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Université de la Polynésie Française, B.P. 6570, Polynésie 98702, France

Received 21 June 2000; revised 5 June 2001; accepted 25 February 2002

Communicated by Oscar Moreno

Abstract

We consider a binary BCH code Cm of length 2m21: If m is odd, we improve the bound on

the distance of the dual of Cm previously given by Carlitz–Uchiyama, Serre and Moreno–

Moreno.

r 2002 Elsevier Science (USA). All rights reserved.

1. Introduction

Let Cm be a binary BCH code of length q21 ¼ 2m21 with designed distance
d ¼ 2t þ 1: The weight w of a non-zero codeword of the dual of Cm satisfies the
Carlitz–Uchiyama bound

jw � 2m�1jrðt � 1Þ2m=2:

We shall only consider the case where m is odd. We attempt to improve this bound.
In [8], MacWilliams and Sloane suggest a stronger result

jw � 2m�1jrðt � 1Þ2ðm�1Þ=2: ð1Þ

One can show that this inequality is true for d ¼ 3; 5, 7. Moreover, when d ¼ 3; 5,
7, this bound is reached. Rodier [11] showed that this inequality is not true for codes
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of designed distance d ¼ 9; 25,y. A similar result was independently obtained by
Càceres and Moreno [2].

If p is a prime number and l an integer, we denote by Fpl a finite field of order pl : If

K is a field and L a finite extension of K; we denote by TrL=K the trace from L to K :

Let c be a codeword of the dual of Cm: Its weight wðcÞ is linked to the value of
some exponential sums. Indeed, the codeword c can be written in the form

c ¼ ðTrFq=F2ðf ðaÞÞÞaAFn
q
;

where f is a polynomial with coefficients in Fq of degree at most 2t21 and f ð0Þ ¼ 0

(see [8]). Since TrFq=F2ða2Þ ¼ TrFq=F2ðaÞ; we can always suppose that f is zero or of

odd degree. We define the exponential sum Sðf Þ by

Sðf Þ ¼
X
xAFq

ð�1ÞTrFq=F2
ðf ðxÞÞ:

Since the weight of c is the number of aAFq such that TrFq=F2ðf ðaÞÞ ¼ 1; we have

wðcÞ ¼ q � Sðf Þ
2

:

If the degree of f is odd, the exponential sum Sðf Þ satisfies the Weil bound

jSðf Þjrðdeg f � 1Þ ffiffiffi
q

p
:

We may note that this bound corresponds to the Carlitz–Uchiyama bound. To
improve the Carlitz–Uchiyama bound, we have chosen to study the exponential
sums and the Weil bound. We can deduce from (1) that we have

jSðf Þjrðdeg f � 1Þ ffiffiffi
q

p
=

ffiffiffi
2

p

for polynomials of degree 1, 3 and 5. Moreover, this bound is reached. Therefore, we
shall only consider polynomials of degree greater than or equal to 7.

The number of points N of the projective model of the curve y2 þ y ¼ f ðxÞ over
Fq is given by

N ¼ q þ 1þ Sðf Þ:

Therefore, in this particular case, we may also improve the Weil bound.
Let us fix some notations. If v is a real number, we denote by ½v	 its integer part.

Let u be an integer with binary expansion

u ¼
Xr

i¼1

2ui :
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We define the binary weight sðuÞ of u by

sðuÞ ¼ r:

If Q(x) is a polynomial with coefficients in Fq; we define its binary weight sðQÞ as
being the maximum of the binary weights of the exponents of Q:

In 1984, Serre [15] improved the Weil bound as

jSðf Þjrdeg f � 1

2
½2 ffiffiffi

q
p 	:

Using the Serre method and the divisibility properties of the exponential sums
Moreno and Moreno improved this last bound as

jSðf Þjrðdeg f � 1Þ2m�1½21�m ffiffiffi
q

p 	;

where m ¼ ½m=sðf Þ	:

2. Backgrounds on abelian varieties

Let p be a prime number. Let Qp be the field of p-adic numbers. Let O be the

completion of the algebraic closure ofQp. We denote by ordp( 
 ) the valuation over O
normalized by ordp(p)=1. We denote by j 
 jp the absolute value over O defined by

jxjp ¼ p�ordpðxÞ:

Let P ¼
Pr

i¼1 cit
i be a polynomial with coefficients in Qp: The Newton polygon of

P is the convex hull of the points ði; ordp ciÞ (see [4]).

Proposition 1. If a segment of the Newton polygon of P has a slope l and horizontal

length N, then P has precisely N roots yi with ordpðyiÞ ¼ �l (counting multiplicities).

Proof. See [4].

Put q ¼ pm: Let k ¼ Fq be a finite field of q elements.

