \mathbf{C}. Weil has
shown that

$$
S_{r}=-\sum_{i=1}^{g}\left(\omega_{i}^{r}+\bar{\omega}_{i}^{r}\right)
$$

for any positive integer r.

Lemma 1. For $i=1, \ldots, 2 g, 2^{i \mu}$ divides a_{i}.
Proof. We follow the proof of Ax (see [1]). Let $L(t, f)=\exp \left(\sum_{r=1}^{\infty} S_{r} t^{r} / r\right)$.
This function is equal to

$$
L(t, f)=\prod_{i=1}^{g}\left(1-\omega_{i} t\right)\left(1-\bar{\omega}_{i} t\right)
$$

By logarithmic differentiation of $L(t, f)$, we obtain

$$
\sum_{r=1}^{\infty} S_{r} t^{r-1}=-\sum_{i=1}^{g}\left(\frac{\omega_{i}}{1-\omega_{i} t}+\frac{\bar{\omega}_{i}}{1-\bar{\omega}_{i} t}\right) .
$$

By Theorem 5, the dyadic absolute value $\left|S_{r}\right|_{2}$ of S_{r} is lower than $2^{-\mu r}$ for any positive integer r. If $|t|_{2}<2^{\mu}$, the left-hand side converges in Ω. It follows that $\left|\omega_{i}\right| \leq 2^{-\mu}$ and $\left|\bar{\omega}_{i}\right| \leq 2^{-\mu}$ for $i=1, \ldots, g$.

By this lemma, since $\mu \geq 1, J$ is supersingular.
We deduce from this lemma that $\omega_{i} / 2^{\mu}$ and $\bar{\omega}_{i} / 2^{\mu}$ are algebraic integers. We may apply to them the Serre method to improve the Weil bound (see [15] or [9]). Put $M=\left[2^{1-\mu} \sqrt{q}\right]$ and $x_{i}=M+1+\left(\omega_{i}+\bar{\omega}_{i}\right) / 2^{\mu}$ for $i=1, \ldots, g$. The numbers x_{i} are totally positive algebraic integers. Therefore, $\prod x_{i}$ is a strictly positive integer. By the mean inequality, we have

$$
\frac{\sum x_{i}}{g} \geq\left(\prod x_{i}\right)^{1 / g} \geq 1
$$

This implies

$$
S(f) \leq g \cdot 2^{\mu} M
$$

Lemma 2. Let f_{1} be a polynomial over \mathbf{F}_{q} of degree r. Then there exists a polynomial f_{2} over \mathbf{F}_{q} of degree r such that

$$
S\left(f_{1}\right)=-S\left(f_{2}\right)
$$

Proof. Since the trace $\operatorname{Tr}_{\mathbf{F}_{q} / \mathbf{F}_{2}}$ is surjective, there exists \mathbf{F}_{q} such that $\operatorname{Tr}_{\mathbf{F}_{q} / \mathbf{F}_{2}}(\alpha)=1$. Then $S\left(f_{1}\right)=-S\left(f_{1}+a\right)$. This proves the lemma.

We deduce from the lemma the following result.
Theorem 6 (Moreno and Moreno [9,10]). Let f be a polynomial over \mathbf{F}_{q} of odd degree. Then

$$
|S(f)| \leq(\operatorname{deg} f-1) \cdot 2^{[m / \sigma(f)]-1}\left[2^{1-[m / \sigma(f)]} \sqrt{q}\right] .
$$

5. The defect

Let l be a non-negative integer. We say that f has defect l if

$$
S(f)=g \cdot 2^{\mu} M-l \cdot 2^{\mu}
$$

If f has defect 0 (respectively 1,2), then $\sum x_{i}=g$ (respectively $g+1, g+2$). The list of families $\left(\alpha_{i}\right)_{i=1, \ldots, g}$ of totally positive algebraic integers such that $\sum \alpha_{i}=g$, $g+1$ or $g+2$ is known (see $[5,14,16]$). Hence the family $\left(x_{i}\right)$ is in this list. We deduce the possibilities for the characteristic polynomial of the Frobenius endomorphism of J. We shall use it to prove that $|S(f)|$ is different from $g \cdot 2^{\mu}$ $M-2^{\mu}$ and $g \cdot 2^{\mu} M-2^{\mu+1}$ in most of the cases. If f has defect 0 , then all the x_{i} are equal to 1 . Hence, the characteristic polynomial of the Frobenius endomorphism of J is

