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ABSTRACT 

The authors prove a lemma which expresses the mixed derivatives of a function in ~n in terms 
of its directional derivatives of the same order in an angle. The lemma is used to derive an edge-of- 
the-wedge theorem for C n with an explicit domain of analytic continuation. Other applications will 
be given in subsequent papers. 

1. INTRODUCTION 

In this p a p e r  we present  a convenient  cond i t ion  for  rea l -analy t ic i ty  o f  

con t inuous  func t ions  in R ~ (section 4). The  result  is used to p rove  a fo rm o f  

the  edge-of - the -wedge  t h e o r e m  which includes a descr ip t ion  o f  a min ima l  

d o m a i n  o f  ana ly t ic  c o n t i n u a t i o n  (section 5). Our  me thod  o f  p r o o f  is re la ted  to  

tha t  o f  F . E ,  Browder  [3], bu t  somewha t  s impler .  In a subsequent  ar t ic le  [9] one 

o f  us will p rove  a r e f inemen t  of  He lga so n ' s  suppor t  t heorem for  R a d o n  

t r a n s f o r m s  on R ~ [5]. A la ter  paper  [10] will explore  the re la t ion be tween 

1-d imens iona l  ana ly t i c i ty  o f  a funct ion  in C" on  a fami ly  of  complex  lines 

t h r o u g h  the  or igin and  n -d imens iona l  h o l o m o r p h y  o f  the  funct ion  on  a neigh- 

b o r h o o d  o f  the  or ig in ,  cf. Fore l l i ' s  paper  [4]. 

A l t h o u g h  the above  results  may  seem unre la ted ,  our  p roofs  are all based on 

the fo l lowing  l emma ,  by  which  mixed der ivat ives  can be es t imated  in terms o f  

d i rec t iona l  der ivat ives  in an  angle.  

* Second author supported by the Netherlands' research organization ZWO. 
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MAIN LEMMA. For every open subset ~ o f  the unit sphere S n- 1 in ~n, there 
exist a constant B=B~ and a family o f  integrable functions {g~} with the 
following properties: 

(1.1) ~ (WlDl +... +wnDn)laiga(oJ)da= ~ Da 

for  all n-tuples a = (al,... ,  a,) o f  non-negative integers; 

(1.2) ~ tg~(oo)lda<_(B+e) I~1 
Q 

for  every e > 0 and all a o f  sufficiently large height [a{. 

Here we have used the standard notations 

Dj = 6/Oxj, D ~ = D~'... Dff", 

~ !  = ~ 1 !  . . .O~n! ,  }al = a l  -+- . . .  + a  n 

while da denotes the area-element of  S n- 1 
The main lemma will be derived from the following special case for n = 2: 

LEMMA 1. For every subinterval (0, 2) of  (0, 27r) there exist a constant B = Ba 
and a family o f  integrable functions {gpq} with the following properties: 

¢ (1.1') _ (cos O) +(sin O) 
o \ p / ax~ax~ 

for  all non-negative integers p, q; 

), 

(1.2') I lgpq(O)[dO<_(B+e) p+q 
0 

for every e > 0 and all p, q with sufficiently large sum p + q. 

It is easy to see that the constants B must be >__ 1, cf. (2.1) below. The minimal 
constants B a will form a decreasing function of  2. We prove 1emma 1 with 

3 + 2 v ~  
(1.3) Ba - -  for 0<2_<7t/4,  Ba=Bn/4 for 2>7t /4 .  

sin 2 

Under translation of  the interval (0,2), the constant B is at most doubled 
(lemma 2). Our constants B are not best possible; it would be of  interest for 
the applications to have minimal values. We do have a sharp result for the case 
where O is the whole sphere (or a hemisphere): in that case B can be taken equal 
to 1 if we suppress the factor tcz[!/u! on the right-hand side of  (1.1), see [10]. 

2. P R O O F  OF  L E M M A  1 

By the binomial theorem, equation (1.1 ') is equivalent to the set of  conditions 

,l 

(2.1) f (cos O)P+q-k(sin O)kgpq(O)dO=akq, k = 0  . . . . .  p + q .  
0 
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Taking gpq(O)= 0 for O> rr/4 if necessary, we may assume that 2 < re/4 so that 

r = t a n  2_< 1. 