We now recall some results on abelian varieties. The reader is referred to Tate
[17,18] and Waterhouse [19]. Let A be an abelian variety over k of dimension g: The
characteristic polynomial hA of the Frobenius endomorphism pA of A over k is a
monic of degree 2 g over Z. This polynomial determines the isogeny class of A:

Theorem 1 (Tate). Two abelian varieties defined over k are isogenous if and only

if their Frobenius endomorphisms have the same characteristic polynomial.

Let E ¼ EndkðAÞ#Q be the endomorphism algebra of A: It is a semisimple
algebra with center F ¼ Q½pA	:
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There is a unique factorization of A; up to k-isogeny, into a product of powers of
non-k-isogenous simple abelian varieties Aj: This factorization corresponds to the

decomposition of E into simple factors Ej and therefore to the expression of its

center F as a product of fields Fj: The Fj in turn correspond to the irreducible factors

Pj of hA over Q. From the previous theorem we deduce the following result.

Theorem 2. Let hA ¼ PP
mj

j be the factorization of hA in Q. For each j, there exists an

integer ej dividing mj and a simple abelian variety Aj over k, whose characteristic

polynomial of the Frobenius endomorphism is Pej ; such that A is isogenous to

PA
mj=ej

j :

We assume that A is simple. Then F ¼ QðpAÞ is a field. Weil has shown that pA is an

algebraic integer such that for all embeddings f : QðpAÞ-C; we have jfðpaÞj ¼ q1=2:
We will call such an algebraic integer, a Weil number. Honda has made explicit the
correspondence between Weil numbers and the simple abelian varieties over k:

Theorem 3 (Honda [3,18]). There is a one-to-one correspondence between the isogeny

classes of simple abelian varieties over k and the classes of conjugates over Q of Weil

numbers.

Since A is simple, the characteristic polynomial of pA is equal to

hA ¼ Pe;

where P is a Q-irreducible polynomial. Then the algebra of endomorphism E is an

algebra of division of dimension e2 over its center F ¼ QðpAÞ:
If v is a place of F ; we denote by invvðE) the invariant of E at v (see [13]). If v is

above p; we denote by ordvð
Þ the valuation on F associated to v normalized by
ordvðpÞ ¼ 1:

Theorem 4 (Tate). Let A be a simple abelian variety over k. Let v be a place of F. Let

Fv be the completion of F at v. The invariant of E at v is congruent to

* 0 if v is complex or if v is lying over lap;
* 1/2 if v is real,

*

ordvðpAÞ½Fv : Qp	
ordvðqÞ

if v is lying over p;

modulo Z.

Proposition 2. The sum of all the invariants of E is congruent to zero modulo Z. The

least common denominator of all the invariants of E is e:
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We note that if A is simple, the characteristic polynomial of pA is not in general
irreducible. It is so if and only if there are no real places in QðpAÞ and for each
irreducible factor Pv of hA over Qp; m divides ordp (Pvð0Þ).

The abelian variety A is no longer supposed to be simple. If o1; %o1;y;og; %og

are the roots of hA in C; then the characteristic polynomial of pA over Fql is

given by

h
ðlÞ
A ðtÞ ¼

Yg

i¼1

ðt � ol
iÞðt � %ol

iÞ:

We shall say here that A is supersingular if h
ðlÞ
A ð1Þ is prime to p for all positive

integers l (cf. [12,20]). Oort gave another definition of a supersingular abelian
variety: A is supersingular if A is isogenous over a finite extension of k to the power
of a supersingular elliptic curve (see [6]). For abelian varieties of dimensions 1 and 2,
these two definitions are equivalent. Note that if A is supersingular in Oort’s
meaning, then A is supersingular. But if A is an abelian variety of dimension greater
than or equal to 3, the opposite is not true.

From now on in this section, we only consider the case where p ¼ 2 and m is an
odd integer. We shall need the list of all the characteristic polynomials of the
Frobenius endomorphisms of simple supersingular abelian varieties of dimensions 1
and 2.

Proposition 3 (Deuring–Waterhouse [19]). Let m be an odd integer. Let q ¼ 2m. The

characteristic polynomials of the Frobenius endomorphisms of supersingular elliptic

curves over Fq are

(i) t27
ffiffiffiffiffiffiffi
2qt

p
þ q;

(ii) t2 þ q:

Proposition 4 (Rück–Xing [21]). Let m be an odd integer. Let q ¼ 2m. The

characteristic polynomials of the Frobenius endomorphisms of supersingular simple

abelian varieties of dimension 2 over Fq are

(i) t47qt2 þ q2;
(ii) t47

ffiffiffiffiffi
2q

p
t3 þ qt27

ffiffiffiffiffiffiffi
2q3

p
t þ q2;

(iii) ðt2 � qÞ2:

Now, let us examine the case where the characteristic polynomial of the Frobenius
endomorphism of an abelian variety has a real root.