$$
h(t)=\left(t^{2}+2^{\mu} M t+q\right)^{g} .
$$

We now need a lemma.
Lemma 3. Let α be a positive integer. Then
(i) $\left[2^{\alpha} \sqrt{2}\right] \neq 2^{\alpha}$ if $\alpha \neq 1$,
(ii) $\left[2^{\alpha} \sqrt{2}\right] \neq 2^{\alpha}+1$ if $\alpha \neq 2$,
(iii) $\left[2^{\alpha} \sqrt{2}\right] \neq 2^{\alpha}+2$,
(iv) $\left[2^{\alpha} \sqrt{2}\right] \neq 2^{\alpha-1}+1$ if $\alpha \neq 1$,
(v) $\left[2^{\alpha} \sqrt{2}\right] \neq 2^{\alpha-2}+1$,
(vi) $\left[2^{\alpha} \sqrt{2}\right] \geq 2$.

Proof. It suffices to notice that $M \geq 2^{\alpha}+2^{\alpha-2}+2^{\alpha-3}$ for $\alpha \geq 3$. The lemma is an immediate consequence of this inequality.

5.1. Defect 0

Let us examine the case where $|S(f)|=g 2^{\mu} M$. We may assume that $S(f)=g 2^{\mu} M$ (Lemma 2). As mentioned at the beginning of this section, the characteristic polynomial of the Frobenius endomorphism of J is

$$
h(t)=\left(t^{2}+2^{\mu} M t+q\right)^{g} .
$$

By Theorem 2, there exists an integer d dividing g and a simple supersingular abelian variety A over \mathbf{F}_{q} such that J is isogenous to A^{d}. If we write $e=g / d$, the characteristic polynomial of the Frobenius endomorphism of A is

$$
h_{A}(t)=\left(t^{2}+2^{\mu} M t+q\right)^{e} .
$$

If $e=1, t^{2}+2^{\mu} M t+q$ is the characteristic polynomial of the Frobenius endomorphism of a supersingular elliptic curve if and only if $m=1+2 \mu$ (Proposition 3 and Lemma 3). Moreover, e is different from 2 because $\left(t^{2}+2^{\mu} M t+q\right)^{2}$ is not the characteristic polynomial of the Frobenius endomorphism of a supersingular simple abelian variety over \mathbf{F}_{q} of dimension 2 (Proposition 4). We shall study the case $e \geqslant 3$.

Let b be the greatest odd integer dividing g. By Proposition 6, e divides m. But, by assumption, m is odd, hence e is odd and must divide b. Since $e \geqslant 3$, we have $\operatorname{gcd}(b, m) \geqslant 3$.

We will consider two cases according to whether m is a multiple of the binary weight a of f or not.

Proposition 7. We assume that a divides m and that $|S(f)|=g \cdot 2^{\mu} M$. If M is odd, then a divides b. If M is even, then

$$
\operatorname{ord}_{2} M \geq \mu / b
$$

Proof. By Proposition 6, there exists an integer $i, 1 \leq i<e / 2$, prime to e such that

$$
\begin{equation*}
\mu+\operatorname{ord}_{2} M=i m / e \tag{2}
\end{equation*}
$$

We assume that M is odd. Equality (2) gives

$$
e=i a
$$

Since i is prime to e, we have $e=a$.
We assume that M is even. We deduce from (2) that

$$
\operatorname{ord}_{2} M=\mu(a i-e) / e
$$

Since M is even, we have $a i>e$ and

$$
\operatorname{ord}_{2} M \geq \mu / e \geq \mu / b .
$$

We have also shown that if $|S(f)|=g \cdot 2^{\mu} M$ and M is odd, then the invariants of E at the two places above 2 are $1 / a$ and $-1 / a$.

Proposition 8. We assume that a does not divide m. We write $m=a \mu+r$ with $0<r<a$. We suppose that $|S(f)|=g \cdot 2^{\mu} M$. If M is odd, then g is even and there exists an integer $i, 1 \leq i<b / a$, such that i divides μ and μ divides ir. In particular, we have $\mu<b r / a$. If M is even, then

$$
\operatorname{ord}_{2} M>\mu / b
$$

Proof. By Proposition 6, there exists an integer $i, 1 \leq i<e / 2$, prime to e such that

$$
\operatorname{ord}_{2} M+\mu=\frac{i m}{e}
$$

It implies that

$$
\begin{equation*}
\operatorname{ord}_{2} M=\frac{(i a-e) \mu+i r}{e} . \tag{3}
\end{equation*}
$$

We assume that M is odd. Since i is prime to e, we deduce from the first equality that i divides μ. Equality (3) implies that

$$
(e-i a) \mu=i r
$$

Hence $e>i a$ and μ divides $i r$. On the other hand, by Theorem 5, the order of $S(f)$ is greater than or equal to $\mu+1$. Therefore, g must be even.