We now substitute 0 = arctan rs. Then (2.1) takes the form 

1 gpq(arctan rs) 2"k+l I Sk dS=~kq , k=O ..... p+q. 
0 (I + "f2S2)½L°+q)+ 1 

Since the right-hand side is zero for k--gq, we may replace r k÷l by z q+l. 

Setting 

r q + lgpq(arctan zs) 
(2.2) hpq(S)- (1 q- 2"2S2) ~ ( p + q ) + l  ' 

our system of  equations reduces to 

1 

(2.3) f Skhpq(S)dS=t~kq, k = O  . . . . .  p + q .  
o 

It is convenient to introduce the linear span Sq of  the powers 

s o . . . . .  s q - l, s q + 1 . . . . .  s p + q in L 2(0 ,  1). 

Equation (2.3) requires that hpq .L Sq and furthermore that f I sqhpq= 1. We 
take for hpq the unique element of L2(0, 1) that satisfies these conditions and 
has minimal L 2 norm. Then hpq must be a constant c times the difference 
between s q and its orthogonal  projection Q on Sq (hence hpq is a polynomial of 
degree < p  + q). The condition 

1 1 
1 = I sqhpq = I ( Sq -- Q)c(  s q -  Q)  

0 0 

gives the value of  c and hence 

(2.4) II hpq[12 = {distance (S  q, S q ) }  - 1 

The above distance may be estimated rather accurately with the aid of 
functional analysis and Laplace integrals. However, this L 2 distance has been 
computed exactly by Miintz [6] and Sz~isz [8]. Their formula gives 

lk-qt distance ( s q S q ) = ( 2 q +  1) -~ I] 
k=O,k*q k + q + l  

= (2q+ 1) k q!P!q! 
( p + 2 q +  1)!" 

For fixed p + q = m the reciprocal [[hpq]t 2 of  the distance is maximal if 2q2= m 2, 
so that by a short calculation 

(2.5) Ilhpqll2<C m for any C > 3 + 2 v ~ ,  

provided m = p  + q > m 0. 
Defining gpq according to (2.2), we will have (2.1) and hence (1.1 '). Finally, 
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Schwarz 's  inequali ty gives 

(2.6) 

~ rds 
! Igpq(O)ldO = ! Igpq(arctan rs)] 1 + rZs - - - - - - 5  

1 

<-- [Ihpqll2r-q{ ~ (1 + r2s2)p+qds} T 
0 

<--Ilhpqtl2(l + 1/r2)~°+q)<_(C/sin it)P+q, 

provided p + q is sufficiently large, cf. (2.5). Fo rmula  (2.6) completes  the p r o o f  
o f  lemma 1. It gives (1.2') with B=Ba as in (1.3); in the case it > r~/4 we may  
o f  course take Ba = Bn/4. 

3. D E . R I V A T I O N  O F  T H E  M A I N  L E M M A  

We first investigate what happens  in lemma 1 under  rota t ion.  

LEMMA 2. For every interval (a, a + it) there exist a constant B = B ~  and a 
family o f  integrable functions {gpq} with the following properties: 

(;) (3.1) f {(cos 0 ) D l + ( s i n  O)Dz}P+qgpq(O)dO= p q D~D~ 
a 

for  all non-negative integers p, q; 

a+)~ 

(3.2) i lgpq(O)ldO<_(B+e) p+q 
a 

for  every e > 0 and all p, q with sufficiently large sum p + q. 
In fact, we may take t~ = 2B where B is as in lemma 1. 

PROOF. Substi tuting 

D 1 =L) 1 cos a - / )  2 sin a, D 2 = / )  1 sin a + / )  2 cos a 

and setting 0 - a  = t, equat ion (3.1) becomes 

(3.3) 

,t 

I (Dl cos t + / )  2 sin t)P+q~pq(a+t)dt = 
0 

(P;q) o~_~j~p (P)(qt (cOs a)J+q-k(--l)P-J(sina)P-J+kl~J+kl~p+q-j-k 

O<_k<_q 

Now,  using funct ions g as in lemma 1, 

( p  T q~ fjj+kr~p+q_j_ k j + k j ~  I ~.2 = ! ( /)  l cos t + / )  2 sin t)P+qgj+k,p+q_j_k(t)dt. 
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It follows that we may satisfy (3.1) by defining 

gpq(a + t) = 

C)(q) 
( P ; q )  ~k {p+q~  

\ j + k ]  

(cos a)J+q-&(- 1)P-J(sin a)P-J+kgj+k,p+q_j_k(t ). 

