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INTRODUCTION 

Let D be a nonempty subset of a Banach space E and let F map D into E. 
We shall denote by R(F) the range of F, by cl(D) the closure of D, and by Z 
the identity mapping (on D). A mapping T: D + D which is nonexpansive, 
that is // TX - Ty /I < 11 x - y 11 for all x and y in D, will be called a contrac- 
tion. Pazy [24, p. 2401 has recently established the following interesting 
result. 

THEOREM. Let C be a nonempty closed convex subset of a Hilbert space. Zf 
T: C + C is a contraction and A = Z - T, then 

(a) 0 E R(A) if and only if { T”x} is bounded for every x E C; 

(b) 0 $ cl(R(A)) if and only if lim 11 T71x II/n > 0 for every x E C; 

(c) 0 E cl(R(-4)), but 0 $ R(A) if and only ;f {T”x} is unbounded and 
Tnx/n + 0 for every N E C. 

In this note we study more general iteration processes in certain Banach 
spaces with the purpose of extending this theorem. It turns out that some- 
times our aim can indeed be (partially) achieved (see, for example, Theorem 
2.10). Several related results, as well as some open problems, are also included. 
In Section 1 we relate the boundedness of the sequence of iterates with the 
existence of a fixed point. Section 2 is devoted to a discussion of the crucial 
“minimum property” of cl(R(A)) ( see the definition below). Section 3 
contains a result concerning the convergence of a certain sequence of iterates 
towards a fixed point of T. We shall consider here only real normed linear 
spaces. This restriction does not cause any loss of generality. 
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1. THE EXISTENCE OF A FIXED POINT 

Let E be a normed linear space. We shall denote by B its unit ball 
{X E E: 1) x ]I < I} and by S its unit sphere {x E E: 11 x 11 = I]. For z E S and 
0 < E < 2, we put 

a(~, z) = inf{l - 4 I( x + y (1: X, y E B, x - y = AZ, 1 h I 3 l } 
and 

E,,(Z) = sup{& 0 < t < 2 and 6(2, z) = O}. 

Recall that a nonempty convex subset K of E is said to have normal structure 
if each bounded convex subset Q of K with a positive diameter d contains a 
point x which is nondiametral, that is sup{(I x - y 11: y E Q} < d. We shall say 
that a nonempty subset D C E is boundedly (weakly) compact if its inter- 
section with every closed ball is (weakly) compact. In the sequel B(x, Y) will 
stand for the closed ball {y E E: 11 x - y 11 < r}. 

Let N denote the set of all nonnegative integers. Recall that an infinite 
complex matrix A4 = {tmmn: m, tl E N} is called a Toeplitz matrix (cf. [16, 
p. 431) if the following three conditions are fulfilled: 

SUP 2 I hn,n 
I 

I:meN <a; 
I 

lim g t,,, = 1; 
?l=O 

m-m I I ?kO 

lili* t,,, = 0 for all 12 E N. 

Let K > 1 be a fixed integer. In this note we shall be concerned with those 
Toeplitz matrices which enjoy three additional properties, namely 

t m.7L 2 0 for all m, n E N; 

t -0 if m,n - n > (m + 1) K; 

h+l)k 

1 t,,, = 1 forallmE N. 
tZ=O 

Let x0 belong to C, a closed convex subset of E, and let T: C -+ C be a 
contraction. Let a sequence R = (x,,: n EN) C C be defined inductively by 

%+I = tn.Go + i i tn.ik+jTjxi, 7tEN. 
a=0 I=1 

It is easy to see that if T has a fixed point, then R is bounded. The following 
result is an extension of [I 1, Theorem 11. 

THEOREM 1.1. Let C, a convex boundedly weakly compact subset of a Banach 
space E which satisfies 

sup{Eo(z): z E S} < 1, U.2) 
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possess normal structure. Let T: C + C be a contraction and let the sequence R 
be defined by (1.1). If R is bounded, then T has a fixed point. 