Proposition 5 (Waterhouse [19]). Let m be an odd integer. Let q ¼ 2m. Let A be an

abelian variety over Fq. If pA has a real conjugate, then ðt22qÞ2 divides hAðtÞðinZ½t	Þ:
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3. Abelian varieties with quadratic Weil numbers

Let q ¼ pm: We generalize a result of Xing (see [20, Propositions 2 and 3]).

Proposition 6. Let e be an integer, eX3. Let hðtÞ ¼ ðt2 þ bt þ qÞe
be a polynomial

with integer coefficients and jbjo2
ffiffiffi
q

p
: Then h is the characteristic polynomial of

the Frobenius endomorphism of a simple abelian variety over Fq if and only if e divides

m and if there exists an integer i, 1pioe/2, prime to e such that

ordpðbÞ ¼ im=e:

Proof. Put f ¼ t2 þ bt þ q: We assume that h is the characteristic polynomial
of the Frobenius endomorphism of a simple abelian variety A over Fq: Let p
be a root of f : Put F ¼ QðpÞ and E ¼ Q#EndFq

ðAÞ: Since F is totally imaginary,

if v is a place which is not above p; the invariant of E at v is zero (Theorem 4).
Hence, p splits in two places in F because the sum of all the invariants
of E is congruent to zero modulo Z and e; which is greater than or equal to 3, is
their least common denominator (Proposition 2). Therefore, f can be written as a
product

f ðtÞ ¼ ðt � y1Þðt � y2Þ

with y1; y2 AQp: Denote by vi the place corresponding to the embedding of F into

Qp which maps p on yi: For i=1, 2, we have

invvi
ðEÞ � ordpðyiÞ=m mod Z:

Consider the Newton polygon of t2 þ bt þ q: We assume that the point (1, ordp (b))
is a vertex, i.e. ordp ðbÞom=2: Then we may suppose that ordpðy1Þ ¼ ordpðbÞ and

ordpðy2Þ ¼ m2ordpðbÞ: It follows that

invv1ðEÞ � ordpðbiÞ=m mod Z:

and

invv2ðEÞ � �ordpðbiÞ=m Z:

Since e is the least common denominator of invv1ðEÞ and invv2ðEÞ; there exists an
integer iX1 prime to e such that

ordpðbÞ ¼ im=e:

Since ordpðbÞom=2; we have i=eo1=2:
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We assume now that the point (1, ordpðbÞ) is not a vertex, i.e. ordpðbÞXm=2:

Then we have

ordpðy1Þ ¼ ordpðy2Þ ¼ m=2 and invv1ðEÞ ¼ invv2ðEÞ ¼ 1
2
;

which would contradict the hypothesis concerning e:
Conversely, let b be an integer such that jbjo2

ffiffiffi
q

p
: Suppose that e divides m and

that there exists an integer i; 1rioe=2; prime to e such that ordpðbÞ ¼ im=e: Let p be

a root of h: By Theorem 3, we can associate a simple abelian variety over Fq to p: The
characteristic polynomial of the Frobenius endomorphism of this variety is equal to
the r-power of the minimal polynomial of p over Q where r is the least common
denominator of all the invariants of E at the places of F ¼ QðpÞ (Proposition 2).

Since ordpðbÞom=2; the point (1, ordpðbÞ) is the only vertex (except the ones on

the axis) of the Newton polygon of t2 þ bt þ q: Hence, there are two places v1 and v2
above p and

invv1ðEÞ � i=e mod Z;

invv2ðEÞ � �i=e mod Z:

Since the invariants of E at the places which are not above p are zero, we have r ¼ e:
Therefore, h is the characteristic polynomial of the Frobenius endomorphism of a
simple abelian variety over Fq: &

The abelian varieties described in this proposition are supersingular.

4. Bound on exponential sums

We now assume that p ¼ 2 and m is an odd integer.
Let f be a polynomial over Fq of degree 2g þ 1: Let a be the binary weight of f :We

suppose that aX3 and mXa: Let m ¼ ½m=a	: Since aX3 and mXa; we have
0omom=2:

Theorem 5 (Litsyn et al. [7]). Let f be a polynomial over Fq: Then

ord2 Sðf ÞZm=sðf Þ:

For any positive integer r; we denote

Sr ¼
X

xAFqr

ð�1ÞTrFqr =F2
ðf ðxÞÞ

:

Let J be the Jacobian of the curve y2 þ y ¼ f ðxÞ over Fq: It is an abelian variety of

dimension g: Let h ¼
P2g

i¼0 ait
2g�i be the characteristic polynomial of the Frobenius

endomorphism of J over Fq: Let o1; %o1;y;og; %og be the roots of h in C: Weil has
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shown that

Sr ¼ �
Xg

i¼1

ðor
i þ %or

i Þ

for any positive integer r:

Lemma 1. For i ¼ 1;y; 2g; 2im divides ai:

Proof. We follow the proof of Ax (see [1]). Let Lðt; f Þ ¼ expð
P

N

r¼1 Srt
r=rÞ:

This function is equal to

Lðt; f Þ ¼
Yg

i¼1

ð1� oitÞð1� %oitÞ:

By logarithmic differentiation of Lðt; f Þ; we obtain

XN
r¼1

Srt
r�1 ¼ �

Xg

i¼1

oi

1� oit
þ %oi

1� %oit

� �
:

By Theorem 5, the dyadic absolute value jSrj2 of Sr is lower than 22mr for any

positive integer r: If jtj2o2m; the left-hand side converges in O: It follows that

joijr2�m and j %oijr2�m for i ¼ 1;y; g: &

By this lemma, since mZ1; J is supersingular.
We deduce from this lemma that oi=2

m and %oi=2
m are algebraic integers. We may

apply to them the Serre method to improve the Weil bound (see [15] or [9]). Put

M ¼ ½21�m ffiffiffi
q

p 	 and xi ¼ M þ 1þ ðoi þ %oiÞ=2m for i ¼ 1;y; g: The numbers xi are

totally positive algebraic integers. Therefore,
Q

xi is a strictly positive integer. By the
mean inequality, we have P

xi

g
Zð

Y
xiÞ1=g

Z1:

This implies

Sðf Þrg 
 2m M:

Lemma 2. Let f1 be a polynomial over Fq of degree r. Then there exists a polynomial f2

over Fq of degree r such that

Sðf1Þ ¼ �Sðf2Þ:
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Proof. Since the trace TrFq=F2 is surjective, there exists Fq such that TrFq=F2ðaÞ ¼ 1:

Then Sðf1Þ ¼ �Sðf1 þ aÞ: This proves the lemma. &

We deduce from the lemma the following result.

Theorem 6 (Moreno and Moreno [9,10]). Let f be a polynomial over Fq of odd degree.

Then

jSðf Þjrðdeg f � 1Þ 
 2½m=sðf Þ	�1½21�½m=sðf Þ	 ffiffiffi
q

p 	:

5. The defect

Let l be a non-negative integer. We say that f has defect l if

Sðf Þ ¼ g 
 2mM � l 
 2m:

If f has defect 0 (respectively 1, 2), then
P

xi ¼ g (respectively g þ 1; g þ 2).
The list of families ðaiÞi¼1;y;g of totally positive algebraic integers such that

P
ai ¼ g;

g þ 1 or g þ 2 is known (see [5,14,16]). Hence the family (xi) is in this list. We
deduce the possibilities for the characteristic polynomial of the Frobenius
endomorphism of J: We shall use it to prove that jSðf Þj is different from g 
 2m
M � 2m and g 
 2m M � 2mþ1 in most of the cases. If f has defect 0, then all the xi are
equal to 1. Hence, the characteristic polynomial of the Frobenius endomorphism of
J is

hðtÞ ¼ ðt2 þ 2mMt þ qÞg:

We now need a lemma.

Lemma 3. Let a be a positive integer. Then

(i) ½2a
ffiffiffi
2

p
	a2a if aa1;

(ii) ½2a
ffiffiffi
2

p
	a2a þ 1 if aa2;

(iii) ½2a
ffiffiffi
2

p
	a2a þ 2;

(iv) ½2a
ffiffiffi
2

p
	a2a�1 þ 1 if aa1;

(v) ½2a
ffiffiffi
2

p
	a2a�2 þ 1;

(vi) ½2a
ffiffiffi
2

p
	Z2:

Proof. It suffices to notice that MZ2a þ 2a22 þ 2a23 for aZ3: The lemma is an
immediate consequence of this inequality. &
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5.1. Defect 0

Let us examine the case where jSðf Þj ¼ g2mM: We may assume that Sðf Þ ¼ g2mM

(Lemma 2). As mentioned at the beginning of this section, the characteristic
polynomial of the Frobenius endomorphism of J is

hðtÞ ¼ ðt2 þ 2mMt þ qÞg:

By Theorem 2, there exists an integer d dividing g and a simple supersingular abelian

variety A over Fq such that J is isogenous to Ad : If we write e ¼ g=d; the

characteristic polynomial of the Frobenius endomorphism of A is

hAðtÞ ¼ ðt2 þ 2mMt þ qÞe:

If e ¼ 1; t2 þ 2mMt þ q is the characteristic polynomial of the Frobenius endomorph-
ism of a supersingular elliptic curve if and only if m ¼ 1þ 2m (Proposition 3 and

Lemma 3). Moreover, e is different from 2 because (t2 þ 2mMt þ q)2 is not the
characteristic polynomial of the Frobenius endomorphism of a supersingular simple
abelian variety over Fq of dimension 2 (Proposition 4). We shall study the case eX3:

Let b be the greatest odd integer dividing g: By Proposition 6, e divides m: But, by
assumption, m is odd, hence e is odd and must divide b: Since eX3; we have
gcdðb;mÞX3:

We will consider two cases according to whether m is a multiple of the binary
weight a of f or not.

