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Abstract

In this paper we prove some characterizations of the matrix orthogonal polynomials whose derivatives
are also orthogonal, which generalize other known ones in the scalar case. In particular, we prove that the
corresponding orthogonality matrix functional is characterized by a Pearson-type equation with two matrix
polynomials of degree not greater than 2 and 1. The proofs are given for a general sequence of matrix
orthogonal polynomials, not necessarily associated with a hermitian functional. We give several examples
of non-diagonalizable positive definite weight matrices satisfying a Pearson-type equation, which show that
the previous results are non-trivial even in the positive definite case.

A detailed analysis is made for the class of matrix functionals which satisfy a Pearson-type equation whose
polynomial of degree not greater than 2 is scalar. We characterize the Pearson-type equations of this kind that
yield a sequence of matrix orthogonal polynomials, and we prove that these matrix orthogonal polynomials
satisfy a second order differential equation even in the non-hermitian case. Finally, we prove and improve a
conjecture of Durán and Grünbaum concerning the triviality of this class in the positive definite case, while
some examples show the non-triviality for hermitian functionals which are not positive definite.
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1. Introduction

The results published by Durán in [10] can be considered the starting point for a general
study of matrix orthogonal polynomials (MOP) satisfying differential equations. After [10], many
other papers on the subject have appeared trying to find the similarities and main differences
with respect to the classical and semi-classical scalar orthogonal polynomials (see for instance
[4–7,11,12,14,16–19]). In spite of these efforts, a complete Bochner-type classification of MOP
satisfying second order differential equations similar to the scalar case (see [1,2]) is far from being
obtained.

However, there are many other differential properties that characterize the classical scalar
orthogonal polynomials and that could lead to interesting matrix generalizations. These general-
izations could clarify the structure of certain families of MOP, being a source of properties for such
families, as in the scalar case. Eventually, the understanding of these other differential properties
could shed light on the structure of some families of MOP satisfying differential equations thus
helping to find classification theorems.

It is well known that, apart from the second order differential equation, the classical scalar
orthogonal polynomials (Pn) can be characterized by the orthogonality of their derivatives (P ′

n+1)

(see [3,8,20,23,24]) or, equivalently, by a linear relation between Pn and P ′
n+1, P

′
n, P

′
n−1 (see [21]).

These properties are also equivalent to a Pearson-type equation for the corresponding orthogonality
functional (see [8,23–25]). The main objective of this paper is to prove that the equivalence among
these three properties hold in the matrix case too (see Theorem 3.14).

The proofs of the above equivalences are given for any sequence of MOP, not necessarily related
to a hermitian weight matrix. The Pearson-type equation involves a distributional derivative. The
distributional definition of the derivative not only permits us to prove the results in a more general
context, but unifies many different situations that would otherwise require a separate discussion.
The reason is that the distributional Pearson-type equation bears in mind not only the first order
differential equation for the weight but also the necessary additional boundary conditions (see
Remark 2.9). So, the introduction of the distributional derivative becomes an advantage that
enables us to obtain more general results and, at the same time, in a simpler and more elegant
way.

Diagonalizable MOP (we will be more precise about this concept later) are nothing really
different from scalar orthogonal polynomials. Thus, the relevance of the results proved in this
paper depends on the existence of non-diagonalizable examples of MOP whose derivatives are
also orthogonal. Examples 2–4 show that there are non-diagonalizable positive definite weight
matrices whose orthogonal polynomials possess such a property.

The weight matrix given in Example 2,

e−x2
(

1 + |a|2x2 ax

āx 1

)
dx, x ∈ R, a ∈ C \ {0},

appeared previously in [14] as an example of positive definite weight matrices whose orthogonal
polynomials satisfy a second order differential equation. Curiously, the authors state in [14],
Section 7, Proposition 7.3, that the derivatives of these MOP are no longer orthogonal with
respect to any weight matrix, arguing that a contradiction appears when a three term recurrence
relation for such derivatives is assumed. However, if one carries out the computations proposed
in [14], Proposition 7.3, no contradiction appears! Indeed, we will see that this weight matrix
satisfies a Pearson-type equation that, according to Theorem 3.14, implies the orthogonality of
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the derivatives of its orthogonal polynomials. What is more, we will find the positive definite
weight matrix that gives the orthogonality of these derivatives.

The purpose of [14], Section 7, was to show that the equivalent characterizations of the classical
scalar orthogonal polynomials do not necessarily hold for MOP satisfying second order differential
equations. It seems that the authors were not too lucky in the choice of the weight matrix since,
if they had chosen the other example that they present, namely,

e−x2
(

1 + |a|2x4 ax2

āx2 1

)
dx, x ∈ R, a ∈ C \ {0},

they would have succeeded. The reason is that, as can be easily verified, this other weight does not
satisfy the required Pearson-type equation and, then, Theorem 3.14 implies that the derivatives
of its orthogonal polynomials cannot be orthogonal.

A particular class of the family of MOP with orthogonal derivatives permits a deeper analysis.
This is the class corresponding to a Pearson-type equation involving a scalar polynomial � under
the derivative. These MOP can be classified analogously to the classical scalar case, according
to the roots of �: Hermite (no roots), Laguerre (a simple root), Jacobi (two different roots) or
Bessel-type (a double root). Moreover, a change of variable can reduce the different types to the
canonical cases �(x) = 1, x, 1 − x2, x2.

For this special class we develop explicit formulas for the related matrix parameters, such
as the norm of the monic orthogonal polynomials, the coefficients of the three term recurrence
relation or the coefficients of the linear relation between the polynomials and their derivatives.
These formulas, although generalizations of the known ones in the classical scalar case, are more
intricate due to the non-commutativity of the matrix product. However, they are very useful since
they allow us to characterize the Pearson-type equations that have a quasi-definite solution. In
other words, if a matrix functional satisfies this kind of Pearson-type equation, we have a criterion
to know if it generates a sequence of orthogonal polynomials (see Theorem 4.1). Notice that the
importance of this result relies on the fact that we are dealing with general matrix functionals
and not only with positive definite weight matrices since the last ones always have an associated
sequence of MOP.

We also prove that the MOP of the above mentioned class satisfy a second order differential
equation with polynomial coefficients (see Theorems 4.3 and 4.4). The result is again true no
matter whether the corresponding orthogonality matrix functional is hermitian or not. This is one
of the novelties of this result, since the previous works on differential equations for MOP always
dealt with the hermitian case only. In fact, if we believe a conjecture formulated by Durán and
Grünbaum in [13], this discovery is only relevant for the functionals of the referred class that are
not positive definite. This conjecture states that every positive definite weight matrix in this class
is diagonalizable. We will present a proof of this conjecture in Section 4.2 (see Corollary 4.11).

The above conjecture was supported in [13] by a proof given under extra assumptions. First, it
was assumed that the coefficients of the matrix polynomial appearing in the Pearson-type equation
commute. Second, it was assumed that the roots of � are simple, so the case �(x) = x2 was not
considered. Finally, there is another less evident drawback in the analysis in [13]. If � has a
complex root, the required change of variable to reach a canonical situation generally destroys the
hermiticity of the weight matrix. This means that, apart from the previous restrictions, the proof is
only valid for the case of � with real roots. Our proof avoids all these problems. Furthermore, we
obtain a result that improves the one conjectured in [13] (see Theorem 4.10). In spite of this result,
the non-triviality of the class under consideration is ensured by the existence of non-diagonalizable
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matrix orthogonal polynomials in such a class, even in the hermitian case (see [5,13] and Example
5 of this paper).

The detailed explanation of the above results will be structured in the following way throughout
the paper: Section 2 introduces the notation, as well as some preliminary results and considerations
that will be of interest for the rest of the paper. In Section 3 we study the MOP (Pn) with respect
to a functional satisfying a Pearson-type equation with two matrix polynomials of a degree not
greater than 2 and 1. We prove that such a Pearson-type equation is equivalent to the orthogonality
of the derivatives (P ′

n+1) and, also, to a linear relation between Pn and P ′
n+1, P

′
n, P

′
n−1. Some two-

dimensional non-diagonalizable examples of positive definite weight matrices whose orthogonal
polynomials satisfy these properties are presented at the end of the section. Section 4 is devoted to
the analysis of the special case in which the polynomial under the derivative in the Pearson-type
equation is a scalar one. We obtain the characterization of the Pearson-type equations of this
kind with quasi-definite solutions, the differential equation for the related MOP and the proof of
the Durán–Grünbaum conjecture, finishing with some non-diagonalizable examples. Finally, in
Section 5 we discuss the relation of the above results with others in the literature regarding second
order differential equations for MOP.

2. The basics

We start with some notations and a summary of basic results we will use in the rest of the paper.
In what follows, Cm will be the set of complex vectors of m components and C(m,m) the set of

m × m complex matrices. We shall denote by P(m) the C(m,m)-left-module

P(m) =
{

n∑
k=0

�kx
k

∣∣∣∣�k ∈ C(m,m), n ∈ N

}
,

and by means of P(m)′ the C(m,m)-right-module Hom
(
P(m), C(m,m)

)
. P

(m)
n will be the subset of

matrix polynomials of P(m) with a degree not greater than n. In the scalar case (m = 1) we will
just write P(1) = P and P

(1)
n = Pn.

For all P ∈ P(m) and u ∈ P(m)′ the duality bracket is defined by 〈P, u〉 = u (P ) and it verifies
the usual bilinear properties.

For k ∈ N and u ∈ P(m)′ the linear functional uxkI ∈ P(m)′ is given by

〈P, uxkI 〉 = 〈xkP, u〉,
where I denotes the m×m identity matrix. A linear extension gives the right-product uQ ∈ P(m)′

for u ∈ P(m)′ , Q ∈ P(m), with Q(x) =∑n
k=0 qkx

k, qk ∈ C(m,m), in the following way:

〈P, uQ〉 =
n∑

k=0

〈xkP, u〉qk.

Similarly, the left-product Qu ∈ P(m)′ is defined by

〈P, Qu
〉 = 〈PQ, u〉.

Every functional u ∈ P(m)′ induces a matrix inner product in P(m) given by 〈P, Q〉u =
〈P, uQ∗〉, where Q∗(x) = ∑n

k=0 q∗
k xk and q∗

k is the adjoint matrix of qk . This matrix inner
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product possesses the standard sesquilinear properties. The orthogonality with respect to u means
the orthogonality with respect to this inner product.

The functional u∗ is defined by

〈P, u∗Q〉 = 〈Q∗, uP ∗〉∗,
and we will say that u is a hermitian functional if u = u∗. In this case 〈P, uP ∗〉 is hermitian for
any P ∈ P(m). A hermitian functional u is positive definite if 〈P, uP ∗〉 is positive definite for
every P ∈ P(m) with det P �= 0. In what follows we will denote this condition by u > 0. In the
same way, for a positive definite matrix A we will write A > 0.

We denote by �k = 〈xkI, u〉 the k-th moment with respect to u ∈ P(m)′ . Given a sequence(
�k

)
k �0 in C(m,m), there exists a unique u ∈ P(m)′ such that 〈xkI, u〉 = �k .

If u ∈ P(m)′ has moments
(
�k

)
k �0 , we say that u is quasi-definite (or non-singular) if det �n �=

0 for n�0, where �n is the Hankel-block matrix

�n =

⎛⎜⎜⎜⎜⎝
�0 �1 . . . �n

�1 �2 . . . �n+1

...
...

...
...

�n �n+1 . . . �2n

⎞⎟⎟⎟⎟⎠ .

Notice that u is hermitian if and only if �n = �∗
n for n�0, or, equivalently, �n = �∗

n for n�0.
The interest of the quasi-definite functionals relies on the following result (see [9,15,22]).

Theorem 2.1. u ∈ P(m)′ is quasi-definite if and only if there exists a sequence (Pn)n�0 of left
orthogonal matrix polynomials with respect to u, i.e.:

(i) Pn ∈ P(m), deg Pn = n.
(ii) The leading coefficient of Pn is non-singular.

(iii) 〈xkPn, u〉 = En�nk , with En non-singular, for 0�k�n.

Moreover, the sequence (Pn)n�0 is unique up to non-singular left matrix factors and verifies a
recurrence relation

xPn(x) = �nPn+1(x) + �nPn(x) + �nPn−1(x),

where P0 ∈ C(m,m) is non-singular, P−1 = 0 and �n, �n, �n ∈ C(m,m), with �n, �n non-singular.

The last result of this theorem has a converse (Favard’s Theorem): for any sequence (Pn)n�0
verifying the above recurrence relation, there exists a unique (up to non-singular right matrix
factors) quasi-definite functional u such that (Pn)n�0 is its sequence of left orthogonal matrix
polynomials (see [9,15,22]). Analogously, we can define the right orthogonal matrix polynomials
with respect to u, which are the adjoints of the left orthogonal polynomials associated with u∗. In
what follows we will consider only left orthogonal matrix polynomials, and we will simply call
them MOP.