We assume that M is even. Then we have $i a>e$. Indeed, if $i a \leq e$, then, by (3), we have

$$
(e-i a) \mu \leq i r-e .
$$

This implies $i r \geqslant e$ and $r \geqslant a$. There is a contradiction.
Since $i a>e$, we deduce from (3) that

$$
\operatorname{ord}_{2} M \geq \frac{\mu+r}{e}>\frac{\mu}{b}
$$

5.2. Defect 1

We now consider the case where $|S(f)|=g \cdot 2^{\mu} M-2^{\mu}$.
Proposition 9. If $m \neq 3+2 \mu$, then

$$
|S(f)| \neq g \cdot 2^{\mu} M-2^{\mu}
$$

Proof. Let $b_{i}=\omega_{i}+\bar{\omega}_{i}$. Weil has shown that

$$
\begin{equation*}
\left|b_{i}\right| \leq 2 \sqrt{q} \tag{4}
\end{equation*}
$$

for $i=1, \ldots, g$. Hence, all the polynomials $t^{2}+b_{i} t+q$ have a negative or zero discriminant.

Assume that $S(f)=g \cdot 2^{\mu} M-2^{\mu}$. Up to a permutation, we have

$$
\left(b_{i}\right)_{i=1, \ldots, g}=\left\{\begin{array}{l}
-2^{\mu}(M-1, M, \ldots, M) \\
-2^{\mu}\left(M+\varepsilon_{1}, M+\varepsilon_{2}, M, \ldots, M\right)
\end{array}\right.
$$

where $\varepsilon_{1}=(-1+\sqrt{5}) / 2$ and $\varepsilon_{2}=(-1-\sqrt{5}) / 2$. Hence, h is one of the following polynomials:

$$
h(t)=\left\{\begin{array}{l}
\left(t^{2}+2^{\mu}(M-1) t+q\right)\left(t^{2}+2^{\mu} M t+q\right)^{g-1} \\
\left(t^{2}+2^{\mu}\left(M+\varepsilon_{1}\right) t+q\right)\left(t^{2}+2^{\mu}\left(M+\varepsilon_{2}\right) t+q\right)\left(t^{2}+2^{\mu} M t+q\right)^{g-2}
\end{array}\right.
$$

Assume that $h(t)=\left(t^{2}+2^{\mu}(M-1) t+q\right)\left(t^{2}+2^{\mu} M t+q\right)^{g-1}$. The factor $\left(t^{2}+\right.$ $\left.2^{\mu}(M-1) t+q\right)$ must correspond to a supersingular elliptic curve over \mathbf{F}_{q} (Theorem 2). By Proposition 3, $2^{\mu}(M-1)$ is equal to 0 or $\sqrt{2 q}$. By Lemma 3, we have $m=3+2 \mu$.

We suppose that

$$
\left.h=\left(t^{2}+2^{\mu}\left(M+\varepsilon_{1}\right) t+q\right)\left(t^{2}+2^{\mu} M+\varepsilon_{2}\right) t+q\right)\left(t^{2}+2^{\mu} M t+q\right)^{g-2} .
$$

The roots of h are totally imaginary (see (4) and Proposition 5). Since $\varepsilon_{1}, \varepsilon_{2}$ are all the conjugates of ε_{1}, the polynomial

$$
P=\left(t^{2}+2^{\mu}\left(M+\varepsilon_{1}\right) t+q\right)\left(t^{2}+2^{\mu}\left(M+\varepsilon_{2}\right) t+q\right)
$$

is irreducible over \mathbf{Q}. This polynomial must correspond to a simple supersingular abelian variety of dimension 2 (Theorem 2). By Proposition 4, P is equal to

$$
t^{4}+\sqrt{2 q} t^{3}+q t^{2}+\sqrt{2 q^{3}} t+q
$$

Looking at the coefficients of t^{3}, we see that

$$
2^{(m+1) / 2}=2^{\mu}(2 M-1)
$$

Such a relation is clearly impossible. There is a contradiction. This concludes the proof of the proposition.

