ON A GENERALISATION OF LEGENDRE'S ASSOCIATED DIFFERENTIAL EQUATION. II

BY

L. KUIPERS AND B. MEULENBELD

(Communicated by Prof. J. F. KOKSMA at the meeting of May 25, 1957)

1. In order to obtain a second solution of the differential equation (see [1]):

$$(1-z^2)\frac{d^2w}{dz^2}-2z\frac{dw}{dz}+\left\{k(k+1)-\frac{m^2}{2(1-z)}-\frac{n^2}{2(1+z)}\right\}w=0,$$

we choose another closed path C for the integrand

$$\frac{(t-1)^{k-\frac{m-n}{2}}(t+1)^{k+\frac{m-n}{2}}}{(t-z)^{k+\frac{m+n}{2}+1}}, \text{ or } \psi(t), \text{ say,}$$

namely that, where the variable t, starting from a point A, which may for simplicity be taken on the segment joining -1 and 1, describes a positive turn about -1, then a positive turn about 1, followed by a negative turn about -1, and finally by a negative turn about 1. The point z is not encircled by this path. (See fig. 1).

Fig. 1

Now for all values of k, m and n, except those for which $k + \frac{m+n}{2}$ is a negative integer, and those for which $k - \frac{m-n}{2}$ is an integer, and those for which $k + \frac{m-n}{2}$ is an integer, we define, using Pochhammer's notation:

The phase of t-z will be measured so that the phase at B is $-(\pi-\Phi)$, where Φ is the angle (between $-\pi$ and π) that the vector from B to zmakes with the positive direction of the real axis. The phases of t-1, t+1 will be taken to be zero, 2π respectively, when t passes through D(located on turn 2) where t-1 and t+1 are real and positive. Thus the initial phases of t-1, t+1 at A, are $-\pi$ and zero respectively. Furthermore we give arg (z-1) and arg (z+1) their principal values, after making a cross-cut from 1 to $-\infty$ along the real axis in the z-plane.

Remark. Assume that m=n. Then (1) becomes

(2)
$$\frac{e^{-\pi i(2k-1)}}{\sin^2 \pi k} \cdot \frac{\Gamma(k+m+1)}{\Gamma(k+1)} \cdot \frac{(z^2-1)^{m/2}}{2^{k+3}} \int_C^{(-1+, 1+, -1-, 1-)} \frac{(t^2-1)^k dt}{(t-z)^{k+m+1}}$$

Now the integral in (2) is equal to

$$(1-e^{2\pi ik})\int\limits_{C}^{(-1+,\ 1-)}\frac{(t^2-1)^kdt}{(t-z)^{k+m+1}}\,,$$

so that (2) can be written in the form:

$$\frac{e^{-\pi i(k-1)}}{i\sin \pi k} \cdot \frac{\Gamma(k+m+1)}{\Gamma(k+1)} \cdot \frac{(z^2-1)^{m/2}}{2^{k+2}} \int_{C}^{(-1+,1-)} \frac{(t^2-1)^k dt}{(t-z)^{k+m+1}},$$

which is Hobson's definition of $Q_k^m(z)$. See [2], p. 195.

2. Let 2k be an integer. If we denote the values of the integral in (1) along the paths 1 and 2 by P and Q respectively, then the integral

$$\int_C^{(-1+,1+,-1-,1-)} \psi(t)dt$$

is equal to

$$P + Q - P e^{2\pi i \left(k - \frac{m-n}{2}\right)} - Q e^{-2\pi i \left(k + \frac{m-n}{2}\right)} =$$

= -2 i e^{\pi i \left(k - \frac{m-n}{2}\right)} \sin \pi \left(k - \frac{m-n}{2}\right) \cdot (P+Q).