Remark 2.2. Given a functional u ∈ P(m)′ , we can normalize the corresponding MOP by
choosing the monic ones (Pn)n�0. In what follows we will assume this choice, so, a unique
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sequence of non-singular matrices (En)n�0, En = 〈xnPn, u〉, is associated with any quasi-
definite functional u. Also, �n and �n will denote the matrix coefficients of the related recurrence
relation

xPn(x) = Pn+1(x) + �nPn(x) + �nPn−1(x).

Similarly, given a MOP sequence, we can normalize the corresponding functional u in different
ways, for instance, by requiring 〈I, u〉 = I . However, we will not fix the normalization for the
time being because the most convenient one depends on the problem that we want to study.

In the case of non-quasi-definite functionals, the full sequence of MOP does not exist. Never-
theless, we have the following general result:

Proposition 2.3. For every u ∈ P(m)′ the following statements are equivalent:

(i) �0, . . . ,�n are non-singular.
(ii) There exists a finite segment (Pk)

n
k=0 of monic MOP with respect to u, that is:

(a) Pk ∈ P(m), deg Pk = k.
(b) 〈xjPk, u〉 = Ek�kj , with Ek is non-singular, for 0�j �k�n.

Moreover, under the above conditions, the segment
(
Pk

)n
k=0 is unique and there exists a

unique monic polynomial Pn+1 with deg Pn+1 = n + 1 such that 〈xjPn+1, u〉 = 0 for
0�j �n.

Proof. Suppose that �0, . . . ,�n are non-singular. If Pk(x) = ∑k
i=0 �(k)

i xi, �(k)
i ∈ C(m,m),

then, 〈xjPk, u〉 = ∑k
i=0 �(k)

i �i+j . Choosing �(k)
k = I, the system

∑k
i=0 �(k)

i �i+j = 0, j =
0, . . . , k − 1, can be represented as

(�(k)
0 , �(k)

1 , . . . , �(k)
k−1 ) �k−1 = − (�k, �k+1, . . . , �2k−1 ) ,

which has a unique solution for k = 0, 1, . . . , n + 1.
On the other hand, Ek is non-singular for k = 0, 1, . . . , n. In fact, we have 〈xjPk, u〉 = Ek�kj ,

j = 0, . . . , k, k = 0, . . . , n, and so,

(�(k)
0 , �(k)

1 , . . . , �(k)
k−1, I ) �k = (0, 0, . . . , 0, Ek ) .

If Ek is singular, there exists v ∈ Cm \ {0} such that vT Ek = 0. Hence,

(vT �(k)
0 , vT �(k)

1 , . . . , vT �(k)
k−1, v

T ) �k = (0, 0, . . . , 0, 0 ) ,

and this result contradicts the non-singularity of �k for k = 0, . . . , n.
For the converse, let us suppose that there exists a finite segment

(
Pk

)n
k=0 of MOP with respect

to u with Ek = 〈xkPk, u〉. It is easy to see that the conditions 〈xjQk, u〉 = Ek�kj , j = 0, . . . , k,

where Qk ∈ P
(m)
k , ensures that Qk = Pk , k = 0, . . . , n. Writing Qk(x) = ∑k

i=0 �(k)
i xi , the

above assertion means that, for k = 0, . . . , n, the system

(�(k)
0 , �(k)

1 , . . . , �(k)
k−1, �

(k)
k ) �k = (0, 0, . . . , 0, Ek )

has a unique solution and, hence, �k is non-singular. �
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Concerning the partial hermiticity of a functional, we have the following immediate result:

Proposition 2.4. Let u ∈ P(m)′ . If (pk)
n
k=0 is a basis of P

(m)
n , �n = �∗

n if and only if
(〈pk, up

∗
j 〉)nk,j=0 is hermitian.

In particular, if u has a finite segment (Pk)
n
k=0 of MOP,

�n = �∗
n ⇐⇒ 〈Pk, uP ∗

j 〉 = Ek�kj , Ek = E∗
k , 0�j, k�n.

The second assertion of the above proposition states that, when �0, . . . ,�n are non-singular, the
condition �n = �∗

n means that the finite segments of left and right orthogonal matrix polynomials
are each one’s hermitian adjoints.

Also, for the hermitian positive definite functionals on P
(m)
n we have the following characteri-

zation:

Proposition 2.5. Let u ∈ P(m)′ . If (pk)
n
k=0 is a basis of P

(m)
n , the following statements are

equivalent:

(i) �n > 0.
(ii) (〈pk, up

∗
j 〉)nk,j=0 > 0.

(iii) u has a finite segment (Pk)
n
k=0 of MOP such that 〈Pk, uP ∗

j 〉 = Ek�kj with Ek > 0 for
0�j, k�n.

(iv) 〈P, uP ∗〉 > 0 for any P ∈ P
(m)
n such that det P �= 0.

Proof. We only prove (i) ⇔ (iv), since the remaining equivalences are immediate. For any matrix
polynomial P(x) =∑k

i=0 Aix
i , Ai ∈ C(m,m), k�n,

〈P, uP ∗〉 = (A1 . . . Ak ) �k

⎛⎝A∗
1
...

A∗
k

⎞⎠ .

So, 〈P, uP ∗〉 is hermitian if �n is hermitian. If v ∈ Cm,

v∗〈P, uP ∗〉v = (v∗
0 . . . v∗

k ) �k

⎛⎝v0
...

vk

⎞⎠ , vi = A∗
i v. (1)

Then, if v �= 0, det P �= 0 implies vi �= 0 for some i. So, equality (1) gives v∗〈P, uP ∗〉v > 0 if
�n > 0.

For the converse, if 〈P, uP ∗〉 is hermitian for P ∈ P
(m)
n with det P �= 0, �2k = 〈xkI, uxkI 〉 =

�∗
2k for k�n. Besides, �2k−1 = �∗

2k−1 for k�n too, due to the identity 〈(xk + xk−1)I, u(xk +
xk−1)I 〉 = �2k + �2k−2 + 2�2k−1. Therefore �n = �∗

n.

Suppose 〈P, uP ∗〉 > 0 for any P ∈ P
(m)
n with det P �= 0. Let (v0 . . . vk ), vi ∈ Cm, with

vk �= 0 and k�n. We can always find Ai ∈ C(m,m) such that A∗
i vk = vi , Ak = I . The polynomial

P(x) =∑k
i=0 Aix

i lies on P
(m)
n and det P �= 0. So, relation (1) gives

(v∗
0 . . . v∗

k ) �k

⎛⎝v0
...

vk

⎞⎠ > 0 if vk �= 0, k�n.

This proves by induction that �n > 0. �
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Remark 2.6. Notice that, if u is a hermitian and positive definite functional, then it is quasi-
definite. So, there exists the corresponding sequence (Pn)n�0 of MOP with En hermitian and
positive definite.

Similarly to the scalar case, the positive definite matrix functionals are those given by

〈P, u〉 =
∫

P(x) dM(x), (2)

where dM is a positive definite weight matrix on R, i.e., a positive definite matrix of measures
supported on the real line (M(S) is positive semidefinite for any Borel set S ⊂ R) with finite
moments

∫
xndM(x), n�0, and such that

∫
P(x) dM(x) P (x)∗ is non-singular if det P �= 0

(see [9]). This is, for instance, the case of an absolutely continuous matrix of measures dM(x) =
W(x) dx with finite moments, W(x) being semidefinite positive for any x ∈ R and non-singular
for infinitely many points of the real line.

In what follows we will identify any m × m matrix dM of measures on C with finite moments
(not necessarily hermitian), and the functional u ∈ P(m)′ defined by (2). Thus, we will write
u = dM for such a functional.

A specially interesting family of matrix functionals is given by the functionals which satisfy
a differential equation of Pearson-type (see [4,5]). The definition of this family requires the
introduction of the distributional derivative operator in the space P(m)′ , which is the linear operator
D: P(m)′ → P(m)′ such that

〈P, Du〉 = −〈P ′, u〉.
The equality D(u�) = (Du)� + u�′ holds for all u ∈ P(m)′ and � ∈ P(m).

Definition 2.7. Let u ∈ P(m)′ . We say that u ∈ P or, equivalently, u is a P-functional, if there
exist �, � ∈ P(m), with det � �= 0, such that

D (u�) = u� (Pearson-type equation).

If deg ��p and deg ��q, we say that u ∈ Pp,q or u is a Pp,q -functional. In both cases we also
say that the corresponding sequence of MOP belongs to the family P or Pp,q , respectively.

Remark 2.8. The condition det � �= 0 is imposed to avoid any triviality of the definition, ensuring
that it involves all the components uij : P(m) → C of u = (uij )

m
i,j=0. Notice that

det � = 0 ⇐⇒ �v = 0 for some v ∈ Cm[x] \ {0}.
In fact, if �v = 0 for some v ∈ Cm[x] \ {0}, then 0 = (adj �)�v = (det �)v. To see the
converse, remember that every � ∈ P(m) can be factorized as � = P �̂Q, with �̂ ∈ P(m)

diagonal and P, Q ∈ P(m) invertible, i.e., det P, det Q ∈ C \ {0}. Therefore, det � = 0 implies
det �̂ = 0 and, since �̂ is diagonal, �̂v0 = 0 for some v0 ∈ Cm \ {0}, which gives �v = 0 with
v = Q−1v0 ∈ Cm[x] \ {0}.

Remark 2.9. The distributional definition of the derivative operator D given earlier implies that,
in general, the Pearson-type equation involves not only a relation between standard derivatives
but a boundary condition too. Consider, for instance, a functional u = W(x) dx, x ∈ �, with W

an analytic matrix function on a regular curve � of the complex plane. Then, Du = W ′(x) dx +
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W(x)(�(x −a)−�(x −b)) dx, where a and b are the initial and final points of �, respectively. So,
if the curve is open, together with the equality (W�)′ = W�, we need the boundary condition
(W�)(a) = (W�)(b) = 0 to ensure the Pearson-type equationD(u�) = u�. The case of a closed
curve does not need an additional boundary condition since we suppose that W is analytic on �.
Moreover, in this case, the Pearson-type equation holds even if (W�)′ �= W� but (W�)′ − W�
is analytic on the region enclosed by �, due to Cauchy’s Theorem. The Pearson-type equation can
be satisfied if W is only analytic on � \ {a, b} but the limits (W�)(a+) := limt→t0(W�)(�(t)),
(W�)(b−) := limt→t1(W�)(�(t)) exist, where �: [t0, t1] → � is a parametrization of �, a =
�(t0), b = �(t1). Then,

D(u�) = (W�)′(x) dx + (W�)(a+) �(x − a) dx − (W�)(b−)�(x − b) dx,

so, we obtain the Pearson-type equation adding to (W�)′ = W� the boundary conditions

(W�)(a+) = (W�)(b−) closed curve,

(W�)(a+) = (W�)(b−) = 0 open curve.

The distributional derivative not only unifies all these cases, but allows us to consider more general
situations, such as functionals defined by matrix measures supported on an arbitrary subset of the
complex plane.

If u ∈ P(m)′ is a P-functional with a Pearson-type equation D (u�) = u�, then, for every
� ∈ P(m),

D (u��) = u
(
��′ + ��

)
. (3)

Therefore, the set

M(u) = {� ∈ P(m) | D(u�) = u�, � ∈ P(m)}
is a right-ideal of P(m), but it is not necessarily principal, because the euclidean division algorithm
is not valid in P(m). This is an obstacle when trying to find a canonical representative of M(u)

that might lead to a classification of P-functionals similarly to the scalar case.
Notice that P =⋃p,q �0 Pp,q, and Pp,q ⊂ Pp′,q ′ if p�p′ and q �q ′. The set

Mp,q(u) = {� ∈ P(m)
p | D(u�) = u�, � ∈ P(m)

q }

is not an ideal of P(m), but a C(m,m)-right-submodule of P
(m)
p . Although it is finitely generated, it

is not cyclic in general, which again gives rise to a problem in finding a canonical representative
of Mp,q(u).

Example 1. Let us consider u ∈ P(2)′ given by

u = (1 − x2)

(
1 + 3x2 2x

2x 1

)
dx, x ∈ (−1, 1).

A direct computation shows that u is a P3,2-functional with

M3,2(u) = spanC(2,2)

{
(1 − x2)I, x(1 − x2)

(
0 0
0 1

)}
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generated by two elements. Indeed, if

�(x) = (1 − x2)�1 + x(1 − x2)

(
0 0
0 1

)
�2, �i ∈ C(2,2),

then D(u�) = u� with

�(x) =
( −2x 2

2 − 6x2 −8x

)
�1 +

(
0 2x

0 1 − 9x2

)
�2.

We can get cyclic modules for u by going down in the net (Pp,q)p,q �0, but there are two
different ways to do it. From the previous result we obtain

• u ∈ P2,2 with M2,2(u) = spanC(2,2)

{
(1 − x2)I

}
.

• u ∈ P3,1 with M3,1(u) = spanC(2,2)

{
(1 − x2)

(
3 0

−2x 1

)}
.