Proof. Let d be the diameter of U {Tj(R): 0 <j < h - l}, where 
To = I. We may assume that d is positive. Put 

X, = n {Z E C: I/ z - Tjx, (( < d for all 0 < j < tZ - 1) 
r>a 

where q, r E N. Let X denote the closure of Y = U {X,: q 3 1). X C C is a 
nonempty weakly compact subset of E. Let x E Y, so that x E X, for some 
q> l.Ifn>q,then 

a-1 k 

< tn., II TX - xo II + 1 1 
id j==l 

tn.ik+j II x - T’-lxi II + d ($, gltn.ik+j) 

d h(n) + 4 

where h(n) -+ 0 as n - CO. Also, if k > 1, then 

I/ TX - T~x,,+~ I/ < 11 x - Tj-l~,+~ 11 < d for1 <j<K-- 1. 

Suppose that Tx # X. Then B(Tx, e) n Y = 0 for some positive e. Since 
T~~X,forallr~l,wecanfindapointu~Rsuchthatt=~lTx-~~~>d. 
Letz=(Tx-u)/t.Choose~<c<lsothat~~cTx+(l-c)u-Tx~~~e. 
There exists no >, q such that t/(h(n) + d) 3 E > 1 and 

(1 - 2( 1 .- c) S(r, z)) (h(n) + d) < d for all 12 >, rzo . 

Finally let x, E R satisfy I] CTX + (1 - c) u - x, 11 > d, where r > no. We 
have 

and 

II u - x, II d d < h(r - 1) + 4 
II TX - x, II B h(r - 1) + 4 

TX-u=\jlTx-ujlz, 

Therefore, 

II TX - u I/ 2 E(h(r - 1) + d). 

II CTX + (1 - c) u - x, II = II c(Tx - x,) + (1 - c) (u - x,)ll 
< (1 - 2( 1 - c) a(~, z)) (h(r - 1) + d) < d, 

a contradiction. Hence, TX E X. The continuity of T implies that T maps X 
into X. Kirk’s fixed point theorem [20, p. 10041 can now be applied to yield 
a fixed point for T. 
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Although it is not difficult to see that a Banach space for which 
sup{~,(z): z E S} < 1 has normal structure, a recent example of Bynum’s [5] 
implies that a Banach space which satisfies (1.2) may lack normal structure, 
even if it is reflexive. Another example of his shows that normal structure 
may be possessed by spaces which do not satisfy (1.2). 

If sup(EO(z): z E S} = 0, E is said to be uniformly convex in every direction. 
It is known [9] that many spaces can be renormed so as to become uniformly 
convex in every direction. For example, all separable spaces and their 
conjugates have this property. Nevertheless, it might be of interest to deter- 
mine whether Theorem 1.1 remains true when condition (1.2) is deleted. 
Here is a (very) partial result in this direction. We omit its proof (cf. [29, 
p. lo]). Recall that a mapping F: D --f D is a generalized contraction in the 
sense of Kirk [21] if for each x E D there is a number a(~) < 1 such that 

IIFx - FY II < 44 II x - Y II for ally E D. 

PROPOSITION 1.2. There is no need to asume condition ( 1.2) in Theorem 1.1 
provided either the matrix ICI is column-jnite, or T is a generalized contraction. 

In fact, if T is a generalized contraction, then the “normal structure” 
assumption is dispensable, too. Perhaps it is superfluous in general. However, 
simple examples show that in Theorem 1.1 we cannot merely assume that C 
is a closed convex subset of a Banach space. 

Remark. Theorem 1 .l does remain true without condition (1.2). See 
[27, p. 2531. 

2. FIXED POINT FREE CONTRACTIONS 

Let (c,: n E N} be a sequence of real numbers which satisfy 

O<c,<l for all n E IV; (2.1) 

Es cf diverges. 

