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1. In order to obtain a second solution of the differential equation 
(see [1]): 

d2w dw { m2 n2 } 
(1-z2)dz2- 2 Zdz+ k(k+ 1)-2(1-z)-2(1+z) w=O, 

we choose another closed path 0 for the integrand 
m-n m-n 

(t-1)k--2-(t+1)k+-2- (t) 
m+n ' or "P ' say, 

(t -z)k+-2-+ 1 

namely that, where the variable t, starting from a point A, which may 
for simplicity be taken on the segment joining -1 and 1, describes a 
positive turn about -1, then a positive turn about 1, followed by a 
negative turn about -1, and finally by a negative turn about 1. The 
point z is not encircled by this path. (See fig. 1). 

Fig. 1 

Now for all values of k, m and n, except those for which k+ min is 

a negative integer, and those for which k- m;n is an integer, and those 

for which k+ m;n is an integer, we define, using Pochhammer's notation: 

QJ:·"(z)= 

e-,i(2k-1l 

(1) ( m-n) ( m-n) sin :n: k--2- sin :n: k+-2-
r(k+~ + 1) (z-1)m/2 (z+1)n/2 

r(k-m;n+1). 2k+m2"+a 

( -1+.1+, -1-,1-) 
I 1p(t)dt 
0 
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The phase of t-z will be measured so that the phase at B is - (n-lP), 
where lP is the angle (between - n and n) that the vector from B to z 
makes with the positive direction of the real axis. The phases of t-I, 
t + I will be taken to be zero, 2n respectively, when t passes through D 
(located on turn 2) where t- I and t + I are real and positive. Thus the 
initial phases of t-I, t+ I at A, are -n and zero respectively. Further
more we give arg (z-I) and arg (z+ I) their principal values, after 
making a cross-cut from I to - = along the real axis in the z-plane. 

Remark. Assume that m=n. Then (1) becomes 

(-1+.1+, -1-,1-) 

(2) 
6 -ni(2k-1l. F(k+m+I). (z2 -I)m/2 I 
sin2 :n; k F(k+I) 2k+3 

a 

Now the integral in (2) is equal to 

(-1+, 1-) 
( 1 _ e2nik) I 

a 

(t2 -I)kdt 
(t-z)k+m+1' 

so that (2) can be written in the form: 

(t2 -I)kdt 
(t-z)k+m+1' 

(-1+.1-) 
6 -ni(k-1). F(k+m+l), (z2 -l)m/2 I 
isin:nk F(k+l) 2k+2 

(t2 -I)kdt 
(t-z)k+m+1' 

a 

which is Hobson's definition of QJ:'(z). See [2], p. I95. 

2. Let 2k be an integer. If we denote the values of the integral in (l) 
along the paths l and 2 by P and Q respectively, then the integral 

(-1+.1+. -1-, 1-) 

f 'ljJ(t)dt 
a 

is equal to 

( m-n) ( m-n) P+Q-Pe2ni k--2- -Qe-2ni k+-2- = 

( m-n) ( m-n) = -2ienik--2- sinn k--2 - · (P+Q). 

Hence, in this case, ( l) can be transformed into 

(3) 

3. Now assume that lz-II>2, and that k+ m~n and 2k+l are not 

negative integers, and k- m;n and k+ m;n are not integers. Making in 
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(I) the substitution t- I = - 2u, we find for the integral m (I) the 
expression: 

O+,O+,I-,0-) m-n m-n 

(4) e-ni(k- m;"+I) 22k+I J uk--2-(1-u)k::: du. 
0' (-2u+l-z)H-2-+I 

Now -2u+I-z=(z-l+2u)e-•"=(z-l) (1- 12::_z)e-i", as follows from 

the choice of the phase of t- z in the preceding section. The phase of 

I- 1 ~z is between - n and n for all points u of the path; furthermore 

the path of integration 0' is placed such that throughout l2ul <II - zl. 
The expression (4) can be written as 

22k+I oo ( 2 )' e"im. z (-I)' _ . 
(z-l)k+m~n+Ir=O 1-z 

(5) 
r(-k- m+2 n) <I+.O+.I-,0-) m-n m-n __ _.:.--:---_.:.----'-----:- f uk- -2- + r (1- U )k+ -2-dU. 