In fact,

D
(
u(1 − x2)I

) = u

( −2x 2
2 − 6x2 −8x

)
,

D

(
u(1 − x2)

(
3 0

−2x 1

))
= u

(−10x 2
4 −8x

)
.

This splitting clearly shows the difficulty in the classification of P-functionals. Moreover, we
cannot go down further than this in the net (Pp,q)p,q �0 since

M2,1(u) = M2,2(u) ∩ M3,1(u) = spanC(2,2)

{
(1 − x2)

(
0 0
0 1

)}
,

M1,2(u) = M3,0(u) = M0,3(u) = {0},
and, hence, u �∈ Pp,q for p + q �3.

Notice that the above difficulty in the classification arise even for quasi-definite functionals
since our example was positive definite. However, if we restrict our attention to quasi-definite
functionals, there is a singular situation. As we will prove later (see Theorem 3.4), if �0, �1, �2
are non-singular for some u ∈ P2,1, then M2,1(u) is cyclic. This implies that we can associate
with each sequence of MOP in the family P2,1 a canonical representative: the unique (up to
non-singular right matrix factors) generator of M2,1(u), u being the related orthogonality matrix
functional.

A way of solving the problem of classification of P-functionals uses the fact that M(u) always
has a non-trivial scalar representative. Actually, choosing � = adj � in (3) gives �� = (det �)I ,
which yields the following characterization (see [4,5]).

Proposition 2.10. The functional u ∈ P(m)′ belongs to the family P if and only if there exist
� ∈ P \ {0} and � ∈ P(m) such that

D(u�I ) = u�.

Notice that the set

M̃(u) = {� ∈ P | D(u�I ) = u�, � ∈ P(m)}



184 M.J. Cantero et al. / Journal of Approximation Theory 146 (2007) 174–211

is a non-trivial bilateral ideal of P, which is, therefore, principal. So, there exists an � ∈ P \ {0},
unique up to non-trivial factors in C, which is a generator of M̃(u). This scalar generator can be
used to classify the P-functionals.

Definition 2.11. Let u ∈ P(m)′ be a P-functional and let � ∈ P \ {0} be a generator of M̃(u).
The class of u is s = max{deg � − 2, deg � − 1}, where � ∈ P(m) is such that D(u�I ) = u�.

The interesting P-functionals are those that have a sequence of MOP, that is, the quasi-definite
P-functionals. These are called semi-classical functionals (see [4,5]). As in the scalar case, the
semi-classical functionals can be characterized by several differential properties of the corre-
sponding MOP.

Theorem 2.12. Let u ∈ P(m)′ be quasi-definite and let (Pn)n�0 be the associated sequence of
MOP. Then, the following statements are equivalent:

(i) u ∈ P .
(ii) There exist � ∈ P \ {0} and �(n)

j ∈ C(m,m) such that

�(x)P ′
n+1(x) =

deg �∑
j=−s

�(n)
j Pn+j (x) (structure relation)

with s� max{deg � − 2, 0} independent of n and �(n)
−s �= 0 for some n�s.

(iii) There exist a ∈ P \ {0}, b ∈ P and �(n)
k ∈ C(m,m) such that

a(x)Pn
′′(x) + b(x)P ′

n(x) =
r∑

k=−r

�(n)
k Pn+k(x) (differo-differential equation)

with r � max{dega − 2, degb − 1} independent of n.

We use the convention Pk = 0 for k < 0.

Proof. See [4,5]. �

Remark 2.13. Let us suppose that a P-functional u ∈ P(m)′ satisfies a Pearson-type equation
D(u�I ) = u�, � ∈ P \ {0}, � ∈ P(m), and let s = max{deg � − 2, deg � − 1}. Then, the proofs
given in [5] show that the structure relation appearing in Theorem 2.12 (ii) is satisfied for the
same polynomial � and integer s. However, contrary to the scalar case, the differo-differential
equation given in Theorem 2.12 (iii) cannot be guarantee for a = �, r = s, but for a = �2 and
r = max{2deg � − 2, 2s + 2} = max{2deg � − 2, 2deg�}�s.

In the scalar case, the classical orthogonal polynomials can be characterized by a Pearson-type
equation D(u�) = u�, � ∈ P2 \ {0}, � ∈ P1, for the corresponding orthogonality functional
u. When trying to generalize the concept of classical orthogonal polynomials to the matrix case
using a Pearson-type equation, the following two possibilities appear:

• Zero class: u ∈ P(m)′ belongs to the zero class if it is semi-classical with class s = 0, that is, u
is quasi-definite and there exist � ∈ P2 \ {0}, � ∈ P

(m)
1 , such that D(u�I ) = u�.
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• Family P2,1: u ∈ P(m)′ is a P2,1-functional, or belongs to the family P2,1, if there exist
� ∈ P

(m)
2 , � ∈ P

(m)
1 , with det � �= 0, such that D(u�) = u�.

The MOP associated with zero class functionals or quasi-definite P2,1-functionals can
be considered as matrix generalizations of the classical scalar orthogonal polynomials. Notice
that a quasi-definite P2,1-functional is always semi-classical, but its class can be greater than zero.
In fact, except for the scalar case, the family of quasi-definite P2,1-functionals is strictly greater
than the zero class, as can be seen in Examples 2–4. Both the family P2,1 and the zero class
are interesting sets of matrix functionals since the related MOP inherit some of the properties
that characterize the classical orthogonal polynomials in the scalar case. This will be shown
in the following sections, which are devoted to the study of the family P2,1 and the zero
class.

Before doing this, we will comment on some other questions of importance for MOP. As
we have pointed out, a central concept for matrix functionals is the diagonalizability or, more
generally, the reducibility. We say that a functional u ∈ P(m)′ is diagonal or block-diagonal if
its moment sequence (�n)n�0 possesses such a property. We write u = u(1) ⊕ · · · ⊕ u(k) if
�n = �(1)

n ⊕ · · · ⊕ �(k)
n , where (�(i)

n )n�0 are the moments of u(i).
To simplify the analysis of a matrix functional u ∈ P(m)′ , the usual strategy is to connect it

with a diagonal or block-diagonal one û ∈ P(m)′ through a relation that permits us to translate
the information from û to u. For instance, if û = T uS, with T , S ∈ C(m,m) non-singular, we say
that u is equivalent to û. In particular, when S = T ∗ we say that u is congruent to û, while if
S = T ∗ = T −1 way say that u is unitarily similar to û. Notice the difference with the terminology
used by other authors, we prefer to preserve the usual one in Linear Algebra to avoid unnecessary
confusion. A matrix functional is diagonalizable or reducible by equivalence if it is equivalent to
a diagonal or block-diagonal one, respectively. We define in a similar way the diagonalizability
or reducibility by congruence and the unitary diagonalizability or reducibility.

A change of variable t (x) = ax+b, a ∈ C\{0}, b ∈ C, can be used to relate matrix functionals
too. Given u ∈ P(m)′ we define ut ∈ P(m)′ by

〈P, ut 〉 = 〈P ◦ t, u〉,
so that, if u = dM , then ut = d(M ◦ t−1). Notice that, with this definition, (Du)t = (Dut )t

′.
The kind of relation that we use depends on the properties that we need to preserve. For exam-

ple, the equivalence transformation and the change of variable keep the quasi-definite character
invariant, as well as any family Pp,q and the class of a P-functional (in fact, the MOP and the
corresponding Pearson-type equations are trivially related by these transformations). This means
that, concerning these properties, the only non-trivial matrix functionals are those that are not re-
ducible by equivalence or change of variable. In particular, if we are going to study a characteristic
of a functional u that only depends on such properties, then we can always use the normalization
〈I, u〉 = I since we can work, for example, with the equivalent functional û = u�−1

0 . Also, this
allows us, when studying zero class functionals, to restrict our attention to the canonical choices
�(x) = 1, x, 1−x2, x2 of the scalar polynomial in the Pearson-type equation, due to the freedom
in the change of variables.

However, if we are interested in a characteristic that depends on the hermiticity or positive
definiteness of u (or, more generally, on the hermiticity or positive definiteness of some moments
�n or Hankel matrices �n) we must use congruence transformations and changes of variable
with real coefficients. This is the reason for avoiding the use of the canonical forms of the scalar
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polynomial � when studying hermitian zero class functionals, unless we are sure that � has real
roots. Also, the normalization 〈I, u〉 = I can be used, while preserving any hermiticity property
of u, whenever �0 > 0 since then we can use the congruent functional û = L−1u(L−1)∗, where
�0 = LL∗ is the Cholesky factorization of �0.

3. The family P2,1

The aim of this section is to study the differential properties of the MOP associated with P2,1-
functionals. The main result is Theorem 3.14, which shows that some characterizations of the
classical scalar orthogonal polynomials remain true for the matrix family P2,1. On the way to
proving Theorem 3.14 we will obtain a chain of results which are in themselves interesting.

We will start by fixing some notations that we will need in the rest of the section. Let u ∈ P(m)′

be a P2,1-functional, that is, D(u�) = u�, where �(x) = �0 +�1x +�2x
2, �(x) = 	0 +	1x,

with �i , 	j ∈ C(m,m) and det � �= 0. The above Pearson-type equation is equivalent to

n(�n−1�0 + �n�1 + �n+1�2) = −(�n	0 + �n+1	1), n�0, (4)

where (�k)k �0 are the moments of u and �−1 = 0. We denote

ũ = u�, �̃n = 〈xnI, ũ〉, �̃n =
⎛⎝ �̃0 �̃1 . . . �̃n

...
...

...
...

�̃n �̃n+1 �̃2n

⎞⎠ .

The moments of u and ũ are related by

�̃n = �n�0 + �n+1�1 + �n+2�2, n�0. (5)

One of the characterizations of the classical scalar orthogonal polynomials is that they are the
only sequences of orthogonal polynomials whose derivatives are also sequences of orthogonal
polynomials. The following proposition is the starting point to prove a similar result for the
family P2,1.

Proposition 3.1. Let u be a P2,1-functional such that �0, �1, . . . ,�n are non-singular. Then, the
corresponding finite segment (Pk)

n
k=0 of monic MOP satisfies

〈xjP ′
k, ũ〉 = 0, j = 0, . . . , k − 2, k = 2, . . . , n,

〈xk−1P ′
k, ũ〉 = −Ek(	1 + (k − 1)�2), k = 1, . . . , n.

Proof. From the distributional equation D(u�) = u� we have

〈xjPk, D(u�)〉 = 〈xjPk, u�〉,
or, equivalently,

−j〈xj−1Pk, u�〉 − 〈xjP ′
k, u�〉 = 〈xjPk, u�〉,

which, for j = 0, . . . , k − 1, gives the result. �
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Corollary 3.2. Under the conditions of Proposition 3.1, (P ′
k)

n
k=1 is a finite segment of MOP with

respect to ũ if and only if the matrix 	1 + (k − 1)�2 is non-singular for k = 1, . . . , n.

The above corollary shows the interest in finding conditions that ensure the non-singularity
of the matrices 	1 + k�2, k = 0, 1, 2, . . . . The next lemmas study the relation between the
non-singularity of �j , j = 0, 1, . . . , p, and that of 	1 + k�2, k = 0, 1, . . . , q, for small values of
p and q. They also inform us about the non-singularity of �̃k , k = 0, 1, . . . , q, a result of interest
since, in the scalar case, ũ is quasi-definite for any classical functional u.

Lemma 3.3. Let u be a P2,1-functional with �0, �1, �2 non-singular. Then, 	1 and �̃0 are
non-singular.

Proof. If 	1 is singular, there exists v ∈ Cm \ {0} such that 	1v = 0. Relation (4) for n = 0
gives �0	0 + �1	1 = 0. The non-singularity of �0 = �0 implies 	0v = 0. So, from (4) we have

�n−1�0v + �n�1v + �n+1�2v = 0, n�1,

and, hence,

�2

⎛⎝�0v

�1v

�2v

⎞⎠ =
⎛⎝0

0

0

⎞⎠ .

Also, (�0v, �1v, �2v) �= (0, 0, 0) because det � �= 0. Now we can conclude the singularity of
�2, with contradicts the hypothesis. So, 	1 is non-singular.

On the other hand, the calculation of E1 gives E1 = �2 − �1�
−1
0 �1, which, according to

Proposition 2.3, is non-singular because �1 is non-singular too. From (5) for n = 0 we get

�̃0 = �0�0 + �1�1 + �2�2,

and (4) for n = 0, 1 gives

�0	0 + �1	1 = 0, �0�0 + �1�1 + �2�2 = −(�1	0 + �2	1).

Therefore,

�̃0 = �̃0 = −�1	0 − �2	1 = −(�2 − �1�
−1
0 �1)	1 = −E1	1

is non-singular. �

As a first consequence, we obtain the following result mentioned earlier.

Theorem 3.4. If u ∈ P2,1 and �0, �1, �2 are non-singular, the C(m,m)-right-module M2,1(u)

is cyclic.