We define (cf. [28, p. 2101) a Toeplitz matrix by 

t m,O = fi (1 - 4; 
j=O 

t msn = G-1 fi (l - cj>, 1 <n<m; 
j=n 

t rn,rn-+l = Grz; 
t m.n = 0, n>m+l. 
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In this special case it seems to be more convenient to write (1.1) in the form 

X n+l = (1 - cn) x, + c,Tx, , ?I E 1~. (2.3) 

In the sequel we shall denote xy=, ci by a, and 1g will stand for I - T 
whenever T is a contraction. The convex hull and convex closure of a subset 
D C E will be denoted by co(D) and clco(D), respectively. 

PROPOSITION 2.1. Let x,, belong to C, a closed convex subset of a Banach 
space, let T: C-+ C be a contraction, and let the sequence {x,) be defined b3 
(2.3). If 0 E cl(R(A)), then x,+,/a, ---f 0. 

Proof. Consider another initial point y. E C together with its associated 
sequence (yn). If n E N, then 

Ii Ynt-l - Yn+l ii < (c,+Jc,) il Y,,, -- Yn Ii 
and 

II Tyn+l - ~n+l II < II Tyn - in II . 
Hence, 

Ii Yntl -yYoii<a,liyo- T&Ii. 
Also, 

II %I+1 - Yn+1 II G II so - Yo !I . 

Therefore, 

II x,+1 - x0 II .< 2 II x0 -yell + a,lly, - TY,/I 

and the result follows. 
Recall that the norm of E is said to be G%teaux differentiable if 

‘,‘$I x + ty Ij - I! x I!)!t 

exists for each x and y in S. It is said to be uniformly GLteaux differentiable 
if for each y in S this limit is approached uniformly as x varies over S. It is 
said to be FrCchet differentiable if for each J in S the limit is approached 
uniformly as y varies over S. A discussion of these concepts can be found 
in [7]. We shall need the following known result (cf. [12, p. 5.551). 

LEMMA 2.2. The dual of a Banach space E has a Frkhet diaerentiable norm 
if and only if for any convex set KC E every sequence {x,} in K such that 
!! x, jJ tends to the distance from K to the origin converges. 

Let Q be a nonempty closed subset of a Banach space. We shall say (after 
Pazy [24, p. 2371) that Q has the minimum property if it contains a point 
which is an element of least norm for clco(Q). 
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THEOREM 2.3 [26]. Let x0 belong to C, a closed convex subset of a Banach 
space E whose dual has a Frtkhet differentiable norm. Let T: C -+ C be a contrac- 
tion, and let the sequence {x,} be defined by (2.3). If cl(R(A)) has the minimum 
propmty, then x&a,, --+ -v, where a is the element of least norm in cl(R(A)). 

Proof. Put d = (1 v (1 . The proof of Proposition 2.1 yields 

li?+yp II x,+1 - x0 II/a, d d. 

It is not difficult to see that (x0 - x,+,)/a, belongs to co(R(A)) for all n E N. 
Therefore, (1 x0 - x+,+i [l/a, >, d, so that 

ii II x0 - x,+~ It/a, = d. 

Appealing now to Lemma 2.2 we obtain (x0 - x,+,)/a, -+ v, and the result 
follows. 

When does cl(R(A)) enjoy the minimum property ? The following assertions 
provide partial answers to this question. 

Recall that the normalized duality mapping J of a normed linear space E 
into the family of the nonempty subsets of its dual E* is defined by 

J(x) = {x* E E*: (x, x*) = 11 x iI2 and II x* jJ = 11 x II}, 

where x E E. J is single-valued if and only if E has a GLteaux differentiable 
norm. In this case J is continuous when E has its strong topology while E* 
has its weak star topology. 

The next lemma is known (cf. [lo, p. 518; 6, p. 2061). It is a consequence of 
the Hahn-Banach theorem. 

LEMMA 2.4. Let C be a nonempty convex subset of a normed linear space E, 
and let x $ C. A point z E C satisfies ]I z - x 1) = inf{ll y - x 11: y E C} if and 
only if there is j E J(z - x) such that (y - z, j) >, 0 for ally E C. (In other 
words, every convex set is a Kolmogorov set.) 