With this choice of  g, the inequalities (1.2') give 

II pqlll  2 (.j+k)! ( p + q - j - k ) !  llgj+k,p+q-j-k[tl 
Zk j !k !  ( p - j ) ! ( q - k ) !  

<- ~ 2J+k2P+q-j-k(B+e)P+q<_c p+q 
j,k 

for any constant C > 2 ( B + e )  and all large p+q.  D 

PROOF OF THE MAIN LEMMA. The proof  is by induction with respect to the 
dimension. For n = 2 the result follows from lemma 2, because f2 must then 
contain an interval (a ,a+; t )  and we can take ga=~pq on that interval and 
g a = 0  outside. We thus take n > 3  and indicate the step from n - 1  to n .  

Accordingly, let f2 be an open set in S"-  I. We represent the points co of S n- 1 
as follows: 

091 = cos O, (092 . . . . .  09~) = (sin 0)09' 

where 0<0_<n and 0 9 ' E S  n-2 .  The area element of S n-I then becomes 

(3.4) da=dO (sin O)n-2da ', 

where da" is the area element on S n-2. 

Next choose open subsets Oi and f2' of  (0, re) and S"-2 such that the points 
o9 corresponding to f21 x 12' form an open subset I2 0 of f2. The constants and 
functions which the main lemma (for dimensions < n - 1 )  associates with f21 
and 12' will be denoted by/~,  ~ and B*, g*, respectively. In order to establish 
(1.1), we will use functions ge(09) that are equal to zero outside f2 0. Repre- 
senting the vector D- - (Dl  . . . . .  Dn) as (Dl, D') ,  the inner product 09. D becomes 

09- D = (cos O)Dl + (sin 0)09'- D'. 

The desired formula (1.1) may thus be written in the equivalent form 

(3.5) I 
j {(cos O)D 1 +(sin O)09'.D'}a'+la'lgat,a,(09)(sin O)n-2dOda ' 

£2~ x f2'  

= la]!  D[' la'l---~-~" (D') a'. a~!l~'l! a'! 
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Now by the result for n = 2, cf. lemma 2, 

I I(co') de=r I {(COS 0)Dl+(sin O)o9"D'}a'+!aq~,a, la,l(O)dO 
f2~ 

(3.6) • = ]a[! D~' (c°"D')  i~'1" 
a~![a'l! 

Multiplying (3.6) by g*,(~o') and integrating over f2', we obtain 

(3.7) j I(¢o')g*,(w')da'= lal! D~' J (~o'.D')Ja'lga*,(oJ')da'. 
o' alt la'lt  o, 

Thus by the main lemma for dimension n -  1 and our choice of functions g*, 
the right-hand side of (3.7) is precisely equal to the right-hand side of (3.5). 

The conclusion is that we may satisfy (3.5) or (1.1) by defining 

(3.8) g~(og)(sin 0 "n-2 - "0" * ' to" ) =gada'l( )ga'( ) for toni2  0. 

For the norm of ga(co) we then obtain, cf. (3.4), 

J lg~(oo)l d a =  J = J l~a,t~,l(O)ldO~lg~*,(co')lda '. 
I2 f2 o D, O" 

By the induction hypothesis, the right-hand side is bounded by 

(B + e)lal(B * + e)la'] 

provided la'[ is large. Since B*__. 1, the weaker inequality 

IIg~ll, -< {(B + ~)(n* + e)} '~' 

will hold for all u of large height, even when I~'] is small. Suitably adjusting 
e, it follows that we have (1.2) with B = B g = B B *  

4. A SUFFICIENT CONDITION FOR REAL-ANALYT1CITY OF C O N T I N U O U S  FUNC-  
TIONS 

We start with a result for C ~ functions. 