We may note that the condition $m \neq 3+2 \mu$ is false for only a finite number of m and a. Indeed, we have $m=3+2 \mu$ if and only if the couple (m, a) is in

$$
\{(5,3),(7,3),(9,3),(5,4),(5,5)\} .
$$

5.3. Defect 2

We examine the case where $|S(f)|=g \cdot 2^{\mu} M-2^{\mu+1}$. If v is a real number, we denote by $\{v\}$ its fractional part.

Proposition 10. If the following conditions are satisfied,
(i) $m \neq 1+2 \mu, m \neq 3+2 \mu$,
(ii) $\mu \neq m / 3$ or $\left\{2^{1-\mu} \sqrt{q}\right\} \leq 1-4 \cos ^{2}(3 \pi / 7) \approx 0.8019$,
then

$$
|S(f)| \neq g \cdot 2^{\mu} M-2^{\mu+1}
$$

Proof. Let $b_{i}=\omega_{i}+\bar{\omega}_{i}$.
Assume that $S(f)=g \cdot 2^{\mu} M-2^{\mu+1}$. Up to a permutation, we have

$$
\left(b_{i}\right)_{i=1, \ldots, g}=\left\{\begin{array}{l}
-2^{\mu}(M, \ldots, M, M-2), \\
-2^{\mu}(M, \ldots, M, M-1, M-1), \\
-2^{\mu}(M, \ldots, M, M+\sqrt{2}-1, M-\sqrt{2}-1), \\
-2^{\mu}(M, \ldots, M, M+\sqrt{3}-1, M-\sqrt{3}-1), \\
-2^{\mu}\left(M, \ldots, M, M-1, M+\varepsilon_{1}, M+\varepsilon_{2}\right), \\
-2^{\mu}\left(M, \ldots, M, M, M+\varepsilon_{1}, M+\varepsilon_{2}, M+\varepsilon_{1}, M+\varepsilon_{2}\right), \\
-2^{\mu}\left(M, \ldots, M, M+\delta_{1}, M+\delta_{2}, M+\delta_{3}\right),
\end{array}\right.
$$

where $\delta_{1}=1-4 \cos ^{2}(\pi / 7), \delta_{2}=1-4 \cos ^{2}(2 \pi / 7)$ and $\delta_{3}=1-4 \cos ^{2}(3 \pi / 7)$. We denote by h_{j} the polynomial corresponding to the j th g-uple $\left(b_{i}\right)$ for $j=1, \ldots, 7$. We know that h is one of these polynomials.

We note that the fifth case has been examined in the previous proof.
We assume that $h=h_{6}$. We have seen in the proof of Proposition 9 that

$$
P=\left(t^{2}+2^{\mu}\left(M+\varepsilon_{1}\right) t+q\right)\left(t^{2}+2^{\mu}\left(M+\varepsilon_{2}\right) t+q\right)
$$

Is irreducible over \mathbf{Q} and is not the characteristic polynomial of the Frobenius endomorphism of a supersingular abelian variety of dimension 2. Therefore, the polynomial P^{2} must correspond to a simple supersingular abelian variety of
dimension 4 (Theorem 2). We expand P to get

$$
P=t^{4}+B_{1} t^{3}+B_{2} t^{2}+q B_{1} t+q^{2}
$$

with $B_{1}=2^{\mu}(2 M-1)$ and $B_{2}=2 q+2^{2 \mu}\left(M^{2}-M-1\right)$. Xing [20] showed that if P^{2} is the characteristic polynomial of the Frobenius endomorphism of a simple abelian variety of dimension 4 and if $0<\operatorname{ord}_{2} B_{1}<m / 2$, then m is even. One can check that $\operatorname{ord}_{2}\left(B_{1}\right)=\mu$. By assumption, we have $0<\operatorname{ord}_{2}\left(B_{1}\right)<m / 2$. There is a contradiction.