We remark in passing that information and references concerning 
Kolmogorov sets can be found for example in [I 1. 

Our first partial answer extends [24, Theorem 31. 

PROPOSITION 2.5. Let C be a closed convex subset of a normed linear space 
whose rwrm is G&teaux differentiable, and let T: C + C be a contraction. If for 
some x0 e C, {x, - TX,} converges where {x,,} is defined by (2.3), then cl(R(A)) 
has the minimum property. 
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Proof. Let x, - TX, + v. Since 

x0 - x,+1 = co c&i - W, x,+,/an - --er. 

Let u belong to C and put w = Au. 

<w - x,+1 + TX,,, , J(u - x,+1)? 2 0 

because T is a contraction. After dividing by a, and letting n tend to infinity, 
we obtain (w - v, J(v)) > 0. Hence, 

(Y - 0, J(v)? 2 0 for ally E clco(R( A)). 

Lemma 2.4 now implies that v is an element of least norm for clco(R(A)). 
Since v E cl(R(A)), we are done. 

We remark that it is clear that here we have used only the accretiveness of 
A. (Recall that F: D -+ E is said to be accretive if for each x and y in D there 
exists j E J(x - y) such that (Fx - Fy, jj > 0; see [19] for more details.) 

THEOREM 2.6. Let E be a Banach space whose norm is un;formly Gdteaux 
dz@rentiabIe. If T: E -+ E is a contraction, then cl(R(A)) is convex. 

Proof. In fact, we shall use only the following consequence of the uniform 
GIteaux differentiability of the norm of E (cf. [8, p. 3031): 

For each u and .z in S and E > 0 there is a positive 6 such that if x, y E B, 
x-y=hzand 1x1 (6, then 

Ku, j, - $4 < 5 where A E J(x) and .L E AY). (2.4) 

We do not know if (2.4) is essential. 
Let x E co(R(A)). Since T is a contraction there is yp E E such that, 

x = Ay, + JJY~ for every positive p. Pick a point u E E. Put v = Au and let 
j, E J(PY, - ~4. Then j,lp E Jr, - 4, so that 

(Ay, - Au, j,) = (x - v - pu - p(y, - u), jD) > 0. 

Consequently, 

II I% - Pu II* = Il.& II2 B <x - v - PUG G Iii, II II x - v - Pu II . 

This means that (j,} is bounded in E *. Let a subnet ( j7} converge in the 
weak star topology to a*. Then 

Ij z* (I2 < liT+Ff 11 jr II2 < hm-~<x - v - ru, jr) = (x - 0, a*). 
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Consider now an arbitrary point ur in E and put vr = Au,. This time we 
start with {y,} and arrive at a subnet {yS} such thatjr,, E J(sr, - SUM), zl* is 
the weak star limit of {j,,,}, and /( zr* II2 < (x - vr , zl*). Condition (2.4) 
implies that z* = zr *. It follows that 11 z* /I2 < (x - Ed’, z*) for all w in 
R(A). In fact, this inequahty holds for all w E co(R(A)). In particular, it 
holds for x. Hence, z* = 0. Therefore, 

lim*\up 11 ryr - ru /I2 < lii$x - v - ru, jr) = (x - v, z*) = 0. 

Thus, yyr + 0 and x E cl(R(A)). This completes the proof. 
In case E is a Hilbert space, or more generally a Banach space with a 

uniformly convex dual, this result is due to Pazy [24, p. 238; 251. A different 
proof of Theorem 2.6 was outlined in [27]. Note that sometimes cl(R(A)) = E. 
For example, this happens in any Banach space whenever 

inf{sup{ll TX 11/1/ x I): /I x (I 2 r}: 0 < r < 03) < 1. 