Proof. Let us suppose that D(u�(i)) = u�(i) with �(i) ∈ P
(m)
2 , �(i) ∈ P

(m)
1 for i = 1, 2,

and assume that det �(1) �= 0. We are going to prove that �(2) = �(1)�, � ∈ C(m,m). Let
�(i)(x) = 	(i)

0 + 	(i)
1 x with 	(i)

0 , 	(i)
1 ∈ C(m,m). Since u satisfies the hypothesis of Lemma 3.3,
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	(1)
1 is non-singular. Hence, A = �(1)(	(1)

1 )−1	(2)
1 − �(2) satisfies

D(uA) = u
(
	(1)

0 (	(1)
1 )−1	(2)

1 − 	(2)
0

)
.

From (4) for n = 0, 	(i)
0 = −�−1

0 �1	
(i)
1 , therefore, D(uA) = 0. If A(x) = A0 + A1x + A2x

2,

Ai ∈ C(m,m), we get �nA0 + �n+1A1 + �n+2A2 = 0 for n�0, which implies

�2

(
A0
A1
A2

)
= 0.

Since �2 is non-singular, A = 0 and, thus, �(2) = �(1)
(
	(1)

1

)−1	(2)
1 . �

Now we are going to consider P2,1-functionals satisfying the hypothesis of Lemma 3.3. In such
a case we can write 	1 = I without loss of generality because the Pearson-type equation can be
written as D(u�	−1

1 ) = u�	−1
1 .

Lemma 3.5. Let u be a P2,1-functional with �k non-singular for k = 0, 1, 2, 3. Then,

(i) 	1 and 	1 + �2 are non-singular.
(ii) �̃0 and �̃1 are non-singular.

(iii) ũ is a P2,1-functional, that is, D(̃u�̃) = ũ�̃, with �̃(x) =∑2
i=0 �̃ix

i , �̃(x) =∑1
j=0 	̃j x

j ,

where �̃i , 	̃j ∈ C(m,m) and det �̃ �= 0. Moreover, �̃, �̃ can be chosen such that �̃2 = 	−1
1 �2

and 	̃1 = 	−1
1 (	1 + 2�2).

Proof. We will assume without of loss of generality that 	1 = I .
(i) Let us suppose that I + �2 is singular. There exists v ∈ Cm \ {0} such that �2v = −v.

Writing (4) for n = 0, 1,

�1 + �0	0 = 0, �1(	0 + �1)v + �0�0v = 0.

Then,

− 	0(	0 + �1)v + �0v = 0. (6)

Consider (4) again, but for n and n + 1:{
n�n−1�0 + �n(	0 + n�1) + �n+1(I + n�2) = 0,

(n + 1)�n�0 + �n+1[	0 + (n + 1)�1] + �n+2[I + (n + 1)�2] = 0.

Multiplying the first equation on the right by 	0 + �1 and subtracting the second one, gives

n�n−1�0(	0 + �1) + �n

[
	0
(
	0 + �1

)− �0 + n
(
�1
(
	0 + �1

)− �0
)]

+n�n+1
[
�2(	0 + �1) − �1

]− �n+2
[
I + (n + 1)�2

] = 0.

Then, taking into account (6), we get

�n−1�0
(
	0 + �1

)
v + �n

[
�1
(
	0 + �1

)− �0
]
v

+�n+1
[
�2
(
	0 + �1

)− �1
]
v − �n+2v = 0, n�1, (7)
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which implies

�3

⎛⎜⎜⎜⎝
�0(	0 + �1)v

[�1(	0 + �1) − �0]v
[�2(	0 + �1) − �1]v

−v

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
0

0

0

0

⎞⎟⎟⎟⎠ .

This contradicts the non-singularity of �3.
(ii) By Proposition 3.1 and Corollary 3.2, {P ′

1, P
′
2} is a finite segment of MOP with respect

to ũ. The result follows from Proposition 2.3.
(iii) The existence of matrix polynomials �̃, �̃ satisfying D(ũ�̃) = ũ�̃ is ensured if

��̃ + ��̃
′ = ��̃. (8)

Writing �̃(x) = �̃0 + �̃1x + �̃2x
2, �̃(x) = 	̃0 + 	̃1x, (8) is equivalent to the system⎛⎜⎜⎜⎝

	0 0 �0 0

I 	0 �1 0

0 I �2 0

0 0 0 I + 2�2

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

�̃0

�̃1

�̃1 − 	̃0

�̃2

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
0

�0(	̃1 − 2�̃2)

�1(	̃1 − 2�̃2) − 	0�̃2

�2	̃1

⎞⎟⎟⎟⎠ . (9)

A solution of the last equation is 	̃1 = I +2�2, �̃2 = �2. With this choice, converting the system
into triangular form yields⎛⎝I 	0 �1

0 I �2

0 0 �0 − 	0�1 + 	2
0�2

⎞⎠⎛⎝ �̃0

�̃1

�̃1 − 	̃0

⎞⎠ =
⎛⎝ �0

�1 − 	0�2

−	0(�0 − 	0�1 + 	2
0�2)

⎞⎠ .

From (4) for n = 0, �0	0 + �1 = 0, so,

	 := �0 − 	0�1 + 	2
0�2 = �0 + �−1

0 �1�1 + (�−1
0 �1)

2�2

= �−1
0 (�0�0 + �1�1 + �1�

−1
0 �1�2).

Since E1 = �2 − �1�
−1
0 �1,

	 = �−1
0 (�0�0 + �1�1 + �2�2 − E1�2)

that, keeping in mind (4) for n = 1, can be expressed as

	 = −�−1
0 (�1	0 + �2 + E1�2)

= −�−1
0 (−�1�

−1
0 �1 + �2 + E1�2) = −�−1

0 E1(I + �2).

That is, 	 is non-singular, which ensures that (9) has a solution.
Finally, we are going to prove that det �̃ �= 0. From (8) we can deduce

�(�̃ − �̃
′
) = ��̃.

Since det � �= 0, det �̃ = 0 implies det(�̃ − �̃
′
) = 0. However, taking into account that

	̃1 = I + 2�2 and �̃2 = �2 we get �̃(x) − �̃
′
(x) = 	̃0 − �̃1 + Ix, which has non-zero

determinant. �
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Lemma 3.6. Let u be a P2,1-functional with �k non-singular for k = 0, 1, 2, 3, 4. Then,

(i) 	1 + j�2 is non-singular for j = 0, 1, 2.
(ii) �̃j is non-singular for j = 0, 1, 2.

Proof. We will assume without of loss of generality that 	1 = I .
(i) Taking into account Lemma 3.5 (iii), the functional ũ satisfies D(̃u�̃) = ũ�̃, with �̃2 = �2,

	̃1 = I + 2�2, where �̃i , 	̃j have the same meaning as in the proof of the previous lemma.

Let us suppose that I + 2�2 is singular. Then, there exists v ∈ Cm \ {0} such that �2v = − 1
2v,

that is, 	̃1v = 0. Since D(̃u�̃) = ũ�̃, we have

n(̃�n−1�̃0 + �̃n�̃1 + �̃n+1�̃2) = −(̃�n	̃0 + �̃n+1	̃1), n�0,

which, for n = 0, gives �̃0	̃0 + �̃1	̃1 = 0. Hence, 	̃0v = 0 because, from Lemma 3.3, �̃0 = �̃0
is non-singular. So,

(̃�n−1�̃0 + �̃n�̃1 + �̃n+1�̃2)v = 0, n�1. (10)

According to (5),

�n−1�0�̃0v + �n(�1�̃0 + �0�̃1)v + �n+1(�2�̃0 + �1�̃1 + �0�̃2)v

+�n+2(�2�̃1 + �1�̃2)v + �n+3�2�̃2v = 0, n�1,

and from here we can deduce the singularity of �4, because �2�̃2v = �2
2v = 1

4v �= 0. This
contradicts the hypothesis. So, 	̃1 is non-singular.

(ii) From Corollary 3.2, {P ′
1, P

′
2, P

′
3} is a finite segment of MOP with respect to ũ and, so,

Proposition 2.3 ensures that �̃2 is non-singular. �

The previous lemmas can be generalized through an inductive process. This process will need
the following result.

Lemma 3.7. Let u ∈ P(m)′ and F ∈ P
(m)
p , with det F �= 0. We denote ũ = uF and we suppose

that there exist vectors v0, v1, . . . , vq ∈ Cm, with vk �= 0 for a k ∈ {0, 1, . . . , q}, such that the
moments (̃�n)n�0 of the functional ũ satisfy

q∑
j=0

�̃n+j vj = 0, ∀n�0.

Then, there exist vectors w0, w1, . . . , wp+q ∈ Cm, with wk �= 0 for a k ∈ {0, 1, . . . , p + q}, such
that the moments (�n)n�0 of the functional u satisfy

p+q∑
k=0

�n+kwk = 0, ∀n�0.

Proof. We will write F(x) = f0 +f1x+· · ·+fpxp with fi ∈ C(m,m). Then, �̃n =∑p
i=0 �n+ifi

and the hypothesis of the lemma gives

0 =
q∑

j=0

�̃n+j vj =
q∑

j=0

(
p∑

i=0

�n+j+ifi

)
vj =

p+q∑
k=0

�n+k

p∑
i=0

fivk−i ,
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with the convention v−1 = · · · = v−p = 0. So, the vectors wk =∑p
i=0 fivk−i , k = 0, . . . , p+q,

satisfy the equality of the statement. It will be enough to prove that not all the vectors wk are null.
If all of them are zero,

∑p
i=0 fivk−i = 0 for k = 0, . . . , p + q, and this implies

0 =
p+q∑
k=0

xk

p∑
i=0

fivk−i , ∀x ∈ C,

or, equivalently,

0 =
q∑

j=0

xj

(
p∑

i=0

fix
i

)
vj = F(x)

q∑
j=0

vjx
j , ∀x ∈ C.

Since det F �= 0, we obtain from Remark 2.8 that
∑q

j=0 vjx
j = 0 for all x ∈ C, which means

that vj = 0 for j = 0, . . . , q, in contradiction with the hypothesis. �

Now we can reach the generalization of Lemmas 3.3, 3.5 and 3.6.

Theorem 3.8. Let u be a P2,1-functional with �k non-singular for k = 0, 1, . . . , n, where n�2.
Then, 	1 + j�2 and �̃j are non-singular for j = 0, 1, . . . , n − 2.

Proof. Due to Lemmas 3.3, 3.5 and 3.6 the result is true for n = 2, 3, 4. We will assume the
statement for an index n�2, and we will prove that it is also true for n + 1.

Assume that �0, �1, . . . ,�n, �n+1 are non-singular. Then, the hypothesis of induction implies
that 	1 + j�2 and �̃j are non-singular for j = 0, 1, . . . , n − 2. We only need to prove that
	1 + (n − 1)�2 and �̃n−1 are non-singular too. For this purpose we will introduce a set of
P2,1-functionals u(j), j = 0, 1, . . . , using the superscript (j) for the associated elements.

Let us define u(0) = u, �(0) = �, �(0) = �. Taking into account Lemmas 3.5 and 3.6,
given u(1) = u(0)�(0)

(
	(0)

1

)−1 there exist �(1) ∈ P
(m)
2 , �(1) ∈ P

(m)
1 , satisfying D

(
u(1)�(1)

) =
u(1)�(1), with det �(1) �= 0, �(1)

2 = �(0)
2 and 	(1)

1 = 	(0)
1 + 2�(0)

2 non-singular. Moreover, from

Proposition 3.1, E
(1)
k = − 1

k+1E
(0)
k+1

(
	(0)

1 + k�(0)
2

)
. This implies that E

(1)
0 , . . . , E

(1)
n−2 and, thus,

�(1)
0 , . . . ,�(1)

n−2 are non-singular.
Following this procedure, we can construct inductively a set of P2,1-functionals u(j), j =

0, 1, . . . , l − 1
(
l = [n2 ]), satisfying

u(j+1) = u(j)�(j)
(
	(j)

1

)−1
,

D(u(j)�(j)) = u(j)�(j), �(j)
2 = �2, 	(j)

1 = 	1 + 2j�2,

E
(j+1)
k = − 1

k + 1
E

(j)
k+1

[
	1 + (2j + k)�2

]
, �(j)

0 , . . . ,�(j)
n−2j non-singular.

Let us suppose that n is even (n = 2l). Then, �(l−1)
0 , �(l−1)

1 , �(l−1)
2 are non-singular. If 	1 +

(n − 1)�2 = 	(l−1)
1 + �(l−1)

2 is singular, the same arguments that lead to (4) in the proof
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of Lemma 3.5 yield now
3∑

j=0

�(l−1)
k+j vj = 0, v3 �= 0, k�0.

Since u(l−1) = uF , deg F �2l − 2 = n − 2, we obtain from Lemma 3.7
n+1∑
j=0

�k+jwj = 0 some wj �= 0, k�0.