We assume that $h=h_{7}$. Put $P=\prod_{k=1}^{3}\left[t^{2}+2^{\mu}\left(M+\delta_{k}\right) t+q\right]$. The roots of P are totally imaginary (see (4) and Proposition 5). Hence, we have

$$
2^{\mu}\left(M+1-4 \cos ^{2}(3 \pi / 7)\right)<2 \sqrt{q}
$$

i.e.

$$
\left\{2^{1-\mu} \sqrt{q}\right\}>1-4 \cos ^{2}(3 \pi / 7) .
$$

Since $\delta_{1}, \delta_{2}, \delta_{3}$ are all the conjugates of δ_{1}, the polynomial P is irreducible over \mathbf{Q}. Hence P is the characteristic polynomial of the Frobenius endomorphism of a simple abelian variety of dimension 3 (Theorem 2). It happens if and only if $\frac{\operatorname{ord}_{2} d(0)}{m}$ is an integer for each irreducible factor $d(t)$ of P over \mathbf{Q}_{2}. We shall consider the Newton polygon of P.

The polynomial P can be written as

$$
P=t^{6}+B_{1} t^{5}+B_{2} t^{4}+B_{3} t^{3}+q B_{2} t^{2}+q^{2} B_{1} t+q^{3}
$$

with

$$
\begin{aligned}
& B_{1}=2^{\mu}(3 M-2), \\
& B_{2}=3 q+2^{2 \mu}\left(3 M^{2}-4 M-1\right), \\
& B_{3}=2^{\mu+1} q(3 M-2)+2^{3 \mu}\left(M^{3}-2 M^{2}-M+1\right) .
\end{aligned}
$$

Since $\mu<m / 2$, the point $\left(3, \operatorname{ord}_{2} B_{3}\right)=(3,3 \mu)$ is the only vertex (except the ones on the axis). Therefore, the polynomial P can be written as a product of two polynomials of degree 3 in \mathbf{Q}_{2} :

$$
P(t)=P_{1}(t) P_{2}(t)
$$

Moreover, the roots of P_{1} (respectively of P_{2}) have μ (respectively $m-\mu$) for valuation.

We shall show that the polynomial P has no roots in \mathbf{Q}_{2}. Indeed, let x be an element of \mathbf{Q}_{2} of valuation $m-\mu$. The terms $B_{3} x^{3}, q B_{2} x^{2}, q^{3}$ (respectively $B_{3} x^{3}, q^{2} B_{1} x^{2}, q^{3}$) have $3 m$ for valuation if M is even (respectively if M is odd), whereas the terms $x^{6}, B_{1} x^{5}, B_{2} x^{4}, q^{2} B_{1} x^{2}$ (respectively $x^{6}, B_{1} x^{5}, B_{2} x^{4}, q B_{2} x^{2}$) have a valuation strictly greater than $3 m$ if M is even (respectively if M is odd). If follows
that $P(x)$ has $3 m$ for valuation and so is non-zero. In a similar manner, one can prove that if x is a μ-valuation element of \mathbf{Q}_{2}, then $P(x)$ is non-zero.

Since P has no roots in \mathbf{Q}_{2}, P_{1} and P_{2} are the irreducible factors of P over \mathbf{Q}_{2}. Hence, P is the characteristic polynomial of the Frobenius endomorphism of a simple abelian variety of dimension 3 if and only if $\mu=m / 3$ ($0<\mu<m / 2$).

We are left with cases $1,2,3$ and 4 . In the first case, it can be shown that $\left(t^{2}+2^{\mu}(M-2) t+q\right)$ is the characteristic polynomial of the Frobenius endomorphism of a supersingular elliptic curve if and only if $m=1+2 \mu$. For cases 2,3 and 4, one can show that $\left(t^{2}+2^{\mu}(M-1) t+q\right)^{2},\left(t^{2}+2^{\mu}(M+\sqrt{2}-1) t+q\right),\left(t^{2}+2^{\mu}(M-\right.$ $\sqrt{2}-1) t+q),\left(t^{2}+2^{\mu}(M+\sqrt{3}-1) t+q\right)\left(t^{2}+2^{\mu}(M-\sqrt{3}-1) t+q\right)$ are the characteristic polynomials of the Frobenius endomorphisms of some supersingular abelian varieties only if $m=3+2 \mu, m=1+2 \mu, m=1+2 \mu$, respectively.