A generalized contraction satisfies this requirement. 
Every reflexive space has an equivalent norm which induces a Frtchet 

differentiable norm in its dual. This follows from [30, p. 1771. (Observe that 
if E is a Banach space and E* has a FrCchet differentiable norm, then E is 
reflexive.) Every Banach space which is generated by a weakly compact set 
has an equivalent Gateaux differentiable norm [2, p. 381. Every separable 
Banach space has an equivalent uniformly Gateaux differentiable norm [31, 
p. 4291. (Of course, there are nonseparable spaces whose norm is uniformly 
GBteaux differentiable.) Moreover, Zizler has shown that every reflexive 
separable Banach space E has an equivalent uniformly Gateaux differentiable 
norm which induces a FrCchet differentiable norm in E*. With Zizler’s 
norm E is uniformly convex in every direction [32, p. 2011. 

Let K be a nonempty subset of a normed linear space E and let P: E + K 
be a retraction. P will be called a sunny retraction if P(x) = ZJ implies 
P(v + X(x - v)) = v for all x E E and A > 0. (We prefer this term to the one 
used by Bruck on p. 385 of [4] because suns already occur in approximation 
theory. Again we refer to [l] for information and references concerning suns.) 

LEMMA 2.7 (cf. [4, Theorem 31). Let K be a nonempty subset of a normed 
linear space E whose norm is G&eaux dz~erentiable. Let P: E -+ K be a retrac- 
tion. The following are equivalent: 

(a) <Px - x, J(y - Px)> > 0 for all x in E and y in K; 

(b) <z - w, J(Pz - Pw)) > (( Pz - Pw [I2 for all z and w in E; 

(c) P is both sunny and nonexpansive. 

Hence, there is at most one sunny nonexpansive retraction on K. 
I 
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Proof. Suppose (a) holds and let x, w E E. Put j - J(Pz - Pw). Since 
both (Pw - w, j> and (Pz - z, -j) are nonnegative, 

(Pw - Pz + z - w, j) 3 0, 

and (b) follows. Assume now that (b) holds and let x E E andy E K. Inserting 
z = y = Py and w = x in (b) we obtain 

(y - x, J(y - Px)) 3 ((y - Px 112 = <y - Px, J(y - PX)i, 

and (a) follows. Suppose P is both sunny and nonexpansive. Let x E E, 
y E K and put Px = v. C = {v + h(x - v): X >, 0) is convex. If w E C, then 

II n -Y II = II pw - PY II G II w -Y II . 

By Lemma 2.4 (x - Px, J(w - y)) > 0 and (a) follows. Conversely, sup- 
pose (a) holds. P is a contraction by (b). Let Px = u, h > 0, w = w + X(x - v), 
andj = J((Pw - w). By (a), both (v - .x,j> and (w - Pw, j) are nonnegative. 
But h(v - X) T= z, - w. Hence, <v - Pzu, j:) = - /j Pw - v \I2 3 0, so that 
Pw = v. Finally suppose that both P and Q are sunny nonexpansive retrac- 
tions. Let x E E and j = J(Qx - Px). By (a), <:Px - N, j> and (X - Qx, j) 
are nonnegative. Hence, (Px - Qx, j) >, 0 and Px = Qx. 

The proof of the following theorem was inspired by the argument on 
p. 239 of [24]. 

THEOREM 2.8. Let C be a nonempty closed convex subset of a Banach space E 
and let T: C-t C be a contraction. Suppose that the norm of E is uniformly 
G&eaux d$%rentiable while the norm of E* is Frkhet dz.ferentiable. If C is a 
sunny nonexpansive retract of E, then cl(R(A)) has the minimum property. 

Proof. Denote the sunny nonexpansive retraction by P and define a 
contraction ct’;: E--f E by U = TP. Theorem 2.6 provides us with a point 
v E cl(R(I - U)) which is the element of least norm in 

clco(R(I - U)) 3 clco(R(A)). 