Hence, in this case, (1) can be transformed into

(3)
$$\begin{cases} Q_k^{m,n}(z) = \\ = \frac{i e^{\pi i \left(k - \frac{m-n}{2} + 1\right)}}{\sin \pi \left(k - \frac{m-n}{2}\right)} \cdot \frac{\Gamma\left(k + \frac{m+n}{2} + 1\right)}{\Gamma\left(k - \frac{m-n}{2} + 1\right)} \cdot \frac{(z-1)^{m/2}(z+1)^{n/2}}{2^{k + \frac{m-n}{2} + 2}} \cdot \int_C^{(-1+,1+)} \psi(t) dt. \end{cases}$$

3. Now assume that |z-1| > 2, and that $k + \frac{m+n}{2}$ and 2k+1 are not negative integers, and $k - \frac{m-n}{2}$ and $k + \frac{m-n}{2}$ are not integers. Making in

(1) the substitution t-1 = -2u, we find for the integral in (1) the expression:

(4)
$$e^{-\pi i \left(k - \frac{m-n}{2} + 1\right)} 2^{2k+1} \int_{C'}^{(1+,0+,1-,0-)} \frac{u^{k-\frac{m-n}{2}}(1-u)^{k+\frac{m-n}{2}}}{(-2u+1-z)^{k+\frac{m+n}{2}+1}} du.$$

Now $-2u+1-z=(z-1+2u)e^{-i\pi}=(z-1)\left(1-\frac{2u}{1-z}\right)e^{-i\pi}$, as follows from the choice of the phase of t-z in the preceding section. The phase of $1-\frac{2u}{1-z}$ is between $-\pi$ and π for all points u of the path; furthermore the path of integration C' is placed such that throughout |2u| < |1-z|. The expression (4) can be written as

(5)
$$\begin{cases} e^{\pi i m} \cdot \frac{2^{2k+1}}{(z-1)^{k+\frac{m+n}{2}+1}} \sum_{r=0}^{\infty} (-1)^r \left(\frac{2}{1-z}\right)^r \cdot \\ \cdot \frac{\Gamma\left(-k-\frac{m+n}{2}\right)}{\Gamma(r+1)\Gamma\left(-k-\frac{m+n}{2}-r\right)} \int_{C'}^{(1+.0+.1-.0-)} u^{k-\frac{m-n}{2}+r} (1-u)^{k+\frac{m-n}{2}} du. \end{cases}$$

The initial phases of u and 1-u at the point corresponding to A are zero. The integral in (5) is equal to

(6)
$$\frac{-4e^{\pi i(2k+r)}\sin\pi\left(k-\frac{m-n}{2}+r\right)\sin\pi\left(k+\frac{m-n}{2}\right)\Gamma\left(k-\frac{m-n}{2}+r+1\right)\Gamma\left(k+\frac{m-n}{2}+1\right)}{\Gamma(2k+r+2)}$$

Furthermore

(7)
$$\begin{cases} \sum_{r=0}^{\infty} \frac{\Gamma\left(k - \frac{m-n}{2} + 1 + r\right)\Gamma\left(k + \frac{m+n}{2} + 1 + r\right)}{\Gamma(r+1)\Gamma(2k+r+2)} \left(\frac{2}{1-z}\right)^{r} = \\ = \frac{\Gamma\left(k - \frac{m-n}{2} + 1\right)\Gamma\left(k + \frac{m+n}{2} + 1\right)}{\Gamma(2k+2)} F\left\{k - \frac{m-n}{2} + 1, k + \frac{m+n}{2} + 1; 2k+2; \frac{2}{1-z}\right\}. \end{cases}$$

From (1), (4), (5), (6) and (7) we have under the conditions concerning k, m and n, and for |z-1| > 2 the relation:

(8)
$$\begin{cases} Q_k^{m,n}(z) = \frac{e^{\pi i m \ 2^{k-\frac{m-n}{2}}(z-1)^{-k-n/2-1} \ (z+1)^{n/2} \ \Gamma\left(k+\frac{m+n}{2}+1\right) \Gamma\left(k+\frac{m-n}{2}+1\right)}{\Gamma(2k+2)} \\ F\left\{k-\frac{m-n}{2}+1, \ k+\frac{m+n}{2}+1; \ 2k+2; \frac{2}{1-z}\right\}. \end{cases}$$

For m = n this formula is the same as Hobson's expression for the second associated Legendre function $Q_k^m(z)$. See [2], p. 202 (27).