We may observe that condition (i) is satisfied if and only if the couple (m, a) is not in

$$
\{(3,3),(5,3),(7,3),(9,3),(5,4),(5,5)\} .
$$

5.4. Summing up

We summarize our results.
Theorem 7. Let m be an odd integer and $q=2^{m}$. Let f be a polynomial over \mathbf{F}_{q} of degree $2 g+1$. Let a be the binary weight of f. We assume that $a \geqslant 3$ and $m \geq a$. We write $\mu=[m / a]$ and $M=\left[2^{1-\mu} \sqrt{q}\right]$. Let b be the greatest odd integer dividing g. We assume that the following conditions are satisfied:
(i) $m \neq 1+2 \mu, m \neq 3+2 \mu$,
(ii) $\mu \neq m / 3$ or $\left\{2^{1-\mu} \sqrt{q}\right\} \leq 1-4 \cos ^{2}(3 \pi / 7)$.

If one of the following conditions is satisfied,
(iii) g is prime to m,
(iv) a divides m, M is odd and a does not divide b,
(v) a divides m, M is even and $\operatorname{ord}_{2} M<\mu / b$,
(vi) a does not divide m, M is odd there does not exist an integer $i, 1 \leqslant i<b / a$, such that i divides μ and μ divides $i(m-a \mu)$,
(vii) a does not divide m, M is even and ord $_{2} M \leqslant \mu / b$,
(viii) a does not divide m and $g M$ is odd,
then

$$
|S(f)| \leq g \cdot 2^{\mu} M-3 \cdot 2^{\mu}
$$

Moreover, if m is not a multiple of μ and $g M$ is even, then

$$
|S(f)| \leq g \cdot 2^{\mu} M-4 \cdot 2^{\mu}
$$

Proof. The first assertion follows immediately from Propositions 6-8. For the second assertion, it is enough to observe that, by Theorem 5,

$$
\operatorname{ord}_{2} S(f) \geq \mu+1
$$

if m is not a multiple of μ.

6. Examples

In this section, we assume that condition (i) of Theorem 7 is satisfied.
We assume that f is a polynomial of degree $2^{a}+1, a \geqslant 3$. Note that $g=2^{a-1}$ and $b=1$. Suppose that if $a=3$, then m is not a multiple of 3 . Condition (ii) of Theorem 7 is satisfied. Hence

$$
|S(f)| \leq 2^{\mu+a-1} M-3 \cdot 2^{\mu}
$$

and if m is not a multiple of 3 ,

$$
|S(f)| \leq 2^{\mu+a-1} M-4 \cdot 2^{\mu} .
$$

We will consider in more detail those cases in which f is a polynomial of degree 7,9 , 11, 13.

First, let us suppose that m is a multiple of 3 . Let $m=3 \mu$.
We assume that f is a polynomial of degree 7. If $|S(f)|=3 \cdot 2^{\mu} M$, then J is a simple abelian variety $(e=g=3)$ and, by Proposition $6, M$ is odd. We are aware that such a situation occurs for small values of μ. More precisely, $\left|S\left(x^{7}\right)\right|=3 \cdot 2^{\mu} M$, for $\mu=3$, 5,13 . On the other hand, if M is even and $\left\{2^{1-\mu} \sqrt{q}\right\} \leq 1-4 \cos ^{2}(3 \pi / 7)$, then

$$
|S(f)| \leq 3 \cdot 2^{\mu} M-3 \cdot 2^{\mu}
$$

If f is a polynomial of degree 9 and $\left\{2^{1-\mu} \sqrt{q}\right\} \leq 1-4 \cos ^{2}(3 \pi / 7)$, then

$$
|S(f)| \leq 4 \cdot 2^{\mu} M-3 \cdot 2^{\mu}
$$

If $\mu=5$, we have $q=2^{15}$ and $M=11$. In this case, the above bound is reached; we have

$$
S\left(x^{9}+x^{7}\right)=4 \cdot 2^{\mu} M-3 \cdot 2^{\mu}=1312
$$

A strengthened result can be obtained. By Propositions 6 and 9, we may assume that $S(f)=4 \cdot 2^{\mu} M-2^{\mu+1}$. We use the same notations as in the proof of Proposition 10.