T(r+I)r( -k-m~n -r) O' 

The initial phases of u and I- u at the point corresponding to A are zero. 
The integral in (5) is equal to 

( m-n ) ( m-n) ( m-n ) ( m-n ) (6) -4eni(2k+rlsinn k--2-+r sinn k+-2- r k--2-+r+l r k+-2-+1 . 

T(2k+r+2) 

Furthermore 

I 00 r(k- m;n +I+r)r(k+ m~n +I+r) ( 2 r 

Zo T(r+I) T(2k+r+2) 1-z) = 
(7} r= I r(k- m-n +I)r(k+ m+n +I) 

2 2 { m-n m+n 2 } 
= T(2k+2) F k--2-+I,k+-2-+1;2k+2;1-z . 

From (I), (4), (5), (6) and (7) we have under the conditions concerning 
k, m and n, and for lz -II> 2 the relation: 

For m=n this formula is the same as Hobson's expression for the second 
associated Legendre function Qf:'(z). See [2], p. 202 (27). 

4. In order to get an expression similar to (8) for the case that 
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2k+2=0, -I, -2, ... under the additional restrictions: k+ m;-n is not 

a negative integer, k- m;n is not an integer, we transform 

1 { m-n m+n 1 } T(2k+2). F k--2-+1,k+-2-+1;2k+2;1-z 

into 

1 co r(k- m;n +1+r)r(k+ m;-n +1+r) 2 r 

r(k-T+1)r(k+~+1)r-~-l T(r+1)T(2k+2+r) (1-z) = 

1 ~ r( -k-m;n +s)r( -k+ m;-n +s) 2 s-2k-1 

= r(k-T+1)r(k+~ +1)~ T(s-2k) T(s+1) (1-z) = 

r( k m-n)r( k+ m+n) 
=(__!_)-2k-1 - --.-2- - -2- F{-k-m-n -k+m+n._ 2k·-2-} 

1-z r(k-m;n+1)r(k+m;-n+1)r(-2k) 2' 2' '1-z' 

so that, using the relation: 

we find by (8) and the first part of this section: 

Q:;'·n(z)= 
(9) 

2-k- _m;_n -leni(m-2k) n· r(-k+-m_+_n) 
-------,----...,--....:..._----:-__ 2____:_--:- • (z- I )k-n/2 (z + l )"'2. 
T(-2k) r(k- m_;_n +1)smn(k+ m-;-n) 

·F -k--- -k+--· -2k·-{ m-n m+n 2 } 
2 ' 2 ' 'l-z · 

On account of 

we have, for jz-Ij >2 and the conditions on k, m and n, mentioned above: 

(10) 

·" - enim 2-k- m;" -1 r( -k+ m;-n)r( -k+ m;n) 
Q'!: (z)- T( -2k) 

. (z-I)k-nl2(z+ I)n/2. F{ -k- m;n'- k+ m;-n;- 2 k; 1 ~J 
(2k= -2, -3, -4, ... ) 

Remarks. I. The number -k+ m;-n cannot be a negative integer 

or zero, as can easily be seen. 
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2. In the case that k+ mtn is a negative integer, and -k+mtn is 

a positive integer, the expression (10) is meaningful. However for those 
values of the parameters k, m and n our deduction of (10) is not valid. 
For: the double limit of this right hand side of (8) (under the conditions 

of 3), if, k+ mtn---+- negative integer, 2k+2---+- non-positive integer (with 

-k+ mtn---+- positive integer) does not exist. 

3. If m=n, and k = -It, - 2t, ... , andk+m is not a negative integer, 
then we have for lz-ll > 2: 

Qy:(z) = 

= e'zimF( -k+m)F( -k). (z-l)k-m/2 (z+ l)m/2 F{-k -k+m· -2k· _2_} 
2k+1 F( -2k) ' ' ' 1-z 

(a special case of the second associated Legendre function). 

5. If k + m tn is a negative integer then the right side of ( l) is infinite 

so that the factor T(k+ m~n + l) must be disregarded if we wish to obtain 

a finite solution of the differential equation. In the following we assume 

that k+ m~n is not integral and negative. 