4. In order to get an expression similar to (8) for the case that

2k+2=0, -1, -2, ... under the additional restrictions: $k+\frac{m+n}{2}$ is not a negative integer, $k-\frac{m-n}{2}$ is not an integer, we transform

$$\frac{1}{\Gamma(2\,k+2)} \cdot F\left\{k - \frac{m-n}{2} + 1, k + \frac{m+n}{2} + 1; 2k+2; \frac{1}{1-z}\right\}$$

into

$$\frac{1}{\Gamma\left(k-\frac{m-n}{2}+1\right)\Gamma\left(k+\frac{m+n}{2}+1\right)}\sum_{r=-2k-1}^{\infty}\frac{\Gamma\left(k-\frac{m-n}{2}+1+r\right)\Gamma\left(k+\frac{m+n}{2}+1+r\right)}{\Gamma(r+1)\Gamma(2k+2+r)}\left(\frac{2}{1-z}\right)^{r}=$$

$$=\frac{1}{\Gamma\left(k-\frac{m-n}{2}+1\right)\Gamma\left(k+\frac{m+n}{2}+1\right)}\sum_{s=0}^{\infty}\frac{\Gamma\left(-k-\frac{m-n}{2}+s\right)\Gamma\left(-k+\frac{m+n}{2}+s\right)}{\Gamma(s-2k)\Gamma(s+1)}\left(\frac{2}{1-z}\right)^{s-2k-1}=$$

$$=\left(\frac{2}{1-z}\right)^{-2k-1}\frac{\Gamma\left(-k-\frac{m-n}{2}\right)\Gamma\left(-k+\frac{m+n}{2}+1\right)}{\Gamma\left(k-\frac{m-n}{2}+1\right)\Gamma\left(k+\frac{m+n}{2}+1\right)\Gamma(-2k)}F\left(-k-\frac{m-n}{2},-k+\frac{m+n}{2};-2k;\frac{2}{1-z}\right),$$

so that, using the relation:

$$\Gamma\left(k+\frac{m-n}{2}+1\right)\Gamma\left(-k-\frac{m-n}{2}\right)=\frac{-\pi}{\sin\pi\left(k+\frac{m-n}{2}\right)},$$

we find by (8) and the first part of this section:

$$(9) \begin{cases} Q_k^{m,n}(z) = \frac{2^{-k-\frac{m-n}{2}-1}e^{\pi i (m-2k)} \pi \cdot \Gamma\left(-k+\frac{m+n}{2}\right)}{\Gamma\left(-2k\right) \Gamma\left(k-\frac{m-n}{2}+1\right) \sin \pi\left(k+\frac{m-n}{2}\right)} \cdot (z-1)^{k-n/2} (z+1)^{n/2} \cdot F\left\{-k-\frac{m-n}{2}, -k+\frac{m+n}{2}; -2k; \frac{2}{1-z}\right\}. \end{cases}$$

On account of

$$(-1)^{2k} \Gamma\left(k - \frac{m-n}{2} + 1\right) \sin \pi\left(k + \frac{m-n}{2}\right) = \frac{\pi}{\Gamma\left(-k + \frac{m-n}{2}\right)}$$

we have, for |z-1| > 2 and the conditions on k, m and n, mentioned above:

(10)
$$\begin{cases} Q_{k}^{m.n}(z) = \frac{e^{\pi i m \ 2-k-\frac{m-n}{2}-1} \Gamma\left(-k+\frac{m+n}{2}\right) \Gamma\left(-k+\frac{m-n}{2}\right)}{\Gamma(-2k)} \cdot \\ \cdot (z-1)^{k-n/2} (z+1)^{n/2} \cdot F\left\{-k-\frac{m-n}{2}, -k+\frac{m+n}{2}; -2k; \frac{2}{1-z}\right\}. \\ (2k=-2, \ -3, \ -4, \ \ldots) \end{cases}$$

Remarks. 1. The number $-k + \frac{m+n}{2}$ cannot be a negative integer or zero, as can easily be seen.