(In fact, cl(R(1 - V)) = clco(R(I - U)) in this case.) Let vu, = x,, - C’X, 
converge to v and put Px, - TPx, -= zfi E R(.4). By Lemma 2.7, 

iz, - v, ) Jz,) = <Px, - x, , J(Px, - TPx,)) < 0. 

Hence, I/ z, // Q I/ v, I/ . An appeal to Lemma 2.2 yields z, -+ v. This com- 
pletes the proof. 

Of course, every closed convex set in a Hilbert space is a sunny non- 
expansive retract. Now let K be a nonempty closed subset of a Banach space 
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E. Suppose K is a nonexpansive retract of E. When can we be sure that it is 
also a sunny nonexpansive retract ? A partial answer is provided by the 
following result which slightly extends the last part of [4, Theorem 31. 

A Banach space E is said to satisfy Opial’s condition [23, p. 5921 if x, - x 
in E implies that 

liminfIjx,-y]]>liminf)Ix,--/I) for ally # x. 

Although a Hilbert space satisfies this condition, not all uniformly convex 
spaces do [23, pp. 592 and 5961. The duality mapping J is said to be weakly 
sequentially continuous at zero if X, - 0 in E implies that {Jx~} converges to 
zero in the weak star topology of E *. Note that I1 satisfies Opial’s condition. 
Its duality mapping is weakly sequentially continuous at zero. 

LEMMA 2.9. Let K be a nonempty nonexpansive retract of a Banach space E 
whose norm is Gdteaux d$%rentiable. Then each of the following conditions imply 
that K is a sunny nonexpansive retract. 

(a) K is boundedly compact; 

(b) K is boundedly weakly relatively compact, E satt$ies Opial’s condition, 
and J is weakly sequentially continuous at zero; 

(c) E is uniformly convex and J is weakly sequentially continuous at zero. 
When E is reflexive and satisjes either (b) or (c), it is st&&nt to assume that K 
is the fixed point set of some contraction Q: E + E. 

Proof. Let Q: E + E be a contraction and let K be its fixed point set. Let 
(6,) be an arbitrary sequence with 0 < b, < 1 whose limit is 1. For each x 
in E we denote by x, the fixed point of b,Q + (1 - b,) X. Let x E E and 
y E K. Then 

and 

(1 - 6,) x, + b,(xt, - Qx~) = (1 - b,) x 

(1 - b,) y + bnb - QY> = (1 - bn)y. 

Since Q is a contraction it follows that 

IIx,-Y112d(x-Y,J(~n-Y)> and (x, - x9 J(Y - xv&)> 2 0. 

The sequence {Qxxn} is bounded because 

II Qxn -Q~lldllx,-~ll~Ilx-~ll~ 

If Q is a retraction and (a) holds, we denote the strong limit of a subsequence 
of {Qxn> C K by Px. The corresponding subsequence of {xn) also converges to 
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Px. Clearly P is a retraction onto K and Lemma 2.7 implies that it is sunny 
as well as nonexpansive. Suppose now that (b) or (c) holds. This time we 
denote, for each x E E, by Px the weak limit of a subsequence (Qx~) of {Qx,). 
The sequence (x, - Qxn} converges strongly to zero because 

x, - Qx, = (1 - b,) N - (1 - b,) Qx, . 

Both Opial’s condition and uniform convexity imply that Px E K. Therefore, 

jl XI: - Px \I2 < (x - Px, J(xk - Px)> --+ 0. 

In other words, the corresponding subsequence (x~} of {x,) converges 
strongly to Px. Therefore, (Px - x, J(r - Px)) -2 0, and again Lemma 2.7 
enables us to conclude the proof. 

The Zp spaces, 1 <p < co, satisfy the conditions imposed on E in (b) 
and (c). [22] and [14] contain more information concerning these conditions. 
Nonexpansive retracts are discussed in [13]. Karlovitz [IS] has recently 
constructed sunny nonexpansive retractions in two-dimensional spaces. 

Combining Theorems 1.1, 2.3, and 2.8, as well as Lemma 2.9, we obtain 
the following extension of Pazy’s theorem. 