In order to define QY:·"-functions in those cases in which the preceding 
.definitions do not hold we distinguish the cases: 

I. k- m;n is an integer, k+ m;n is not an integer (so 2k is not an 

integer). 

(I*) k- m;n is a negative integer. Then according to 

sin :n; (k- _m_-_n) r (k- m_-_n + l) = --=-----;n;----:-
2 2 r(-k+m;n) 

we define: 

,QY:·"(z) = 

e-2,ikr(k+-m-~_n +I)r( -k+ m-;-n) (-1+.1+.-1-.1-) 

__ ___:._m ___ n __ ....:......,.( --'-m---n-:-) _____.c._ • (z -l )m/2 (z + l )n/2 J 1p (t) dt. 
n·2k+-2-+Bsin;n; k+-2- a 

(I**) k- m;n is a non-negative integer. Now the integral in (l) 

vanishes as does sin :n: (k- m;n). Application of de l'Hopital's rule yields: 

e-"i(k+m;"-1) r(k+mtn+l) 
,()':·" (z) = . . 

:nsin:n(k+ m;n) r(k- m;n +I) 

(z-I)m/2(z+l)"/2 ( 

2k+ m 2 n +3 

1+.1+. -1-.1-) 

J 1p(t) log (t -l )dt. 
a 
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For lz-11 > 2 the relation (8) is valid in both cases. 

II. k+m;nis an integer, k-m;nis not an integer (so 2k is not an 

integer). 

(II*) k+ m;nis a negative integer. Now the right side of (1) is infinite. 

In order to obtain a finite second solution of the differential equation we 

have to disregard the factor sin:n:(k+ m;n) in (1) and the factor 

r(k+ m;n + 1) in (8). 

(II**) k+ m;n is a non-negative integer. The integral in (1) vanishes 

as does the factor sin :n:(k+ m;n), thus we apply de l'Hopital's rule and 

define: 

e-ni(k-m;"-1) r(k+ mtn +I) 
Qm.n (z) = . ----=-----

k :n:sin:n:(k-m;n) r(k-m;n +I) 

(z-l)m/2 (z+I)n/2 <-I+. H. -1-,1-) 
m-n I 1p(t) log (t+ l)dt. 

2H-2-+a c 

The expression (8) remains valid. 

III k m-n d k m-n . k ( ) - - 2 - an + - 2- are mtegers (so 2 is an integer). 

m-n d m-n . . (III*) k--2 - an k+-2 - are negative mtegers. 

Q%'·"(z) = ieni(:-T) .r( -k+m;n)r(k+mtn+l)· 

(z-l)m/2(z+I)n/2 <-I+.1+l 
• m ., I 1p(t)dt. 

2H-2-+2 c 

Now the expression ( lO) is valid for I z- II > 2. 

(III**) k- m;n is a negative integer and k+ m;n is a non-negative 

integer. 
Now the integral in the preceding definition of Q%'·"(z) can be reduced to · 

n+> 
I 1p(t)dt. 
c 

For lz-11>2 we have either (8) if 2k+2 is not equal to 0, -1, -2, ... 
or (10) if 2k+2=1, 2, .... 

(III***) k- m;n is a non-negative integer and k+ m;n is a negative 

30 Series A 
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integer. The right hand side of (3) is infinite. A solution of the differential 
equation is 

r(k+~+1) 
i eni(k- m-;-" +1) . 

r(k-m;n +1) 

(-l+l 

I 1p(t)dt. 
a 

For lz-11 > 2 we may use as solution (8) if 2k + 2 is not equal to 

0, -1, -2, ... after disregarding the factor r(k+ m;n + 1 ). and (10) if 

2k+2 is equal to 1, 2, ... after disregarding the factor r( -k+ m;n). 
(III****) k- m;n and k+ m;n are non-negative integers (so 2k is non

negative). Now we define: 

1 r(k+~+1) 
Q%'·"(z) = ni ( m-n ) · 

r k--2-+1 

(z-1)m/2 (z+1)n/2 (l+IJ 
m+n I 1p(t) log (t-1)dt. 

2H-2-+2 a 

In this case (8) remains valid for lz-11 > 2. 
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