PROPOSITION 1. Let f be a C °~ function on a domain D in ~n such that, for  
the fixed angle spanned by a given open subset £2 o f  S n- 1 and at each point o f  
D, all directional derivatives o f  order k are bounded by Ckk ! for  all large k. 
Then f is real-analytic on D and f has a holomorphic extension to the neigh- 
borhood 

(4.1) U=D+A(O, 1 / B C ) = { z ~ C  n, z = a + b ,  aeD ,  IbjI<I/BC} 

o f  D in C n, with B =Bo as in the main lemma. 

PROOF.  We estimate the mixed derivatives of f at a e D  with the aid of the 
main lemma: 

(4.2) ~ ID~f(a)l = I J (~o'D)l~f(a)g~(~o)dal<-Cl~l(B+J)t~lla[! 
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for every J > 0 and all a of large height. It follows that the Taylor series 

1 
(4.3) ~_~0~] ~. Daf(a)(x-a)a  

for f (x )  around the point a converges throughout the open set [](a) given by 
txj-ajl  < 1/BC, j =  1 .. . . .  n. The series will converge t o f o n  D(a)ND,  because 
the difference between f ( x )  and the partial sums of the series will tend to zero 
there. Thus f is real-analytic on D. 

The complexified series (4.3), obtained by replacing x with z, will converge 
throughout the polydisc A (a, 1/BC), hence f has a holomorphic extension to the 
set U of (4.1). 

Now we are ready for 

THEOREM 1. Let f be a continuous function on a domain D in ~n such that, 
for  the fixed angle spanned by a given open subset £2 o f  S n- I and at each point 
o f  D, all directional derivatives o f  order k exist and, for  large k, are bounded 
by Ckk!. Then f is real-analytic on D and f has a h olomorphic extension to the 
neighborhood U o f  D in C" described in (4.1). 

PROOF. Let {¢,} be a C ~ approximate identity relative to convolution on ~n 
such that the support of ¢~_>0 belongs to the ball Ix[ <_e and ftp~= 1. It is 
enough to prove the desired result for every relatively compact subdomain D' 
of D, because the union of the corresponding neighborhoods 

U'=D'  + A(O, I /BC) 

will be U. 
For given D' we take e less than the distance between D' and the boundary 

of D and we form the convolutions 

f ,  =f . tp ,  

on D'. Observe that fe--,f  on D' as e-*0. The functions f~ will satisfy the 
conditions of proposition 1 for D'. Indeed, they are of class C ~ and for large 
k, the directional derivatives D~f~ in the given angle will satisfy the inequality 

tD~f~(a)l = [(D~f .tp~)(a)l _< Ckk! Iqge = Ckk! 

at each point a e D'. 
It thus follows from proposition 1 that the functions f~ have a holomorphic 

extension to U'. Moreover, by (4.2) applied to f~, the extended functions f~ 
form a bounded family on every relatively compact subdomain of U'. In other 
words, they form a normal family on U'. Any limit function of this family will 
be equal to f on D' and holomorphic on U'. We conclude that f is real-analytic 
on D' and has a holomorphic extension to U'. 
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REMARK l. Observe that in theorem 1, it would be enough to require that f 
be a distribution on D for which the distributional directional derivatives satisfy 
the given conditions. On the other hand, one needs more than just real- 
analyticity of  f on every line, cf. the example xlx2/(x 2 +x~) for ~2. 

REMARK 2. There are related results on the real-analyticity of  separately 

analytic functions, cf. F.E. Browder [2], Bochnak and Siciak [1]. Their work 
shows that the conditions for real-analyticity in theorem 1 are much more 
stringent than necessary. However,  the point is that theorem 1 is easy to prove 
and just right for certain applications, among them the one below. 

5. THE EDGE-OF-THE-WEDGE THEOREM 

In this section we obtain a form of the edge-of-the-wedge theorem, in which 
we explicitly indicate a minimal set of analytic continuation. Our proof  of  the 
theorem is related to one by Browder, cf. [3]. The main difference with 

Browder 's  p roof  is that he made use of  his theorem on real-analyticity of  
functions that are separately analytic, cf. [2], whereas we use the simpler 

theorem 1. For general information on the edge-of-the-wedge theorem one may 
consult Rudin [7]. 