This contradicts the non-singularity of �n+1, so, 	1 + (n − 1)�2 must be non-singular.
If, on the contrary, n is odd (n = 2l + 1), �(l−1)

0 , �(l−1)
1 , �(l−1)

2 , �(l−1)
3 are non-singular. Thus,

analogously to (8) in the proof of Lemma 3.6, we find that, if 	1 + (n− 1)�2 = 	(l−1)
1 + 2�(l−1)

2
is singular,

4∑
j=0

�(l−1)
k+j vj = 0, v4 �= 0, k�0.

Now, u(l−1) = uF , deg F �2l − 2 = n − 3, so, Lemma 3.7 produces again the same condition
n+1∑
j=0

�k+jwj = 0 some wj �= 0, k�0,

so, 	1 + (n − 1)�2 is also non-singular in this case.
Finally, the non-singularity of �̃n−1 follows from Proposition 2.3 and the relation Ẽn−1 =

− 1
n
En

(
	1 + (n − 1)�2

)
given in Proposition 3.1. �

The previous theorem and Corollary 3.2 have the following immediate consequences.

Corollary 3.9. If u is a quasi-definite P2,1-functional, then 	1 + n�2 is non-singular for n =
0, 1, 2, . . . .

Corollary 3.10. If u is a quasi-definite P2,1-functional, then ũ = u� is a quasi-definite P2,1-
functional too. Moreover, if (Pn)n�0 is the sequence of monic MOP with respect to u, then( 1

n
P ′

n

)
n�1 is the sequence of monic MOP with respect to ũ.

Remark 3.11. The Pearson-type equation D(u�) = u�, � ∈ P
(m)
2 , � ∈ P

(m)
1 , is equivalent

to the recurrence n�n−1�0 + �n(	0 + n�1) + �n+1(	1 + n�2) = 0, n�0. Therefore, the non-
singularity of the matrices 	1 + n�2 for n�0 is a sufficient condition for the existence of a
solution u of the Pearson-type equation. Actually, this condition ensures that the solutions are
determined by �0 = 〈I, u〉 or, in other words, the solution is unique up to left matrix factors.
Then, according to Corollary 3.9, if the Pearson-type equation has a quasi-definite solution, the
quasi-definite solutions are exactly those solutions determined by a non-singular matrix �0.

3.1. Characterization of the family P2,1

In the scalar case, the classical orthogonal polynomials can be characterized alternatively by a
Pearson-type equation (see [8,23–25]), the orthogonality of the derivatives (see [3,8,20,23,24]) or a
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linear relation between the polynomials Pn and P ′
n+1, P

′
n,P

′
n−1 (see [21]). The consequences of the

previous analysis provide an analogue of these equivalences for the matrix case, which constitutes
a characterization of the quasi-definite P2,1-functionals. In the proof of this characterization we
will need the following results as well.

Lemma 3.12. Let u ∈ P(m)′ such that �n is non-singular. Then,

uP = 0, P ∈ P(m)
n ⇒ P = 0.

Proof. Let P(x) = ∑n
i=0 Aix

i , Ai ∈ C(m,m). Then, uP = 0 is equivalent to �kA0 + · · · +
�k+nAn = 0 for k�0, which implies

�n

⎛⎝A0
...

An

⎞⎠ = 0,

and, thus, P = 0 if �n is non-singular. �

The next proposition introduces the notion of “quasi-orthogonality".

Proposition 3.13. Let u, v ∈ P(m)′ with u quasi-definite and (Pn) its corresponding sequence of
monic MOP. Then, the following statements are equivalent:

(i) v = uA, A ∈ P
(m)
p .

(ii) (Pn) is quasi-orthogonal of an order not greater than p with respect to v, i.e., 〈xkPn, v〉 = 0,
k = 0, . . . , n − p − 1.

Proof. See [5]. �

Here is the referred characterization of the quasi-definite P2,1-functionals.

Theorem 3.14. Let u ∈ P(m)′ be quasi-definite and (Pn) its sequence of monic MOP. Then, the
following assertions are equivalent:

(i) u is a P2,1-functional.
(ii)

(
P ′

n

)
is a sequence of MOP with respect to a quasi-definite functional ũ.

(iii) There exist matrices an, bn ∈ C(m,m) such that

Pn = 1

n + 1
P ′

n+1 + anP
′
n + bnP

′
n−1, n�0,

with �n − bn non-singular for n�1, where �n is the coefficient of the three term recurrence
relation for (Pn) appearing in Remark 2.2.

Furthermore, ũ = u�, � ∈ P
(m)
2 , det � �= 0 and D(u�) = u�, � ∈ P

(m)
1 . Besides, ũ is a

quasi-definite P2,1-functional too.

Proof.
(ii) ⇔ (iii) The sequence of matrix polynomials (Pn) satisfies the recurrence relation,

xPn = Pn+1 + �nPn + �nPn−1,
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so,

Pn = −xP ′
n + P ′

n+1 + �nP
′
n + �nP

′
n−1. (11)

If we assume (ii), (P ′
n) also satisfies a recurrence relation

1

n
xP ′

n = 1

n + 1
P ′

n+1 + 1

n
�̃n−1P

′
n + 1

n − 1
�̃n−1P

′
n−1 (12)

and, then, (11) and (12) imply

Pn = 1

n + 1
P ′

n+1 + anP
′
n + bnP

′
n−1, (13)

where an = �n − �̃n−1 and bn = �n − n
n−1 �̃n−1. Notice that �n − bn = n

n−1 �̃n−1 is non-singular.
For the converse, from (11) and (13),

1

n
xP ′

n = 1

n + 1
P ′

n+1 + 1

n

(
�n − an

)
P ′

n + 1

n

(
�n − bn

)
P ′

n−1.

Now we have a recurrence relation for (P ′
n) with �̃n−1 = �n − an and �̃n−1 = n−1

n
(�n − bn).

Since �n − bn is non-singular, the Favard theorem assures the existence of a functional ũ ∈ P(m)′

such that (P ′
n) is a sequence of MOP with respect to ũ.

(ii), (iii) ⇒ (i) Assume the relation Pn = 1
n+1P ′

n+1 + anP
′
n + bnP

′
n−1 and the fact that (P ′

n) is
a sequence of MOP with respect to a certain functional ũ. Notice that this last hypothesis implies
the non-singularity of Ẽn−1 = 1

n
〈xn−1P ′

n, ũ〉 for n�1. Under the assumptions,

〈xkPn, ũ〉 = 0, k = 0, . . . , n − 3.

So, (Pn) is a quasi-orthogonal sequence with respect to ũ of an order not greater than 2. Proposition
3.13 says that there exists � ∈ P

(m)
2 such that ũ = u�. Setting w = D(u�),

〈xkPn, w〉 = −k〈xk−1Pn, u�〉 − 〈xkP ′
n, u�〉 = 0, k = 0, . . . , n − 2.

Hence, (Pn) is quasi-orthogonal with respect to w of an order not greater than 1 and, thus, there
exists � ∈ P

(m)
1 such that w = u�.

It only remains to prove that det � �= 0. For this purpose, notice that the equality

〈xn−1Pn, D(u�)〉 = 〈xn−1Pn, u�〉
yields

−(n − 1)En�2 − nẼn−1 = En	1.

Thus, 	1 + (n − 1)�2 is non-singular for n�1. Suppose det � = 0. Then, according to Remark
2.8, there exists v ∈ Cm[x] \ {0} such that �v = 0. Consider the matrix polynomial A ∈ P(m)

whose columns are all equal to v. Bearing in mind Lemma 3.12, the equality

u(� − �′)A = (Du)�A = 0

proves that (� − �′)v = 0. So, �v + �v′ = 0 and, if v(x) = v0 + · · · + vnx
n, vi ∈ Cm, with

vn �= 0, we get (	1 + n�2)vn = 0, which is impossible.
(i) ⇒ (ii) This implication is given by Corollary 3.10. �
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Remark 3.15. Theorem 3.14 ensures that any quasi-definite P2,1-functional u generates a se-
quence (u(n))n�0 of quasi-definite P2,1-functionals, starting with u(0) = u, and such that,
for n�0,

u(n+1) = u(n)�(n), �(n) ∈ P
(m)
2 , det �(n) �= 0,

D(u(n)�(n)) = u(n)�(n), �(n) ∈ P
(m)
1 .

Moreover, the k-th derivatives (P
(k)
n )n�k form a sequence of MOP with respect to u(k). That is,

as in the scalar case, if the first derivatives of a sequence of MOP are orthogonal, the higher order
derivatives are orthogonal too.

Remark 3.16. If u is not quasi-definite but �0, . . . ,�n are non-singular, (ii) and (iii) remain
equivalent, but only for the finite segment (Pk)

n
k=0 of monic MOP with respect to u. Besides,

in this case, (i) also implies (ii) and (iii), but only for the finite segment (Pk)
n−1
k=0, according to

Theorem 3.8.

The following consequence of Theorem 3.14 will be of interest when studying the differential
equation associated with the zero class MOP.

Corollary 3.17. If a sequence (Pn) of monic MOP belongs to the family P2,1, then P ′
n±1 ∈

spanC(m,m){xP ′
n, P

′
n, Pn}. More precisely,

P ′
n−1 = En−1Mn−2M

−1
2n−1E

−1
n

{(
x + 1

n
�n

)
P ′

n − nPn

}
,

P ′
n+1 = (n + 1)En

{(
�2M

−1
2n−1E

−1
n x − 1

n
M2n−2M

−1
2n−1E

−1
n �n

+ 1

n + 1
E−1

n �n+1

)
P ′

n + Mn−1M
−1
2n−1E

−1
n Pn

}
,

where En = 〈xnPn, u〉, Pn(x) = xn + �nx
n−1 + · · · and Mn = 	1 + n�2.

Proof. Using (11) and (13) we obtain, by eliminating P ′
n+1 and P ′

n−1, respectively,⎧⎨⎩
nPn = (x − �n + (n + 1)an

)
P ′

n − (�n − (n + 1)bn

)
P ′

n−1,(
1 − bn�−1

n

)
Pn =

(
1

n+1 − bn�−1
n

)
P ′

n+1 + (bn�−1
n (x − �n) + an

)
P ′

n.

The matrix coefficients �n, �n, �̃n, �̃n, an, bn can be expressed in terms of En and �n since

�n = �n − �n+1, �n = EnE
−1
n−1,

�̃n−1 = n−1
n

�n − n
n+1�n+1, �̃n−1 = n−1

n
EnMn−1M

−1
n−2E

−1
n−1,

an = �n − �̃n−1, bn = �n − n
n−1 �̃n−1.

From here, it is just a matter calculation to achieve the result, using the fact that MkM
−1
j =

M̂kM̂
−1
j = M̂−1

j M̂k , where M̂n = I + n�2	
−1
1 . �
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3.2. Examples

The purpose of the following examples is to show that non-diagonalizable matrix P2,1-
functionals do exist, even in the positive definite case, and that the family P2,1 is strictly big-
ger than the zero class (except in the scalar case). Indeed, the examples given here are all positive
definite and lie on the class s = 1. The matrix functionals of the examples have the structure
w(x)R(x) dx, where w is a classical scalar weight and

R =
(

p + qq∗ bq

b̄q∗ |b|2
)

, p, q ∈ P,

p with positive leading coefficient, deg q = 1, b ∈ C \ {0}.
We will deal with a canonical form of these functionals, as any of them is congruent to one

with the form

w(x)

(
p̂(x) + |a|2x2 ax

āx 1

)
dx, p̂ ∈ P monic, a ∈ C \ {0}.

These kinds of functionals are never diagonalizable by congruence, neither by equivalence. This
is a consequence of the fact that, as can be easily verified, any functional W(x) dx, with

W =
(

w11 w12
w21 w22

)
,

is non-diagonalizable by equivalence if {w11, w12, w22} is linearly independent and {w12, w21}
is linearly dependent.

Example 2. Let u ∈ P(2)′ given by

u = e−x2
(

1 + |a|2x2 ax

āx 1

)
dx, x ∈ R, a ∈ C \ {0}.

It is not a zero class functional, but its class is s = 1 due to the equality

Du = u

(
(|a|2 − 2)x a

ā(1 − |a|2x2) −(|a|2 + 2)x

)
.

Besides, it is a P2,1-functional with M2,1(u) = spanC(2,2){�}, where

�(x) =
( |a|2 + 2 0

−ā|a|2x 1

)
.

The corresponding Pearson-type equation is D(u�) = u�, with

�(x) =
(−4x a

2ā −(|a|2 + 2)x

)
.

Any right multiple of � by a non-singular matrix factor can be chosen as a generator of M2,1(u),
therefore, it will play a similar role in the Pearson-type equation for u. However, if we choose

�(0) = �

(
1 0
0 2

)
,
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the new functional u(1) = u�(0) is again a positive definite P2,1-functional of similar type. Clearly,

u(1) = e−x2
( |a|2 + 2 + 2|a|2x2 2ax

2āx 2

)
dx, x ∈ R.