Proposition 7. We assume that a divides m and that jSðf Þj ¼ g 
 2mM: If M is odd, then

a divides b. If M is even, then

ord2 MZm=b:

Proof. By Proposition 6, there exists an integer i,1ri oe/2, prime to e such that

mþ ord2 M ¼ im=e: ð2Þ

We assume that M is odd. Equality (2) gives

e ¼ ia:

Since i is prime to e; we have e ¼ a:

We assume that M is even. We deduce from (2) that

ord2 M ¼ mðai � eÞ=e:

Since M is even, we have ai4e and

ord2 MZm=eZm=b:
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We have also shown that if jSðf Þj ¼ g 
 2mM and M is odd, then the invariants of E

at the two places above 2 are 1=a and 21=a:

Proposition 8. We assume that a does not divide m. We write m ¼ amþ r with

0oroa. We suppose that jSðf Þj ¼ g 
 2mM. If M is odd, then g is even and there exists

an integer i, 1riob=a, such that i divides m and m divides ir. In particular, we have

mobr=a. If M is even, then

ord2 M4m=b:

Proof. By Proposition 6, there exists an integer i; 1rioe=2; prime to e such that

ord2 M þ m ¼ im

e
:

It implies that

ord2 M ¼ ðia � eÞmþ ir

e
: ð3Þ

We assume that M is odd. Since i is prime to e; we deduce from the first equality
that i divides m: Equality (3) implies that

ðe � iaÞm ¼ ir:

Hence e4ia and m divides ir: On the other hand, by Theorem 5, the order of Sðf Þ is
greater than or equal to mþ 1: Therefore, g must be even.

We assume that M is even. Then we have ia4e: Indeed, if iare; then, by (3), we
have

ðe � iaÞmrir � e:

This implies irXe and rXa: There is a contradiction.
Since ia4e; we deduce from (3) that

ord2 M Z
mþ r

e
4

m
b
:

5.2. Defect 1

We now consider the case where jSðf Þj ¼ g 
 2m M � 2m:

Proposition 9. If ma3þ 2m; then

jSðf Þjag 
 2m M � 2m:
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Proof. Let bi ¼ oi þ %oi: Weil has shown that

jbijr2
ffiffiffi
q

p ð4Þ

for i ¼ 1;y; g: Hence, all the polynomials t2 þ bit þ q have a negative or zero
discriminant.

Assume that Sðf Þ ¼ g 
 2m M � 2m: Up to a permutation, we have

ðbiÞi¼1;y;g ¼
�2mðM � 1;M;y;MÞ;
�2mðM þ e1;M þ e2;M;y;MÞ;

(

where e1 ¼ ð�1þ
ffiffiffi
5

p
Þ=2 and e2 ¼ ð�1�

ffiffiffi
5

p
Þ=2: Hence, h is one of the following

polynomials:

hðtÞ ¼
ðt2 þ 2mðM � 1Þt þ qÞðt2 þ 2mMt þ qÞg�1;

ðt2 þ 2mðM þ e1Þt þ qÞðt2 þ 2mðM þ e2Þt þ qÞðt2 þ 2mMt þ qÞg�2:

(

Assume that hðtÞ ¼ ðt2 þ 2mðM � 1Þt þ qÞðt2 þ 2mMt þ qÞg�1: The factor ðt2 þ
2mðM � 1Þt þ qÞ must correspond to a supersingular elliptic curve over Fq

(Theorem 2). By Proposition 3, 2mðM � 1Þ is equal to 0 or
ffiffiffiffiffi
2q

p
: By Lemma 3, we

have m ¼ 3þ 2m:
We suppose that

h ¼ ðt2 þ 2mðM þ e1Þt þ qÞðt2 þ 2mM þ e2Þt þ qÞðt2 þ 2mMt þ qÞg�2:

The roots of h are totally imaginary (see (4) and Proposition 5). Since e1; e2 are all
the conjugates of e1; the polynomial

P ¼ ðt2 þ 2mðM þ e1Þt þ qÞðt2 þ 2mðM þ e2Þt þ qÞ

is irreducible over Q: This polynomial must correspond to a simple supersingular
abelian variety of dimension 2 (Theorem 2). By Proposition 4, P is equal to

t4 þ
ffiffiffiffiffi
2q

p
t3 þ qt2 þ

ffiffiffiffiffiffiffi
2q3

p
t þ q:

Looking at the coefficients of t3; we see that

2ðmþ1Þ=2 ¼ 2mð2M � 1Þ:

Such a relation is clearly impossible. There is a contradiction. This concludes the
proof of the proposition. &
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We may note that the condition ma3þ 2m is false for only a finite number of m

and a: Indeed, we have m ¼ 3þ 2m if and only if the couple (m; a) is in

fð5; 3Þ; ð7; 3Þ; ð9; 3Þ; ð5; 4Þ; ð5; 5Þg:

5.3. Defect 2

We examine the case where jSðf Þj ¼ g 
 2mM � 2mþ1: If v is a real number, we
denote by fvg its fractional part.