By this proof, the characteristic polynomial of the Frobenius endomorphism of the Jacobian of the curve $y^{2}+y=f(x)$ over \mathbf{F}_{q} is equal to

$$
\left(t^{2}+2^{\mu} M t+q\right) \prod_{k=1}^{3}\left[t^{2}+2^{\mu}\left(M+\delta_{k}\right) t+q\right]
$$

We have only studied the factor $\prod_{k=1}^{3}\left[t^{2}+2^{\mu}\left(M+\delta_{k}\right) t+q\right]$. But the polynomial $t^{2}+2^{\mu} M t+q$ must be the characteristic polynomial of the Frobenius endomorphism of a supersingular elliptic curve over \mathbf{F}_{q}. It is so if and only if $m=2 \mu+1$. Now we have supposed that $m \neq 2 \mu+1$, therefore

$$
|S(f)| \leq 4 \cdot 2^{\mu} M-3 \cdot 2^{\mu}
$$

without assuming $\left\{2^{1-\mu} \sqrt{q}\right\} \leq 1-4 \cos ^{2}(3 \pi / 7)$.
We assume that f is a polynomial of degree 11. If $|S(f)|=5 \cdot 2^{\mu} M$, then J is a simple abelian variety of dimension 5. By Proposition 6, 5 divided μ and

$$
\operatorname{ord}_{2} M=3 i \mu / 5-\mu
$$

with $i=1$ or 2 . From this equality, we deduce that $\operatorname{ord}_{2} M=\mu / 5$. If $\operatorname{ord}_{2} M \neq \mu / 5$ and $\left\{2^{1-\mu} \sqrt{q}\right\} \leq 1-4 \cos ^{2}(3 \pi / 7)$, we have

$$
|S(f)| \leq 5 \cdot 2^{\mu} M-3 \cdot 2^{\mu}
$$

As in the case of a polynomial of degree 9 , it can be shown that this inequality remains true if the condition $\left\{2^{1-\mu} \sqrt{q}\right\} \leq 1-4 \cos ^{2}(3 \pi / 7)$ is not satisfied.

We assume that f is a polynomial of degree 13 . Suppose that $|S(f)|=6 \cdot 2^{\mu} M$. Since $g=2 b=2 \cdot 3$ and m is odd, J is isogenous to the square of a simple abelian variety of dimension 3 . We come down to the case of degree 7. If M is even and $\left\{2^{1-\mu} \sqrt{q}\right\} \leq 1-4 \cos ^{2}(3 \pi / 7)$, then

$$
|S(f)| \leq 6 \cdot 2^{\mu} M-3 \cdot 2^{\mu}
$$

In this case, one can also see that the condition $\left\{2^{1-\mu} \sqrt{q}\right\} \leq 1-4 \cos ^{2}(3 \pi / 7)$ is unnecessary.

Assume that m is not a multiple of 3. In the same way, we can show the following results. If f is a polynomial of degree 7,9 or 13 , then

$$
|S(f)| \leq(\operatorname{deg} f-1) \cdot 2^{\mu-1} M-3 \cdot 2^{\mu}
$$

Appendix

Tables 1-4 give the Serre-Weil bound, the Moreno-Moreno bound and the results obtained in Section 6. A star denotes that the bound is reached.

Table 1
Degree 7

μ	$m=3 \mu$	$M=\left[2^{1-\mu} \sqrt{q}\right]$	$3 \cdot[2 \sqrt{q}]$	$3 \cdot 2^{\mu} M$	Section 6
3	9	5	135	120^{*}	120^{*}
5	15	11	1086	1056^{*}	1056^{*}
7	21	22	8688	8448	8064
9	27	45	69,510	69,120	69,120
11	33	90	556,089	552,960	546,816
13	39	181	$4,448,730$	$4,448,256^{*}$	$4,448,256^{*}$
15	45	362	$35,589,849$	$35,586,048$	$35,487,744$

Table 2
Degree 9

μ	$m=3 \mu$	$M=\left[2^{1-\mu} \sqrt{q}\right]$	$4 \cdot[2 \sqrt{q}]$	$4 \cdot 2^{\mu} M$	Section 6
3	9	5	180	160	152
5	15	11	1448	1408	1312^{*}
7	21	22	11,584	11,264	10,880
9	27	45	92,680	92,160	90,624
11	33	90	741,452	737,280	731,136
13	39	181	$5,931,640$	$5,931,008$	$5,906,432$
15	45	362	$47,453,132$	$47,448,064$	$47,349,760$

Table 3
Degree 11

μ	$m=3 \mu$	$M=\left[2^{1-\mu} \sqrt{q}\right]$	$5 \cdot[2 \sqrt{q}]$	$5 \cdot 2^{\mu} M$	Section 6
3	9	5	225	200	192
5	15	11	1810	1760	1664
7	21	22	14,480	14,080	13,696
9	27	45	115,850	115,200	113,664
11	33	90	926,815	921,600	915,456
13	39	181	$7,414,550$	$7,413,760$	$7,389,184$
15	45	362	$59,316,415$	$59,310,080$	$59,211,776$