This shows explicitly, in the present example, the general fact that any quasi-definite P2,1-
functional generates a sequence of P2,1-functionals, according to Theorem 3.14 and
Remark 3.15.

Example 3. The functional u ∈ P(2)′ defined by

u = xre−x

(
x + |a|2x2 ax

āx 1

)
dx, x ∈ (0, ∞), a ∈ C \ {0}, r > −1,

lies again on the class s = 1 since

D(uxI) = u

(
r + 2 + (|a|2 − 1)x a

−ā|a|2x2 r + 1 − (|a|2 + 1)x

)
.

It is also a P2,1-functional, with M2,1(u) = spanC(2,2){�} generated by

�(x) =
(

(|a|2 + 1)x 0

−ā|a|2x2 x

)
.

The Pearson-type equation is D(u�) = u�, where

�(x) =
(

(r + 2)(|a|2 + 1) − x a

−(r + 2)ā|a|2x r + 1 − (|a|2 + 1)x

)
.

Notice that u(1) = u� is given by

u(1) = xr+1e−x

(
(|a|2 + 1)x + |a|2x2 ax

āx 1

)
dx, x ∈ (0, ∞),

so, it is a positive definite P2,1-functional of a similar type.

Example 4. The functional u ∈ P(2)′ given by

u = xre−x

(
x2 + |a|2x2 ax

āx 1

)
dx, x ∈ (0, ∞), a ∈ C \ {0}, r > −1,

is also in the class s = 1 since

D(ux2I ) = u

(
(r + |a|2 + 4)x − x2 a

−ā(|a|2 + 1)x2 (r − |a|2 + 2)x − x2

)
,

and belongs to the family P2,1, with M2,1(u) = spanC(2,2){�} generated by

�(x) =
(

x −a

0 (r + |a|2 + 2)x

)
.
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The Pearson-type equation is D(u�) = u�, with

�(x) =
(

(r + |a|2 + 3) − x a

−ā(|a|2 + 1)x (r + 1)(r + 2) − (r + |a|2 + 2)x

)
.

As in the previous cases, there is a choice of �(0) ∈ M2,1(u) that makes u(1) = u�(0) a positive
definite P2,1-functional of a similar type. The choice is

�(0) = �

(
r + 1 0

0 1

)
,

and the new functional is then

u(1) = xr+1e−x

(
(r + 1)(|a|2 + 1)x2 (r + 1)ax

(r + 1)āx r + 2

)
dx, x ∈ (0, ∞).

4. The zero class

The zero class is a specially simple subset of the family P2,1. This simplicity allows a deeper
analysis of zero class functionals than for general P2,1-functionals. According to the definition of
the zero class we suppose in this section that u ∈ P(m)′ is a quasi-definite functional that satisfies
a Pearson-type equation

D (u�I ) = u�, � ∈ P2 \ {0}, � ∈ P
(m)
1 . (14)

We will use the notation �(x) = �0 + �1x + �2x
2, �i ∈ C, and �(x) = 	0 +	1x, 	j ∈ C(m,m).

The first aim of this section is to obtain explicit expressions for the elements associated with
a zero class functional u in terms of the coefficients �i ∈ C, 	j ∈ C(m,m). This will lead to a

characterization of the polynomials � ∈ P2 \{0}, � ∈ P
(m)
1 which can appear in the Pearson-type

equation of a zero class functional. As a first restriction for �, �, notice that Corollary 3.9 implies
that 	1 + n�2I must be non-singular for n�0.

Remember that (Pn) denotes the sequence of monic MOP related to u,Pn(x) = xnI+�nx
n−1+

· · · and En = 〈xnPn, u〉. As we have shown in the proof of Corollary 3.17, the coefficients
of the recurrence xPn = Pn+1 + �nPn + �nPn−1 and the coefficients of the relation Pn =

1
n+1P ′

n+1 + anP
′
n + bnP

′
n−1 can be obtained from �n and En. So, we will just calculate �n and

En in terms of � and �.
From the Pearson-type equation for the functional u we obtain the relation (4) among the

moments, which can be written in the following way:

n�n−1�0 + �nNn + �n+1Mn = 0, n�0, (15)

where Nn = 	0 + n�1I, Mn = 	1 + n�2I . Taking n = 0 and 1 in (15) we obtain

�1 = −�0	0	
−1
1 , �2 = �0

(
	0	

−1
1 	0 + �1	0	

−1
1 − �0

)
M−1

1 . (16)

Let us denote ũ = u�I and (�̃n)n�0 its corresponding moment sequence. We know that

�̃n = �0�n + �1�n+1 + �2�n+2, n�0.
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This equality for n = 0, together with (16), gives �̃0 = �0�(−	0	
−1
1 )	1M

−1
1 . Besides, a direct

calculation shows that �1 = −�1�
−1
0 . So,

�1 = E0	0	
−1
1 E−1

0 , �̃n = n
n+1�n+1,

Ẽ0 = E0�(−	0	
−1
1 )	1M

−1
1 , Ẽn = − 1

n+1En+1Mn,

where 1
n+1P ′

n+1(x) = xn + �̃nx
n+1 + · · · and Ẽn = 1

n+1 〈xnP ′
n+1, ũ〉.

Since u is a quasi-definite P2,1-functional, the same thing happens to ũ. Actually, ũ is also zero
class because D (ũ�I ) = u�̃, �̃ = � + �′I . Notice that �̃(x) = 	̃0 + 	̃1x, where 	̃1 = M2

and 	̃0 = N1.
The above results show that we can define a sequence (u(j))j �0 of zero class functionals by

u(j) = u�j , and these functionals satisfy the Pearson-type equation

D(u(j)�) = u(j)�(j), �(j) = � + j�′.

Notice that 	(j)
0 = Nj , N

(j)
k = Nk+j , 	(j)

1 = M2j , M
(j)
k = Mk+2j , where we denote with the

superscript (j) the elements associated with the functional u(j). Therefore,

�(j)
1 = E

(j)
0 NjM

−1
2j (E

(j)
0 )−1, �(j+1)

k = k

k + 1
�(j)

k+1,

E
(j+1)
0 = E

(j)
0 �(−NjM

(−1)
2j )M2jM

−1
2j+1, E

(j+1)
k = − 1

k + 1
E

(j)
k+1Mk+2j .

After an inductive process,

�n = �(0)
n = n�(n−1)

1 = nE
(n−1)
0 Nn−1M

−1
2n−2(E

(n−1)
0 )−1,

En = E(0)
n = (−1)nn!E(n)

0 M−1
2n−2 · · · M−1

n−1 = (−1)nn!E(n)
0 M2n−1V

−1
n−1,

where Vn = Mn · · · M2n+1. Also,

E
(n)
0 = E0�(−N0M

−1
0 )M0M

−1
1 · · · �(−Nn−1M

−1
2n−2)M2n−2M

−1
2n−1,

and, so,

En = (−1)nn!E0�(−N0M
−1
0 )M0M

−1
1 · · · �(−Nn−1M

−1
2n−2)M2n−2V

−1
n−1. (17)

If we define 
n = E−1
n �nEn, then{


n = nVn−1M
−1
2n−2Nn−1V

−1
n−1,

E−1
n En+1 = −(n + 1)Vn−1M

−1
2n−1�(−NnM

−1
2n )M2nV

−1
n .

(18)

The above expressions give �n and En in terms of � and � for a zero class functional u. When
u satisfies the Pearson-type equation but it is not quasi-definite, the expressions for �k and Ek

are valid for the finite segment (Pk)
n
k=0 of MOP with respect to u, whenever �0, . . . ,�n and

M0, . . . , M2n−1 are non-singular. This is because, then, the previous arguments remain valid for
(u(j))nj=0 and (P

(j)
k )

n−j
k=0 , as follows from Corollary 3.2 and Theorem 3.8. Furthermore, if M2n,

M2n+1 are non-singular too, the formulas are also valid for the coefficients �n+1, En+1 of the
extra polynomial Pn+1 orthogonal to P

(m)
n , given by Proposition 2.3.
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With the results at hand we can obtain a characterization of the polynomials �, � related to the
zero class.

Theorem 4.1. The Pearson-type equation D(u�I ) = u�, � ∈ P2 \ {0}, � ∈ P
(m)
1 , has a

quasi-definite solution u if and only if Mn and �(−NnM
−1
2n ) are non-singular for n�0, where

Nn = 	0 + n�1I, Mn = 	1 + n�2I . Under these conditions, the solution of the Pearson-type
equation is unique up to left matrix factors, and the quasi-definite solutions correspond to the
non-singular choices of �0.

Proof. If D (u�I ) = u� has a quasi-definite solution, the corresponding matrices En are
non-singular for n�0. Then, Mn and �(−NnM

−1
2n ) are non-singular for n�0, as can be seen

from (17).
For the converse, from Remark 3.11, if Mn is non-singular for n�0, the solutions of the Pearson-

type equation are determined by the choice of �0. If besides, �
(
−NnM

−1
2n

)
is non-singular for

n�0, the solution u is quasi-definite when �0 is non-singular. In fact, proceeding by induction
we can prove that there exist MOP with respect to u of any degree:

• There exists P0 = I, with E0 = �0 non-singular.
• Suppose that there exists a finite segment (Pk)

n
k=0 of monic MOP with respect to u. By Propo-

sition 2.3, there is a monic matrix polynomial Pn+1 with degPn+1 = n+1, which is orthogonal
to P

(m)
n . Since Mk is non-singular for k�0, the expression of En+1 = 〈xn+1Pn+1, u〉 is given

by (17). Then, the non-singularity of �
(
−NkM

−1
2k

)
for k�0 implies that En+1 is non-singular

and, hence, (Pk)
n+1
k=0 is also a finite segment of MOP with respect to u. �

Remark 4.2. From (17), we see that the non-singularity of Mk for k�2n − 1 and �(−NjM
−1
2j )

for j �n − 1 is equivalent to the existence of a finite segment (Pk)
n
k=0 of MOP with respect to

any solution u of D (u�I ) = u� with �0 non-singular.

As in the classical scalar case, every matrix functional in the zero class belongs, up to a change
of variable, to one of the following types:

• �(x) = 1, Hermite-type polynomials.
• �(x) = x, Laguerre-type polynomials.
• �(x) = 1 − x2, Jacobi-type polynomials.
• �(x) = x2, Bessel-type polynomials.

The characterization given by Theorem 4.1 can be particularized for any of the above canonical
types. For the Hermite-type polynomials, the existence of a sequence of MOP is equivalent to
the non-singularity of 	1. In the Laguerre case, 	1 and 	0 + nI must be non-singular for n�0.
Jacobi-type polynomials exist if and only if 	1 −nI and 	1 ±	0 −2nI are non-singular for n�0,

and, finally, the non-singularity of 	0 and 	1 + nI for n�0 characterizes the existence of the
corresponding Bessel-type polynomials. Notice that the conditions for the existence of Hermite,
Laguerre, Jacobi and Bessel-type MOP are a natural generalization of the conditions in the scalar
case.

The non-singularity of the matrices Mn appeared previously in [13], as a condition for the
Hermite, Laguerre and Jacobi-type polynomials to ensure that they are given by a Rodrigues
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formula. Our analysis proves that it is not necessary to impose this condition since it is automat-
ically satisfied by any zero class functional.

Theorem 4.1 has also important practical consequences for the study of MOP. When a matrix
functional is given by a positive definite weight matrix on R, the corresponding MOP always
exist. However, deciding whether an arbitrary matrix of measures on R defines a quasi-definite
functional can be a hard problem, even in the hermitian case. Theorem 4.1 solves this problem
for any matrix functional satisfying a Pearson-type equation like (14). What is more, Remark 4.2
gives a generalization that measures the length of the maximal finite segments of MOP associated
with the functional when it is not quasi-definite. Some applications of this rule can be seen in
Example 5. The importance of the above result for the zero class will be clear later, since we will
see that the only non-trivial matrix functionals in this class are not positive definite.

4.1. Differential equation

In this section we will prove that the MOP of the zero class satisfy a second order differential
equation that generalize the known one in the scalar case. Notice that this is not ensured by
Theorem 2.12 (iii), since the right-hand side of the differo-differential equation given by this
theorem could have more than one term, as follows from the comments in Remark 2.13. We will
also obtain the structure relation of Theorem 2.12 (ii).

In order to obtain the differential equation, starting from the study of the family P2,1, and
keeping in mind Corollary 3.17, we can write for any sequence (Pn) of MOP in the zero class,

P ′
n±1 = �(±)

n Pn + �(±)
n P ′

n, (19)⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

�(+)
n = (n + 1)EnM

−1
2n−1Mn−1E

−1
n ,

�(−)
n = −nEn−1M

−1
2n−1Mn−2E

−1
n ,

�(+)
n = (n + 1)EnM

−1
2n−1(�2E

−1
n x − 1

n
M2n−2E

−1
n �n + 1

n+1M2n−1E
−1
n �n+1),

�(−)
n = En−1M

−1
2n−1Mn−2E

−1
n (x + 1

n
�n).