2. In the case that $k + \frac{m+n}{2}$ is a negative integer, and $-k + \frac{m+n}{2}$ is a positive integer, the expression (10) is meaningful. However for those values of the parameters k, m and n our deduction of (10) is not valid. For: the double limit of this right hand side of (8) (under the conditions of 3), if, $k + \frac{m+n}{2} \rightarrow$ negative integer, $2k+2 \rightarrow$ non-positive integer (with $-k + \frac{m+n}{2} \rightarrow$ positive integer) does not exist.

3. If m=n, and $k=-1\frac{1}{2}, -2\frac{1}{2}, ..., and k+m$ is not a negative integer, then we have for |z-1|>2:

$$egin{aligned} Q_k^m\left(z
ight) = \ &= rac{e^{\pi\,im}\,\Gamma\left(-k+m
ight)\Gamma\left(-k
ight)}{2^{k+1}\,\Gamma\left(-2\,k
ight)}\cdot\left(z\!-\!1
ight)^{k-m/2}\,(z\!+\!1)^{m/2}\,F\!\left\{-k,\,-k\!+\!m;\,-2\,k;rac{2}{1-z}
ight\} \end{aligned}$$

(a special case of the second associated Legendre function).

5. If $k + \frac{m+n}{2}$ is a negative integer than the right side of (1) is infinite so that the factor $\Gamma(k + \frac{m+n}{2} + 1)$ must be disregarded if we wish to obtain a finite solution of the differential equation. In the following we assume that $k + \frac{m+n}{2}$ is not integral and negative.

In order to define $Q_k^{m,n}$ -functions in those cases in which the preceding definitions do not hold we distinguish the cases:

I. $k - \frac{m-n}{2}$ is an integer, $k + \frac{m-n}{2}$ is not an integer (so 2k is not an integer).

(I*)
$$k - \frac{m-n}{2}$$
 is a negative integer. Then according to
 $\sin \pi \left(k - \frac{m-n}{2}\right) \Gamma \left(k - \frac{m-n}{2} + 1\right) = \frac{-\pi}{\Gamma \left(-k + \frac{m-n}{2}\right)}$

we define:

$$egin{aligned} Q_k^{m,n}(z) = \ &= rac{e^{-2\pi\,ik}\,\Gammaig(k\!+\!rac{m\!+\!n}{2}\!+\!1ig)\,\Gammaig(-k\!+\!rac{m\!-\!n}{2}ig)}{\pi\cdot 2^{k+rac{m-n}{2}\!+\!3}\sin\piig(k\!+\!rac{m\!-\!n}{2}ig)}\cdot(z\!-\!1)^{m/2}\,(z\!+\!1)^{n/2} \int\limits_{C}^{(-1+,1+,-1-,1-)}\psi(t)\,dt. \end{aligned}$$

(I^{**}) $k - \frac{m-n}{2}$ is a non-negative integer. Now the integral in (1) vanishes as does $\sin \pi \left(k - \frac{m-n}{2}\right)$. Application of de l'Hôpital's rule yields:

$$\begin{split} \partial_k^{m,n}(z) &= \frac{e^{-\pi i \left(k + \frac{m-n}{2} - 1\right)}}{\pi \sin \pi \left(k + \frac{m-n}{2}\right)} \cdot \frac{\Gamma\left(k + \frac{m+n}{2} + 1\right)}{\Gamma\left(k - \frac{m-n}{2} + 1\right)} \cdot \\ &\quad \cdot \frac{(z-1)^{m/2}(z+1)^{n/2}}{2^{k + \frac{m-n}{2} + 3}} \int_C^{(-1+,1+,-1-,1-)} \psi(t) \log (t-1) dt. \end{split}$$

For |z-1| > 2 the relation (8) is valid in both cases.

II. $k + \frac{m-n}{2}$ is an integer, $k - \frac{m-n}{2}$ is not an integer (so 2k is not an integer).

(II*) $k + \frac{m-n}{2}$ is a negative integer. Now the right side of (1) is infinite. In order to obtain a finite second solution of the differential equation we have to disregard the factor $\sin \pi \left(k + \frac{m-n}{2}\right)$ in (1) and the factor $\Gamma\left(k + \frac{m-n}{2} + 1\right)$ in (8).