Proposition 10. If the following conditions are satisfied,

(i) ma1þ 2m;ma3þ 2m;
(ii) mam=3 or f212m ffiffiffi

q
p gr1� 4 cos2ð3p=7ÞE0:8019;

then

jSðf Þjag 
 2m M � 2mþ1:

Proof. Let bi ¼ oi þ %oi:

Assume that Sðf Þ ¼ g 
 2mM � 2mþ1: Up to a permutation, we have

ðbiÞi¼1;y;g ¼

�2mðM;y;M;M � 2Þ;
�2mðM;y;M;M � 1;M � 1Þ;
�2mðM;y;M;M þ

ffiffiffi
2

p
� 1;M �

ffiffiffi
2

p
� 1Þ;

�2mðM;y;M;M þ
ffiffiffi
3

p
� 1;M �

ffiffiffi
3

p
� 1Þ;

�2mðM;y;M;M � 1;M þ e1;M þ e2Þ;
�2mðM;y;M;M;M þ e1;M þ e2;M þ e1;M þ e2Þ;
�2mðM;y;M;M þ d1;M þ d2;M þ d3Þ;

8>>>>>>>>>>>><
>>>>>>>>>>>>:

where d1 ¼ 1� 4 cos2ðp=7Þ; d2 ¼ 1� 4 cos2ð2p=7Þ and d3 ¼ 1� 4 cos2ð3p=7Þ: We
denote by hj the polynomial corresponding to the jth g-uple (biÞ for j ¼ 1;y; 7: We

know that h is one of these polynomials.
We note that the fifth case has been examined in the previous proof.
We assume that h ¼ h6: We have seen in the proof of Proposition 9 that

P ¼ ðt2 þ 2mðM þ e1Þt þ qÞðt2 þ 2mðM þ e2Þt þ qÞ

Is irreducible over Q and is not the characteristic polynomial of the Frobenius
endomorphism of a supersingular abelian variety of dimension 2. Therefore, the

polynomial P2 must correspond to a simple supersingular abelian variety of
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dimension 4 (Theorem 2). We expand P to get

P ¼ t4 þ B1t3 þ B2t
2 þ qB1t þ q2

with B1 ¼ 2mð2M � 1Þ and B2 ¼ 2q þ 22mðM2 � M � 1Þ: Xing [20] showed that if P2

is the characteristic polynomial of the Frobenius endomorphism of a simple abelian
variety of dimension 4 and if 0oord2B1om=2; then m is even. One can check that
ord2ðB1Þ ¼ m: By assumption, we have 0oord2ðB1Þom=2: There is a contradiction.

We assume that h ¼ h7: Put P ¼
Q3

k¼1½t2 þ 2mðM þ dkÞt þ q	: The roots of P are

totally imaginary (see (4) and Proposition 5). Hence, we have

2mðM þ 1� 4 cos2ð3p=7ÞÞo2
ffiffiffi
q

p
;

i.e.

f21�m ffiffiffi
q

p g41� 4cos2ð3p=7Þ:

Since d1; d2; d3 are all the conjugates of d1; the polynomial P is irreducible over Q:
Hence P is the characteristic polynomial of the Frobenius endomorphism of a simple

abelian variety of dimension 3 (Theorem 2). It happens if and only if ord2 dð0Þ
m

is an

integer for each irreducible factor dðtÞ of P over Q2. We shall consider the Newton
polygon of P:

The polynomial P can be written as

P ¼ t6 þ B1t5 þ B2t
4 þ B3t

3 þ qB2t2 þ q2B1t þ q3

with

B1 ¼ 2mð3M � 2Þ;

B2 ¼ 3q þ 22mð3M2 � 4M � 1Þ;

B3 ¼ 2mþ1qð3M � 2Þ þ 23mðM3 � 2M2 � M þ 1Þ:

Since mom=2; the point (3, ord2 B3Þ ¼ ð3; 3mÞ is the only vertex (except the ones on
the axis). Therefore, the polynomial P can be written as a product of two
polynomials of degree 3 in Q2:

PðtÞ ¼ P1ðtÞP2ðtÞ:

Moreover, the roots of P1 (respectively of P2) have m (respectively m � m) for
valuation.