THEOREM 2.10. Let C 6e a nonempty closed convex subset of a Banuch 
space E which satisfies Opial’s condition and is uniformly convex in every direction. 
Suppose that the norm of E is un@rm& Ga^teaux differentiable while the norm 
of E* is Fr&het differentiable. Assume further that C is the$xed point set of a 
nonexpansive self-mapping of E. If T: C --+ C is a contraction and {xn) is defined 
by (2.3), then 

(a) 0 E R(A) if and only if {x,] is bounded fm every x0 in C and every 
sequence {cn} which satisjes (2.1) and (2.2); 

(b) 0 $ cl(R(A)) af and only if lim 11 x%+1 II/a, > 0 for every x0 in C and 
wery sequence {cn} which satisfies (2.1) and (2.2); 

(c) 0 E cl(R(A)), but 0 6 R(A) if and only ;f {x,J is unbounded and 
x,+Jan + 0 for every x,, in C and every sequence (c~] which satis-es (2.1) and 
(2.2). 

Proof. J is weakly sequentially continuous at zero because E satisfies 
Opial’s condition and has a uniformly GBteaux differentiable norm [14]. 

Theorem 2.10 is applicable to the I* spaces, 1 <p < co, as well as to 
smooth strictly convex finite-dimensional spaces. 

Remark. In Theorem 2.10, “satisfies Opial’s condition and is uniformly 
convex in every direction” can be replaced by “has normal structure.” See 
[27, pp. 251 and 2531. 
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3. CONVERGENCE 

We have already observed that when a contraction T has a fixed point the 
sequence (xn} defined by (2.3) ’ b is ounded. However, if the initial point x0 
is not a fixed point of T, then it may fail to converge. In fact, there is a non- 
expansive self-mapping of l2 which has the origin as its unique fixed point 
such that {x,J does not converge for all x,, # 0 even though c, = + for all n E N 
[17, p. 5351. Therefore, it is of interest to consider other iteration processes. 

Let {K,: n EN}, 0 < k, < 1, be a sequence whose limit is 1. Define a 
Toeplitz matrix by 

t m.0 = 1 - km, m E N, 

t - km, m.m+1 - mEN, 

t Tn.98 = 0 otherwise. 

In other words, given a point x0 E C, a closed convex subset of a Banach 
space, and a contraction T: C -+ C, a sequence {x,,) is defined by 

X n+l = (1 - k,) xo + Gk , TlEN. (3.1) 

THEOREM~.~. Let k,=1-(n+2)-t, where O<t<l and neN. 
Let x0 E C, a weakly compact convex subset of a Banach space E whose norm is 
G&eaux d#erentiable, let T: C + C be a contraction, and let {x,,} be defined 
by (3.1). Suppose J is weakly sequentially continuous at zero. If E satisfies 
Opial’s condition or is unqormly convex, then {xn> converges to a fixed point of T. 

Proof. Let K be the nonempty fixed point set of T. Let {b,) be an arbitrary 
sequence with 0 < b, < 1 whose limit is 1. Finally let ( yll} C C satisfy 
Yn = (1 - bn)xo + b,T’n. By the proof of Lemma 2.9 every weakly 
convergent subsequence of { yn} converges strongly to Px, , where P: C --f K 
is the unique sunny nonexpansive retraction onto K. It follows that {yn) 
itself converges to Px, E K. Now the proof of [15, Theorem 31 implies that 
x,+Pxo. 

In the course of this proof we have established the following assertion. 

THEOREM 3.2. Suppose the hypotheses of Theorem 3.1 hold. Define for each 
0 < k < 1 a point yk in C by yk = (1 - k) x0 + kTr, . Then the net { ylc} 
converges strongly to a fixed point of T as k --f 1. 

This result improves upon [3, Theorem 31. 
Additional information concerning the sequence defined by (3.1) can be 

found in [29]. Kaniel [17j discovered an ingenious non-Toeplitz process. 
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