In the following D is an arbitrary domain in R n, where we identify IP n with 
~ n +  i0 in C ~. We let V denote a truncated open cone in (another) ~n: 

(5.1) V={t£2,£2CS ~-1 open, 0 < t < R } .  

With D and V we associate the following two open sets in cn: 

(5.2) W+=D+iV,  W - = D - i V .  

Although it is not necessary, it will be assumed that £2 is connected, so that 
W + and W -  are domains in C n. The sets W + and W -  need not intersect; they 

are "wedges" ,  with common "edge"  D. We finally introduce the basic set 

(5.3) W= W + U D U  W - .  

f /  

l/P ill 

Fig. 1. 
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It is not easy to draw a picture even for n = 2, but a little reflection will show 
that  with V as in fig. I, the set W does not contain a C" neighborhood of  any 

point a e D. Indeed, the points a + iy with y ~ 0 not in V or - V are outside W. 
On the other hand,  W does contain the intersection of a C A neighborhood of  

a with the family of  complex lines {z=a+soJ,  s ~ C }  where 09 runs over O. 

THEOREM 2. Let  D, V, W +, W -  and W be as above. Then there exists an 
open neighborhood X o f  W in C n such that every continuous function f on W 
which is holomorphic on W + and on W -  has a holomorphic extension to X.  

A minimal domain o f  analytic continuation is given by the union o f  W and the 

polydiscs A(a, r~), where a runs over D and 

1 
r a = - ~  min{dist(a, 6D), R }, 

with B = B e as in the main lemma. 

PROOF. Let D o be an arbitrary relatively compact  subdomain of D. We 

choose 

O< co < min { dist(D 0, bD), R } 

and define 

Vo={tO, O<t<Q}.  

It will be sufficient to prove that every function f as in the theorem has an 
analytic continuation to the open set 

Uo = Do + A (0, o /B) .  

Indeed, the union of  these sets is a neighborhood of D in C A which contains 

the polydiscs A(a, ro) (take small neighborhoods Do of  a in ~"  and take co close 
to its upper bound).  

With D o and 12 we associate the family of  discs 

Ao,o(co)= { z ~ C ~ : z = a +  sa~, s~C,  [s]<co} 

where a runs over Do and ~o over (2, while co remains fixed. All these discs 
belong to the compact  subset o f  W given by 

(5.4) / )  o ___ i if'0, 

where D o stands for the co-neighborhood of  Do in ~ .  
Now let f be as in the theorem. We consider its restrictions to the discs 

A,o~(co), writing 

faco(S) = f ( a  + soJ), Isl <co. 

These functions will be continuous for Is] < 4  and analytic of f  the real axis. 
Hence by application of  Morera ' s  theorem, they are analytic for Isl <co. Since 
f is continuous on the compact  set (5.4), [fl is bounded by a constant M there. 
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Thus by the Cauchy-inequalities for the derivatives of fao~ at the point s=0 ,  

5 k 

for all a e D0 and all ~o e ~.  
It now follows from theorem 1 that the restriction of f to D O has a holo- 

morphic extension f0 to the open set Uo = 17o + .4(0, o/B) in C ~. However, does 
this extension coincide with f on U0N W? The answer is affirmative for 
U0Cl W + because f0 coincides w i t h f o n  the discs Aao~(o/B) (at the centers, the 
derivatives are the same), and the union of these discs contains an open subset 
of W ÷. Similarly f o = f  on UoCl W-; by continuity, f0 = f  also on UoND. 

We conclude that all functions f in the theorem can be extended analytically 
to an open set X in C" which contains the union of W and the polydiscs 

d (a, ra). 

REMARK 3. A sharp estimate for the constant Ba in the main lemma would 
give information about the size of the common domain of analytic continuation 
X. The precise shape of X is unknown. 

REMARK 4. From theorem 2 one usually derives various other forms of the 
edge-of-the-wedge theorem. In one strong version, the boundary values on the 
edge are only assumed to exist in distribution sense. Another version is a 
theorem on analytic continuation by reflection: Every holomorphic function f 
on W ÷ whose imaginary part tends to zero as y = I m  z ~ 0  in V has a holo- 
morphic extension to X; on W-,  the extension is given by the complex 

conjugate of f(~). Cf. [71. 
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