We shall show that the polynomial P has no roots in Q2: Indeed, let x be an

element of Q2 of valuation m � m: The terms B3x
3; qB2x

2; q3 (respectively

B3x3; q2B1x2; q3) have 3m for valuation if M is even (respectively if M is odd),

whereas the terms x6;B1x5;B2x
4; q2B1x2 (respectively x6;B1x5;B2x

4; qB2x2) have a
valuation strictly greater than 3m if M is even (respectively if M is odd). If follows
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that PðxÞ has 3m for valuation and so is non-zero. In a similar manner, one can
prove that if x is a m-valuation element of Q2; then PðxÞ is non-zero.

Since P has no roots in Q2; P1 and P2 are the irreducible factors of P

over Q2: Hence, P is the characteristic polynomial of the Frobenius endo-
morphism of a simple abelian variety of dimension 3 if and only if m ¼ m=3
(0omom=2).

We are left with cases 1, 2, 3 and 4. In the first case, it can be shown that

ðt2 þ 2mðM � 2Þt þ qÞ is the characteristic polynomial of the Frobenius endomorph-
ism of a supersingular elliptic curve if and only if m ¼ 1þ 2m: For cases 2, 3 and 4,

one can show that ðt2 þ 2mðM � 1Þt þ qÞ2; ðt2 þ 2mðM þ
ffiffiffi
2

p
� 1Þt þ qÞ; ðt2 þ 2mðM �ffiffiffi

2
p

� 1Þt þ qÞ; ðt2 þ 2mðM þ
ffiffiffi
3

p
� 1Þt þ qÞðt2 þ 2mðM �

ffiffiffi
3

p
� 1Þt þ qÞ are the char-

acteristic polynomials of the Frobenius endomorphisms of some supersingular
abelian varieties only if m ¼ 3þ 2m; m ¼ 1þ 2m;m ¼ 1þ 2m; respectively. &

We may observe that condition (i) is satisfied if and only if the couple (m; a) is not
in

fð3; 3Þ; ð5; 3Þ; ð7; 3Þ; ð9; 3Þ; ð5; 4Þ; ð5; 5Þg:

5.4. Summing up

We summarize our results.

Theorem 7. Let m be an odd integer and q ¼ 2m. Let f be a polynomial over Fq of

degree 2g þ 1. Let a be the binary weight of f . We assume that aX3 and mZa. We

write m ¼ ½m=a	 and M ¼ ½21�m ffiffiffi
q

p 	: Let b be the greatest odd integer dividing g. We

assume that the following conditions are satisfied:

(i) ma1þ 2m;ma3þ 2m;
(ii) mam=3 or f21�m ffiffiffi

q
p gr1� 4cos2ð3p=7Þ:

If one of the following conditions is satisfied,

(iii) g is prime to m;
(iv) a divides m, M is odd and a does not divide b;
(v) a divides m, M is even and ord2Mom=b,

(vi) a does not divide m, M is odd there does not exist an integer i, 1piob=a, such

that i divides m and m divides iðm � amÞ;
(vii) a does not divide m, M is even and ord2Mpm=b;
(viii) a does not divide m and gM is odd,

then

jSðf Þjrg 
 2mM � 3 
 2m:
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Moreover, if m is not a multiple of m and gM is even, then

jSðf Þjrg 
 2mM � 4 
 2m:

Proof. The first assertion follows immediately from Propositions 6–8. For the
second assertion, it is enough to observe that, by Theorem 5,

ord2 Sðf ÞZmþ 1

if m is not a multiple of m: &

6. Examples

In this section, we assume that condition (i) of Theorem 7 is satisfied.

We assume that f is a polynomial of degree 2a þ 1; aX3: Note that g ¼ 2a21 and
b ¼ 1: Suppose that if a ¼ 3; then m is not a multiple of 3. Condition (ii) of Theorem
7 is satisfied. Hence

jSðf Þjr2mþa�1M � 3 
 2m;

and if m is not a multiple of 3,

jSðf Þjr2mþa�1 M � 4 
 2m:

We will consider in more detail those cases in which f is a polynomial of degree 7, 9,
11, 13.

First, let us suppose that m is a multiple of 3. Let m ¼ 3m:
We assume that f is a polynomial of degree 7. If jSðf Þj ¼ 3 
 2mM; then J is a simple

abelian variety (e ¼ g ¼ 3) and, by Proposition 6, M is odd. We are aware that such a

situation occurs for small values of m: More precisely, jSðx7Þj ¼ 3 
 2mM; for m ¼ 3;

5,13. On the other hand, if M is even and f21�m ffiffiffi
q

p gr1� 4cos2ð3p=7Þ; then

jSðf Þjr3 
 2m M � 3 
 2m:

If f is a polynomial of degree 9 and f21�m ffiffiffi
q

p gr1� 4 cos2ð3p=7Þ; then

jSðf Þjr4 
 2m M � 3 
 2m:

If m ¼ 5; we have q ¼ 215 and M ¼ 11: In this case, the above bound is reached; we
have

Sðx9 þ x7Þ ¼ 4 
 2mM � 3 
 2m ¼ 1312:

A strengthened result can be obtained. By Propositions 6 and 9, we may assume that

Sðf Þ ¼ 4 
 2mM � 2mþ1: We use the same notations as in the proof of Proposition 10.
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By this proof, the characteristic polynomial of the Frobenius endomorphism of the

Jacobian of the curve y2 þ y ¼ f ðxÞ over Fq is equal to

ðt2 þ 2mMt þ qÞ
Y3
k¼1

½t2 þ 2mðM þ dkÞt þ q	:

We have only studied the factor
Q3

k¼1½t2 þ 2mðM þ dkÞt þ q	: But the polynomial

t2 þ 2mMt þ q must be the characteristic polynomial of the Frobenius endomorphism
of a supersingular elliptic curve over Fq: It is so if and only if m ¼ 2mþ 1: Now we

have supposed that ma2mþ 1; therefore

jSðf Þjr4 
 2mM � 3 
 2m

without assuming f21�m ffiffiffi
q

p gr1� 4 cos2ð3p=7Þ:
We assume that f is a polynomial of degree 11. If jSðf Þj ¼ 5 
 2m M; then J is a

simple abelian variety of dimension 5. By Proposition 6, 5 divided m and

ord2 M ¼ 3im=5� m

with i ¼ 1 or 2. From this equality, we deduce that ord2 M ¼ m=5: If ord2 Mam=5
and f21�m ffiffiffi

q
p gr1� 4 cos2ð3p=7Þ; we have

jSðf Þjr5 
 2mM � 3 
 2m:

As in the case of a polynomial of degree 9, it can be shown that this inequality

remains true if the condition f21�m ffiffiffi
q

p gr1� 4 cos2ð3p=7Þ is not satisfied.
We assume that f is a polynomial of degree 13. Suppose that jSðf Þj ¼ 6 
 2m M:

Since g ¼ 2b ¼ 2 
 3 and m is odd, J is isogenous to the square of a simple abelian
variety of dimension 3. We come down to the case of degree 7. If M is even and

f21�m ffiffiffi
q

p gr1� 4 cos2ð3p=7Þ; then

Sðf Þj jr6 
 2mM � 3 
 2m:

In this case, one can also see that the condition f21�m ffiffiffi
q

p gr1� 4 cos2ð3p=7Þ is

unnecessary.
Assume that m is not a multiple of 3. In the same way, we can show the following

results. If f is a polynomial of degree 7, 9 or 13, then

jSðf Þjrðdeg f � 1Þ 
 2m�1 M � 3 
 2m:

Appendix

Tables 1–4 give the Serre–Weil bound, the Moreno–Moreno bound and the results
obtained in Section 6. A star denotes that the bound is reached.
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Table 1

Degree 7

m m ¼ 3m M ¼ ½21�m ffiffiffi
q

p 	 3 
 ½2 ffiffiffi
q

p 	 3 
 2mM Section 6

3 9 5 135 120* 120*

5 15 11 1086 1056* 1056*

7 21 22 8688 8448 8064

9 27 45 69,510 69,120 69,120

11 33 90 556,089 552,960 546,816

13 39 181 4,448,730 4,448,256* 4,448,256*

15 45 362 35,589,849 35,586,048 35,487,744

Table 2

Degree 9

m m ¼ 3m M ¼ ½21�m ffiffiffi
q

p 	 4 
 ½2 ffiffiffi
q

p 	 4 
 2mM Section 6

3 9 5 180 160 152

5 15 11 1448 1408 1312*

7 21 22 11,584 11,264 10,880

9 27 45 92,680 92,160 90,624

11 33 90 741,452 737,280 731,136

13 39 181 5,931,640 5,931,008 5,906,432

15 45 362 47,453,132 47,448,064 47,349,760

Table 3

Degree 11

m m ¼ 3m M ¼ ½21�m ffiffiffi
q

p 	 5 
 ½2 ffiffiffi
q

p 	 5 
 2mM Section 6

3 9 5 225 200 192

5 15 11 1810 1760 1664

7 21 22 14,480 14,080 13,696

9 27 45 115,850 115,200 113,664

11 33 90 926,815 921,600 915,456

13 39 181 7,414,550 7,413,760 7,389,184

15 45 362 59,316,415 59,310,080 59,211,776

Table 4

Degree 13

m m ¼ 3m M ¼ ½21�m ffiffiffi
q

p 	 6 
 ½2 ffiffiffi
q

p 	 6 
 2mM Section 6

3 9 5 270 240 240

5 15 11 2172 2112 2112

7 21 22 17,376 16,896 16,512

9 27 45 139,020 138,240 138,240

11 33 90 1,112,178 1,105,920 1,099,776

13 39 181 8,897,460 8,896,512 8,896,512

15 45 362 71,179,698 71,172,096 71,073,792
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