(II**) $k + \frac{m-n}{2}$ is a non-negative integer. The integral in (1) vanishes as does the factor $\sin \pi \left(k + \frac{m-n}{2}\right)$, thus we apply de l'Hôpital's rule and define:

$$Q_k^{m,n}(z) = \frac{e^{-\pi i \left(k - \frac{m-n}{2} - 1\right)}}{\pi \sin \pi \left(k - \frac{m-n}{2}\right)} \cdot \frac{\Gamma\left(k + \frac{m+n}{2} + 1\right)}{\Gamma\left(k - \frac{m-n}{2} + 1\right)} \cdot \frac{(z-1)^{m/2}(z+1)^{n/2}}{2^{k + \frac{m-n}{2} + 3}} \cdot \frac{(z-1)^{m/2}(z+1)^{n/2}}{\int_C^{(-1+,1+,-1-,1-)}} \psi(t) \log (t+1) dt.$$

The expression (8) remains valid.

(III) $k - \frac{m-n}{2}$ and $k + \frac{m-n}{2}$ are integers (so 2k is an integer). (III*) $k - \frac{m-n}{2}$ and $k + \frac{m-n}{2}$ are negative integers.

$$\begin{array}{l} Q_k^{m,n}(z) = \ \frac{i e^{\pi i \left(k - \frac{m-n}{2}\right)}}{\pi} \cdot \Gamma \Big(-k + \frac{m-n}{2} \Big) \, \Gamma \Big(k + \frac{m+n}{2} + 1 \Big) \cdot \\ & \quad \cdot \ \frac{(z-1)^{m/2} (z+1)^{n/2}}{2^{k + \frac{m-n}{2} + 2}} \int\limits_C^{(-1+,1+)} \psi(t) dt. \end{array}$$

Now the expression (10) is valid for |z-1| > 2.

(III **) $k - \frac{m-n}{2}$ is a negative integer and $k + \frac{m-n}{2}$ is a non-negative integer.

Now the integral in the preceding definition of $Q_k^{m,n}(z)$ can be reduced to

$$\int_{C}^{(1+)} \psi(t) dt.$$

For |z-1| > 2 we have either (8) if 2k+2 is not equal to 0, -1, -2, ...or (10) if 2k+2=1, 2, ...

(III***) $k - \frac{m-n}{2}$ is a non-negative integer and $k + \frac{m-n}{2}$ is a negative 30 Series A integer. The right hand side of (3) is infinite. A solution of the differential equation is

$$ie^{\pi i \left(k-rac{m-n}{2}+1
ight)} \cdot rac{\Gamma\left(k+rac{m+n}{2}+1
ight)}{\Gamma\left(k-rac{m-n}{2}+1
ight)} \cdot rac{(z-1)m/2}{2^{k+rac{m-n}{2}+2}} \cdot \int_{C}^{(-1+)} \psi(t)dt.$$

For |z-1| > 2 we may use as solution (8) if 2k+2 is not equal to 0, -1, -2, ... after disregarding the factor $\Gamma\left(k+\frac{m-n}{2}+1\right)$, and (10) if 2k+2 is equal to 1, 2, ... after disregarding the factor $\Gamma\left(-k+\frac{m-n}{2}\right)$.

(III****) $k - \frac{m-n}{2}$ and $k + \frac{m-n}{2}$ are non-negative integers (so 2k is non-negative). Now we define:

$$Q_{k}^{m,n}(z) = \frac{1}{\pi i} \frac{\Gamma\left(k + \frac{m+n}{2} + 1\right)}{\Gamma\left(k - \frac{m-n}{2} + 1\right)} \cdot \frac{(z-1)^{m/2} (z+1)^{n/2}}{2^{k+\frac{m+n}{2}+2}} \int_{C}^{(1+i)} \psi(t) \log (t-1) dt.$$

In this case (8) remains valid for |z-1| > 2.

REFERENCES

- 1. KUIPERS, L. and B. MEULENBELD, On a generalisation of Legendre's associated differential equation I, Proc. Kon. Ned. Ak. v. Wet., **00**, 000 (1957).
- 2. HOBSON, E. W., The theory of spherical and ellipsoidal harmonics, Cambridge University Press (1955).