On the other hand, Theorem 2.12 (ii) and Remark 2.13 provide the structure relation

�P ′
n = n�2Pn+1 + 
nPn + �nPn−1, 
n, �n ∈ C(m,m). (20)

Taking derivatives in the structure relation we obtain

�Pn
′′ + �′P ′

n = n�2P
′
n+1 + 
nP

′
n + �nP

′
n−1

and, using (19), we get

�P ′′
n + (�′I − �n)P

′
n − �nPn = 0, (21){

�n = n�2�
(+)
n + �n�

(−)
n + 
n,

�n = n�2�
(+)
n + �n�

(−)
n ,

which is the differential equation for Pn.
We can calculate the coefficients of the above differential equation. First of all, notice that

the coefficients 
n, �n of the structure relation can be expressed in terms of �n and En. A direct
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computation from the structure relation (22) gives


n = n�1 + [(n − 1) �n − n�n+1
]
�2, �n = −EnMn−1E

−1
n−1.

Therefore, using (19), (21) and the above expressions, we find

�n = nEnM
−1
2n−1Mn−1

[
(n + 1)�2 + Mn−2

]
E−1

n = nEnMn−1E
−1
n .

In the same way, writing �n(x) = �(1)
n x + �(0)

n , �(i)
n ∈ C(m,m), we get

�(1)
n = EnM

−1
2n−1

[
n(n + 1)�2

2 − Mn−1Mn−2

]
E−1

n = −EnM−2E
−1
n ,

�(0)
n = n�1 − 1

n
EnM

−1
2n−1

[
n(n + 1)�2M2n−2 + Mn−1Mn−2 − n(n − 1)�2M2n−1

]
E−1

n �n

= n�1 − 1

n
EnM2n−2E

−1
n �n = n�1 − 1

n
EnM2n−2
nE

−1
n ,

where 
n is given in (18). From (18) and the above result we finally obtain

�′(x)I − �n(x) = En	1E
−1
n x + EnVn−1	0V

−1
n−1E

−1
n .

To sum up, we can state the following result.

Theorem 4.3. Let u be a zero class functional with Pearson-type equation D(u�) = u�, � ∈
P2 \ {0}, � ∈ P

(m)
1 .

(i) If (Pn) is the unique sequence of monic MOP with respect to u,

�Pn
′′ + EnVn−1�V −1

n−1E
−1
n P ′

n − nEnMn−1E
−1
n Pn = 0,

where Mn = 	1 + n�2I and Vn = MnMn+1 · · · M2n+1.
(ii) If (Qn) is the unique sequence of MOP with respect to u such that Qn has a leading coefficient

�n = (EnVn−1)
−1,

�Qn
′′ + �Q′

n − nMn−1Qn = 0.

The differential equation satisfied by the MOP of the zero class characterizes such MOP, as the
next result shows.

Theorem 4.4. Let u be a zero class functional with Pearson-type equation D (u�I ) = u�,
� ∈ P2 \ {0}, � ∈ P

(m)
1 . Then, the differential equation

�y′′ + �y′ − nMn−1y = 0

has a unique (up to right matrix factors) matrix polynomial solution y ∈ P(m). This solution is
the only nth MOP Qn with respect to u which has a leading coefficient �n = (EnVn−1)

−1.

Proof. Testing y =∑k �0 ckx
k as a solution of the differential equation, we obtain the recurrence

for the coefficients

(n − k)Mk+n−1ck = (k + 1)
[
Nkck+1 + (k + 2)�0ck+2

]
.
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Since Mn is non-singular for n�0, for every k �= n, ck+1 = ck+2 = 0 implies ck = 0. Hence,
any non-trivial polynomial solution must have degree n, and such a solution is determined by cn.

If ck = 0 for k > n and cn = �n, there exists a unique solution that must be Qn. If, on the
contrary, ck = 0 for k > n but cn is arbitrary, the solution is QnLn, where Ln = �−1

n cn. �

4.2. The hermitian case

Among all the zero class functionals, the hermitian ones have remarkable features that deserve
to be emphasized. Maybe one of the most important has to do with the diagonalizability.

The main purpose of this section is to prove a conjecture of Durán and Grünbaum (see [13]):
any positive definite zero class functional is diagonalizable by congruence. In fact, we will prove
a more general result, since we will obtain the diagonalizability under much weaker conditions
for the matrix functional. The key result for proving the conjecture is the following one.

Proposition 4.5. Let u ∈ P(m)′ be a solution of D (u�I ) = u�, � ∈ P2 \ {0}, � ∈ P
(m)
1 . If

�n−2, . . . , �n+2 are hermitian,

	∗
0�n+1	1 − 	∗

1�n+1	0 = i2n(n + 1)(A0�n−1 + A1�n + A2�n+1),

with A0 = �(�̄0�1), A1 = 2�(�̄0�2), A2 = �(�̄1�2).

Proof. From the hypothesis,

〈�∗xn, u�〉 = 〈�∗xn, u�〉∗.
Let us calculate

〈�∗xn, u�〉 = 〈�∗xn, D(u�)〉 = −n〈�∗xn−1, u�〉 − 	∗
1〈xn, u�〉

= −n〈�̄xn−1, u�〉∗ − (〈�̄xn−1, u�〉 − 〈�̄xn−1, u〉	0
)∗

= −(n + 1)〈�̄xn−1, D(u�)〉∗ + 	∗
0〈xn−1, u�〉

= −(n + 1)〈�̄xn−1, D(u�)〉∗ − 1

n
	∗

0〈xn, u�〉.
Using the above results we get

(n + 1)
(〈�̄xn−1, D(u�)〉 − 〈�̄xn−1, D(u�)〉∗) = 1

n
(	∗

0�n+1	1 − 	∗
1�n+1	0),

which, together with the equality

〈�̄xn−1, D(u�)〉 = −(n − 1)〈|�|2xn−2, u〉 − 〈�̄′�xn−1, u〉,
gives

	∗
0�n+1	1 − 	∗

1�n+1	0 = n(n + 1)〈(�̄�′ − �̄′�)xn−1, u〉
= i2n(n + 1)

[�(�̄0�1)�n−1 + 2�(�̄0�2)�n + �(�̄1�2)�n+1
]
. �

Using the standard notation [A, B] = AB −BA for the commutator of two square matrices A,
B, we get the following immediate consequence of Proposition 4.5.
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Corollary 4.6. Under the conditions of Proposition 4.5, if �0 = I and �1 is hermitian too,

	∗
1[�n+1, �1]	1 = i2n(n + 1)(A0�n−1 + A1�n + A2�n+1),

with the coefficients A0, A1, A2 as in Proposition 4.5.

The commutativity of a set of hermitian matrices is equivalent to stating that they are simulta-
neously unitarily diagonalizable. Therefore, Corollary 4.6 relates the possibility of diagonalizing
simultaneously �n and �1, to the requirement for � to have real coefficients. The next theorem
gives conditions which ensure that � must be a real polynomial.

Remember that, if �0 > 0 for a matrix functional, we can normalize it by congruence choosing
�0 = I without losing any hermiticity property of the functional. So, in what follows, we will use
this normalization freely when this is possible.

Theorem 4.7. Let u ∈ P(m)′ be a solution of D (u�I ) = u�, � ∈ P2 \ {0}, � ∈ P
(m)
1 . If �n = �∗

n

for n�5, then � is a real polynomial (up to non-trivial factors) under any of the following
conditions:

(i)
[
�2, �1

] = 0, �0 > 0 and �1, . . . ,�5 non-singular.
(ii) �2 > 0.

Proof. Without loss of generality, we can suppose �0 = I . Let A0, A1, A2 be the coefficients
given in Proposition 4.5.

(i)
[
E1, �1

] = 0 since E1 = �2 − �2
1. Then, from (17) for n = 1, we obtain

[
	1, �1

] = 0,

which implies
[
	0, �1

] = 0 because 	0 = −�1	1. Using (15) and the fact that Mn is non-singular
for n�3, due to Theorem 3.8, we get

[
�n, �1

] = 0 for n�4. Then, from Corollary 4.6,

�2

(
A0
A1
A2

)
= 0,

which implies Ai = 0, ∀i.
(ii) Corollary 4.6 for n = 1, 2, 3 gives

�2

⎛⎜⎝A0

A1

A2

⎞⎟⎠ = 1

24i

⎛⎜⎝6	∗
1[�2, �1]	1

2	∗
1[�3, �1]	1

	∗
1[�4, �1]	1

⎞⎟⎠ .

Therefore,

(A0 A1 A2 ) �2

(
A0
A1
A2

)
= 1

24i
	∗

1

(
6A0

[
�2, �1

]+ 2A1
[
�3, �1

]+ A2
[
�4, �1

])
	1.

Notice that, if P(x) = (A0 + A1x + A2x
2)I,

〈P, uP ∗〉 = (A0 A1 A2 ) �2

(
A0
A1
A2

)
.

Let us suppose P �= 0. Since �2 > 0, Proposition 2.5 implies that 〈P, uP ∗〉 > 0. From Lemma
3.3 we know that 	1 is non-singular, so, the matrix (	−1

1 )∗〈P, uP ∗〉	−1
1 must be positive definite
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too. On the other hand, tr
[
�n, �1

] = 0 and, thus, tr ((	−1
1 )∗〈P, uP ∗〉	−1

1 ) = 0. Hence, 〈P, uP ∗〉
cannot be positive definite. This means that P = 0 and Ai = 0, ∀i. �

Corollary 4.8. For any positive definite zero class functional, the scalar polynomial of the
Pearson-type equation is real up to non-trivial factors.

The following result reveals that a zero class functional with a real scalar polynomial in the
Pearson-type equation does not need too many conditions to be diagonalizable by congruence.

Theorem 4.9. Let u be a zero class functional with �n = �∗
n for n�3 and �0 > 0. Then, if the

scalar polynomial � of the Pearson-type equation is real up to factors, u is diagonalizable by
congruence. If, besides, �0 = I , then u is unitarily diagonalizable.

Under the above conditions, if �4, �5 are hermitian too, then, � is real up to factors if and only
if u is diagonalizable by congruence.

Proof. Suppose, without loss of generality, that �0 = I . If Ai = 0, ∀i, Corollary 4.6 for n = 1
gives 	∗

1

[
�2, �1

]
	1 = 0. Since 	1 is non-singular,

[
�2, �1

] = 0, so, there exists T ∈ C(m,m)

unitary such that T �nT
∗ is diagonal for n = 1, 2. Then, T E1T

∗ is diagonal because E1 = �2−�2
1.

From (17) for n = 1 we find that T 	1T
∗ is diagonal too. Hence, T 	0T

∗ is also diagonal due
to the identity 	0 = −�1	1. Using (15) and the non-singularity of Mn for n�0 one finds that
T �nT

∗ is diagonal for n�0.
The converse when �4, �5 are hermitian follows from Theorem 4.7 (i). �

Combining Theorems 4.7 and 4.9 we achieve the following result that goes even further than
the conjecture of Durán and Grünbaum.

Theorem 4.10. Let u be a zero class functional with �n = �∗
n for n�5. Then, u is diagonalizable

by congruence under any of the following conditions:

(i) �0 > 0 and
[
�2, �1

] = 0.
(ii) �2 > 0.

If, besides, �0 = I, then u is unitarily diagonalizable.

Notice that some of the conditions in Theorems 4.7, 4.9 and 4.10 can be weakened. For example,
in Theorem 4.7 (i), it is possible to substitute the condition �1, . . . ,�5 non-singular by �2 non-
singular and

[
�3, �1

] = [�4, �1
] = 0.

Corollary 4.11 (Durán–Grünbaum conjecture). Any positive definite zero class functional is
diagonalizable by congruence and, if the first moment is the identity, the functional is unitarily
diagonalizable.

The above result does not mean that the hermitian zero class is trivial, since there exist non-
diagonalizable zero class MOP with respect to hermitian functionals which are not positive definite
(see Example 5). What is trivial is the positive definite subclass of the zero class (actually, a bigger
subclass, according to Theorem 4.10). Hence, positive definite Hermite, Laguerre and Jacobi-type
MOP are unitarily diagonalizable. Concerning the Bessel case we can add even more: similarly to
the scalar situation, positive definite Bessel-type MOP do not exist, as the following proposition
asserts.
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Proposition 4.12. Any zero class functional whose Pearson-type equation has a scalar polyno-
mial with a double root is not positive definite.