Table 4
Degree 13

μ	$m=3 \mu$	$M=\left[2^{1-\mu} \sqrt{q}\right]$	$6 \cdot[2 \sqrt{q}]$	$6 \cdot 2^{\mu} M$	Section 6
3	9	5	270	240	240
5	15	11	2172	2112	2112
7	21	22	17,376	16,896	16,512
9	27	45	139,020	138,240	138,240
11	33	90	$1,112,178$	$1,105,920$	$1,099,776$
13	39	181	$8,897,460$	$8,896,512$	$8,896,512$
15	45	362	$71,179,698$	$71,172,096$	$71,073,792$

References

[1] J. Ax, Zeroes of polynomials over finite fields, Amer. J. Math. 86 (1964) 255-261.
[2] A. Cáceres, O. Moreno, On the estimation of minimum distance of duals of BCH codes, Congr. Numer. 81 (1991) 205-208.
[3] T. Honda, Isogeny classes of abelian varieties over finite fields, J. Math. Soc. Japan 20 (1968) 83-95.
[4] N. Koblitz, p-Adic Numbers, p-Adic Analysis, and Zeta-Functions, 2nd Edition, Springer, New York, 1984.
[5] K. Lauter, Geometric methods for improving the upper bounds on the number of rational points on algebraic curves over finite fields, Institut de Mathématiques de Luminy, preprint, 1999, pp. 99-29.
[6] K.-Z. Li, F. Oort, Moduli of Supersingular Abelian Varieties, Springer, Berlin, 1998.
[7] S. Litsyn, C.J. Moreno, O. Moreno, Divisibility properties and new bounds for cyclic codes and exponential sums in one and several variables, Appl. Algebra Eng. Comm. Comput. 5 (1994) 105-116.
[8] F.J. MacWilliams, N.J.A. Sloane, in: The Theory of Error-Correcting Codes. II, North-Holland Mathematical Library, Vol. 16, North-Holland Publishing Co., Amsterdam, 1977.
[9] O. Moreno, C.J. Moreno, The MacWilliams-Sloane conjecture on the tightness of the CarlitzUchiyama bound and the weights of duals of BCH codes, IEEE Trans. Inform. Theory 40 (1994) 1894-1907.
[10] O. Moreno, C.J. Moreno, A p-adic Serre bound, Finite Fields Appl. 4 (1998) 201-217.
[11] F. Rodier, Minoration de certaines sommes exponentielles binaires, Coding Theory and Algebraic Geometry, Luminy, 1991, Springer, Berlin, 1992, pp. 199-209.
[12] M. Rosen, The asymptotic behavior of the class group of a function field over a finite field, Arch. Math. (Basel) 24 (1973) 287-296.
[13] J.-P. Serre, Local class field theory, Algebraic Number Theory, Proceedings of Instructional Conference, Brighton, 1965, Thompson, Washington, DC, 1967, pp. 128-161.
[14] J.-P. Serre, Rational Points on Curves over Finite Fields, Notes by F. Gouvêa of Lectures at Harvard University, 1985.
[15] J.-P. Serre, Résumé des cours de 1983-1984, Oeuvres, Vol. III, 1986.
[16] C. Smyth, Totally positive algebraic integers of small trace, Ann. Inst. Fourier (Grenoble) 34 (1984) 1-28.
[17] J. Tate, Endomorphisms of abelian varieties over finite fields, Invent. Math. 2 (1966) 134-144.
[18] J. Tate, Classes d'isogénie des variétés abéliennes sur un corps fini (d'après T. Honda), Sém. Bourbaki 352 (1968/1969).
[19] W.C. Waterhouse, Abelian varieties over finite fields, Ann. Sci. École Norm. Sup. (4) 2 (1969) 521-560.
[20] C. Xing, The characteristic polynomials of abelian varieties of dimensions three and four over finite fields, Sci. China Ser. A. 37 (1994) 147-150.
[21] C. Xing, On supersingular abelian varieties of dimension two over finite fields, Finite Fields Appl. 2 (1996) 407-421.

[^0]: *Fax: 33-4-9126-9655.
 E-mail address: eric.ferard@upf.pf.