Proof. Assume that u is a positive definite zero class functional whose corresponding Pearson-
type equation has a scalar polynomial �(x) = (x − a)2, a ∈ C. From Corollary 4.8, a ∈ R.
Also, supposing without loss of generality the �0 = I , Corollary 4.11 implies that there exists
T ∈ C(m,m) unitary such that T �nT

∗ is diagonal for n�0. Therefore, T E1T
∗ is also diagonal

and, using (17), we find that T 	1T
∗ and T 	0T

∗ are diagonal too. So, if we define the change
of variable t (x) = x − a, the diagonal hermitian matrix functional ût = T utT

∗ satisfies the
Pearson-type equation D(ût t2I ) = ût T �(t + a)T ∗. Hence, ût = û

(1)
t ⊕ · · · ⊕ û

(m)
t , where û

(i)
t

are scalar Bessel functionals. Since a scalar Bessel functional cannot be positive, the functional
u is not positive definite, in contradiction with the hypothesis. �

4.3. Examples

Examples of non-diagonalizable hermitian zero class functionals were founded independently
in [5,13]. In fact, [13] covers as a particular case the example in [5] providing several non-trivial
families of hermitian matrix functionals that satisfy a Pearson-type equation like (14). In this
section we will use the examples in [13], including some non-hermitian generalizations, and we
will prove that the corresponding zero class MOP do exist as an application of Theorem 4.1.
Notice that [13] does not address this question since the analysis of the non-positive definite
weights dM(x) presented there was given under the assumption that

∫
R P(x) dM(x)P (x) is non-

singular for any matrix polynomial P with non-singular leading coefficient, something that was
not proved in the concrete examples.

The non-diagonalizability of the functionals given in the following examples is ensured because
they have the structure u = W(x) dx, where

W =
(

w11 w12
w21 0

)
with {w11, w12} linearly independent and {w12, w21} linearly dependent. These conditions imply
that the functional u is not diagonalizable by congruence or even by equivalence.

Example 5. Let us consider a functional u ∈ P(2)′ given by u = w(x)R(x) dx, where w is a
positive classical scalar weight with Pearson equation (w�)′ = w� and

R(x) =
(

c + ∫ q(x)
�(x)

dx a

b 0

)
, q ∈ P1 \ {0}, a, b ∈ C \ {0}, c ∈ C.

Notice that u is hermitian when b = ā, c ∈ R and q is a real polynomial.

These kinds of functionals always satisfy the boundary conditions which ensure that D(u�I ) =
(u�I )′ (see Remark 2.9). In fact, writing them in the canonical representations, they have the form

e−x2
(

c + c1x + c2x
2 a

b 0

)
dx, x ∈ R,

xre−x

(
c + c1x + c2 log(x) a

b 0

)
dx, x ∈ (0, ∞),

(1 + x)r(1 − x)s
(

c + c1 log(1 + x) + c2 log(1 − x) a

b 0

)
dx, x ∈ (−1, 1),
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in the Hermite, Laguerre and Jacobi case, respectively. In the above expressions c1, c2 ∈ C do
not vanish simultaneously and r, s > −1.

The functional u satisfies the Pearson-type equation

D(u�I ) = u�, � =
(

� 0
q
a

�

)
.

Therefore, if q(x) = q0 + q1x and �(x) = �0 + �1x,

Mn =
(

�1 + n�2 0
q1
a

�1 + n�2

)
, �(−NnM

−1
2n ) = �

(
− �0 + n�1

�1 + 2n�2

)(
1 0
∗ 1

)
.

Notice that, due to Theorem 4.1, �1 +n�2 and �(− �0+n�1
�1+2n�2

) must be different from zero for n�0.

Hence, Mn and �(−NnM
−1
2n ) are non-singular for n�0. Also, �0 is non-singular since

�0 = 
0

(∗ a

b 0

)
, 
0 =

∫
R

w(x) dx.

Therefore, according to Theorem 4.1, we conclude that the functional u defines a sequence of
zero class MOP.

The above two-dimensional examples are only particular cases of the m-dimensional zero class
functionals belonging to the equivalence classes defined by

eAxe−Bx2
dx, x ∈ R, �(�) > 0 ∀� ∈ spec(B),

xAe−Bxdx, x ∈ (0, ∞),

{�(�) > −1 ∀� ∈ spec(A),

�(�) > 0 ∀� ∈ spec(B),

(1 + x)A(1 − x)Bdx, x ∈ (−1, 1), �(�) > −1 ∀� ∈ spec(A), spec(B),

where A, B ∈ C(m,m) commute and spec(A) means the spectrum of the matrix A. The restric-
tions for the spectra ensure the integrability for any matrix polynomial and, together with the
commutativity of A and B, lead to a Pearson-type equation of Hermite, Laguerre and Jacobi-type,
respectively, according to Remark 2.9. The conditions for the spectra also ensure the existence of
MOP whenever �0 is non-singular, as follows from Theorem 4.1. For some choices of A and B

it is possible to obtain an equivalent hermitian functional. This is the case of the examples given
at the beginning of Example 5, as [13] points out.

These examples do not cover the zero class functionals of Bessel-type. Such examples can be
found starting from a scalar Bessel weight. For instance, w(x) = xre1/x , with r = −1, 0, 1, 2, . . .,
is a Bessel weight on the unit circle T := {x ∈ C | |x| = 1} with Pearson equation (w�)′ = w�,
�(x) = x2, �(x) = (r + 2)x − 1. The matrix function W = wR satisfies the equation (W�)′ =
W�, where R and � have the same meaning as previously. However,

W(x) = xre1/x

(
c + c1

x
+ c2 log(x) a

b 0

)
is not analytic on T if c2 �= 0. If, for instance, we choose a logarithm with the discontinuity at
the non-negative real axis, the matrix functional u = W(x)dx, x ∈ T, verifies (see Remark 2.9)

D(u�I ) = (W�)′(x) dx − i2�ec2

(
1 0
0 0

)
�(x − 1) dx,

so, it satisfies the Pearson-type equation D(u�I ) = u� when c2 = 0.
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As in the examples at the beginning of Example 5, this new one is equivalent to a particular
two-dimensional case of the general m-dimensional zero class functionals of the form xreB/x dx,
x ∈ T, where r = −1, 0, 1, 2, . . . and B ∈ C(m,m) is non-singular. Analogously to the scalar
case, these functionals satisfy a Pearson-type equation of Bessel-type since the restriction on r

gives the analyticity on T for xreB/x . As in the previous examples, the conditions for r and B

ensure the existence of the corresponding MOP when �0 is non-singular, due to Theorem 4.1.
Concerning the restriction on r it is known that, for the Bessel scalar case, it can be weakened

to r �= −2, −3, . . . by introducing the alternative weight on T

w0(x) =
∞∑

k=0

�(r + 2)

�(r + 2 + k)

1

xk+1 .

This weight satisfies the equation (w0�)′ = w0� + r + 1, �(x) = x2, �(x) = (r + 2)x − 1. So,
according to Remark 2.9, the scalar functional u0 = w0(x) dx, x ∈ T, verifies the Pearson-type
equation D(u0�) = u0�.

Notice that �(r+2)
�(r+2+k)

= 1
(r+2)k

where, in general, we denote

(A)k =
{

I if k = 0,

A(A + I ) · · · (A + (k − 1)I ) if k ∈ N,

for any square matrix A. If A, B ∈ C(m,m) and spec(A) ∩ {0, −1, −2, . . .} = ∅, we can consider
the matrix function

W(x) =
∞∑

k=0

(A)−1
k Bk 1

xk+1 ,

which is analytical on C \ {0}. If, besides, A and B commute, then (W�)′ = W� + A − I ,
�(x) = x2, �(x) = Ax − B. Hence, the matrix functional u = W(x) dx, x ∈ T, satisfies the
Pearson-type equation D(u�I ) = u� analogously to the scalar case. Therefore, Theorem 4.1
states that there exist Bessel-type MOP associated with u when B and �0 are non-singular.

5. Other differential equations

Among the results proved by Durán in [10] we highlight one, in this section, concerning the
existence of differential equations for MOP with respect to hermitian functionals u ∈ P(m)′

satisfying a Pearson-type equation

D(u�) = u�, � ∈ P
(m)
2 , � ∈ P

(m)
1 .

The result in question states that such a Pearson-type equation, together with the hermiticity of
u�, is equivalent to stating that the corresponding MOP (Pn) satisfy a second order differential
equation

Pn
′′�∗ + P ′

n�
∗ + �nPn = 0, (22)

with �n ∈ C(m,m) such that �n〈Pn, Pn〉u is hermitian (actually, the result is proved in [10]
for matrix orthonormal polynomials with respect to positive definite matrix functionals, but the
generalization to the quasi-definite hermitian case is immediate). If, as in the rest of this paper, we
suppose that the MOP are monic, the condition for �n becomes �nEn = En�

∗
n. Also, equating

the coefficients of the highest powers of x in (22) we get �n = −n(n − 1)	∗
1 − n�∗

2 = −nM∗
n−1.
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All the examples of P2,1-functionals u ∈ P(2)′ presented in Section 3 were hermitian and
positive definite and, for all of them, we found a matrix polynomial � ∈ M2,1(u) with det � �= 0
such that u� is also hermitian and positive definite (in Examples 2 and 4 such a matrix polynomial
was denoted �(0), we now omit the superscript for convenience). Therefore, the corresponding
MOP (Pn) must satisfy a second order differential equation such as (22).

For instance, in the case of the functional given in Example 2

u = e−x2
(

1 + |a|2x2 ax

āx 1

)
dx, x ∈ R, a ∈ C \ {0}.

we find

Pn
′′(x)

( |a|2 + 2 −a|a|2x
0 2

)
+ P ′

n(x)

(−4x 2a

2ā −2(|a|2 + 2)x

)
+n

(
4 0
0 2(|a|2 + 2)

)
Pn(x) = 0.

This functional was previously studied in [7], where it was proved that the corresponding MOP
satisfy other second order differential equations linearly independent with respect to this one.
The fact that, contrary to the scalar case, the MOP can satisfy linearly independent second order
differential equations was first noticed in [17,18] as pointed out in the closing remarks of [13].
More instances of this phenomenon have been considered in [6,7,16].

As for the functional

u = xre−x

(
x + |a|2x2 ax

āx 1

)
dx, x ∈ (0, ∞), a ∈ C \ {0}, r > −1,

given in Example 3, we get

Pn
′′(x)

(
(|a|2 + 1)x −a|a|2x2

0 x

)
+P ′

n(x)

(
(r + 2)(|a|2 + 1) − x −(r + 2)a|a|2x

ā r + 1 − (|a|2 + 1)x

)
+n

(
1 (r + 1 + n)a|a|2
0 |a|2 + 1

)
Pn(x) = 0.

Finally, Example 4 deals with the functional

u = xre−x

(
x2 + |a|2x2 ax

āx 1

)
dx, x ∈ (0, ∞), a ∈ C \ {0}, r > −1,

whose MOP must satisfy the differential equation

Pn
′′(x)

(
(r + 1)x 0

−ā (r + |a|2 + 2)x

)
+P ′

n(x)

(
(r + 1)[(r + |a|2 + 3) − x] −(r + 1)a(|a|2 + 1)x

ā (r + 1)(r + 2) − (r + |a|2 + 2)x

)
+n

(
r + 1 (r + 1)a(|a|2 + 1)

0 r + |a|2 + 2

)
Pn(x) = 0.
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Let us restrict our attention now to the zero class MOP, that is, those whose corresponding
functional u ∈ P(m)′ satisfies a Pearson-type equation

D(u�I ) = u�, � ∈ P2 \ {0}, � ∈ P
(m)
1 .

If u is hermitian, the hermiticity of u�I is equivalent to saying that � is a real polynomial. Hence,
if u is hermitian and � is real, the MOP (Pn) with respect to u satisfy the second order differential
equation

�Pn
′′ + P ′

n�
∗ − nM∗

n−1Pn = 0.

This differential equation is similar, but not equal to the one given in Theorem 4.3. However, when
�0 = I this difference disappears since Theorem 4.9 then implies that u is unitarily diagonalizable.
That is, there exists T ∈ C(m,m) unitary such that û = T uT ∗ is diagonal hermitian, so, the
corresponding monic MOP (P̂n)must be diagonal with real polynomials in the diagonal. Following
similar arguments to those given in the proofs of the theorems in Section 4, we find that �̂ = T �T ∗
is also diagonal. Moreover, D(û�I ) = u�̂, hence, �̂ is real. Therefore, both differential equations
are the same for (P̂n) and, thus, also for (Pn) since P̂n = T PnT

∗.
Returning to the family P2,1, the two-dimensional examples that we have found suggest that, for

a wide subclass of hermitian P2,1-functionals, the related MOP satisfy a second order differential
equation like (22). Equivalently, it seems that for many hermitian P2,1-functionals u ∈ P(m)′

it is possible to find a generator � of the module M2,1(u) such that u� is hermitian too. In
particular, the examples discussed here seem to indicate that if u is positive definite, then u� is
also positive definite for some generator � of M2,1(u). The characterization of the subclasses of
hermitian P2,1-functionals which are invariant under the operation u → u� (for some choice of
the generator � of M2,1(u)) remains an open problem. This is an important question, not only
for the study of differential equations for MOP, but also for the development of a general and
systematic method to obtain modified Rodrigues’formulas for P2,1-functionals (see [14] for some
examples of this kind of Rodrigues’ formulas), as will be shown in a future paper.
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