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A New tinman-Related Gene, nkx2.7, Anticipates
the Expression of nkx2.5 and nkx2.3 in Zebrafish
Heart and Pharyngeal Endoderm

Kyu-Ho Lee, Qihong Xu, and Roger E. Breitbart1

Department of Cardiology, Children’s Hospital, and Department of Pediatrics, Harvard
Medical School, 300 Longwood Avenue, Boston, Massachusetts 02115

The Drosophila homeobox gene tinman and its vertebrate homologs Nkx-2.5 and Nkx-2.3 are critical determinants of
cardiac development. We report here the identification of a new tinman-related gene, nkx2.7, as well as orthologs of Nkx-
2.5 and Nkx-2.3 in the zebrafish. Analysis of their expression in the developing zebrafish embryo reveals that nkx2.7
transcripts are the first to appear in cardiac mesodermal and pharyngeal endodermal precursors of the anterior hypoblast,
anticipating both temporally and spatially the later expression of nkx2.5 and nkx2.3 in these lineages. The preeminence
of nkx2.7 in these embryonic lineages is consistent with a key role in cell fate determination, perhaps in part through the
induction of nkx2.5 and nkx2.3. The findings provide the first molecular clues as to the spatial organization of endodermal
and cardiac mesodermal precursors in the zebrafish hypoblast immediately following gastrulation. They suggest a coordinate
role for these three tinman-related genes in the development of the heart and pharyngeal arches, and reinforce the paradigm
of gene duplication and subspecialization between Drosophila and vertebrate species. The results provide a framework in
which to analyze potential changes in tinman-related gene expression during abnormal zebrafish development.
q 1996 Academic Press, Inc.

INTRODUCTION diac mesoderm and adjacent pharyngeal endoderm. Poten-
tial target DNA binding sequences for murine Nkx-2.5 have
been identified that support trans-activation in experimen-Heart formation in vertebrate embryos occurs via com-
tal promoter constructs (Chen and Schwartz, 1995). Muta-plex processes involving cell lineage specification and struc-
tion of Nkx-2.5 by homologous recombination in the mousetural morphogenesis. These processes must be regulated at
produced embryos in which cardiac development is not alto-a fundamental level by cardiac-specific molecular mecha-
gether precluded but, rather, is arrested at the looping stagenisms. Significant insight into the molecular regulation of
(Lyons et al., 1995). Thus, Nkx-2.5 is ultimately requiredcardiac ontogeny has come with the identification of the
for normal murine heart formation, but unlike tinman, ithomeobox gene tinman in Drosophila, expressed in the vis-
is not essential for primary cell lineage determination andceral and precardiac mesoderm and then in the definitive
early morphogenesis. Recently, a second tinman homolog,heart-like dorsal vessel (Bodmer et al., 1990; Bodmer, 1993).
Nkx-2.3, has been shown in Xenopus to be expressed inIn tinman null mutants, the dorsal vessel is absent, indicat-
the developing heart as well, and widely in the pharyngealing that tinman is essential for the development of this
endoderm (Evans et al., 1995). The relative contributions oforgan. Vertebrate homologs of tinman have been cloned
these two tinman-related genes remain to be determined,from mouse (Nkx-2.5 or Csx; Komuro and Izumo, 1993;
as do their positions in the hierarchy of cardiac regulatoryLints et al., 1993), frog (Tonissen et al., 1994), and chick
factors in vertebrate embryogenesis.(Schultheiss et al., 1995). They share with the Drosophila

As part of an investigation of cardiac transcription factorsgene a tinman-like homeobox as well as a conserved amino
in early vertebrate development we sought to identify tin-terminal decapeptide, and they are expressed in the precar-
man-related genes in the zebrafish, Danio rerio. A number
of features make the zebrafish particularly well suited to
studies of molecular and genetic mechanisms in em-1 To whom correspondence should be addressed. Fax: (617) 679-

7370. E-mail: breitbart@phenix.tch.harvard.edu. bryogenesis (Kimmel, 1989), and in heart formation in par-
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723New tinman-Related Gene in Zebrafish

al., 1992). One of these cDNA clones corresponded to zebrafishticular (Stainier and Fishman, 1992). Multiple, large, exter-
nkx2.3 (1443 nt, comprising 86 nt 5* untranslated, 963 nt coding,nally fertilized ooctyes develop rapidly and synchronously
and 394 nt 3* untranslated sequences; GenBank accession numberinto transparent embryos in which definitive cardiac pro-
U66571), while another corresponded to nkx2.7 (1080 nt, compris-genitors appear as early as 15 hr postfertilization (hpf), the
ing 186 nt 5* untranslated, 807 nt coding, and 87 3* untranslatedonset of myocardial contraction occurs by 22 hpf, and circu-
sequences; GenBank accession number U66573), as described under

lation is initiated by 26 hpf. The relatively simple anatomy Results. The remaining isolates derived from more distantly related
of the teleost heart, comprising sinus venosus, atrium, ven- homeobox genes (not shown).
tricle, and bulbus arteriosus in series, and its formation In addition, a cDNA clone for zebrafish nkx-2.5 was isolated
from the fusion of bilateral mesodermal primordia (Senior, using a combination of PCR and library screening. Degenerate oli-

godeoxynucleotide primers corresponding to highly conserved se-1909), mirror the earliest stages of the embryonic mamma-
quences in mouse and frog Nkx-2.5, but specifically incapable oflian heart, making the fish especially attractive for the study
amplifying analogous sequences from nkx2.3 or nkx2.7, were syn-of fundamental cardiogenic mechanisms. This can be ac-
thesized with added 5* restriction sites (lower case) as follows:complished in part through the analysis of heritable cardiac

phenotypes arising in mutagenesis screens (Driever et al., 5*-gaagatctggatcc GT(GATC) AA(GA) AT(ACT) TGG TT(CT)
1994; Mullins et al., 1994), and from perturbation of cardiac CA(GA) AA-3*; homeodomain codons VKIWFQN, sense;
development in wild-type embryos using a variety of molec- 5*-gaagatctggatcc GT(GATC) (CA)G(GATC) GA(CT) GG(GATC)
ular manipulations (Stainier and Fishman, 1992; K.-H.L. and AA(AG) CC(GATC) TG-3*; NK2 domain codons VRDGKPC, sense;
R.E.B., unpublished observations). The exceptional clarity 5*-cggaattctaga (CT)TG (GATC)AC (GATC)GT (AG)TT (GAT-

C)A(AG) (AG)TC (GATC)CC-3*; codons GDLNTVQ near the car-of the zebrafish embryo permits early gene expression to be
boxyl terminus, antisense;analyzed in exquisite detail.

5*-cggaattctaga (CT)(CT)A CCA (GATC)GC (GATC)C(GT) (AG-Here we report the cDNA cloning and characterization
T)AT (GATC)CC (AG)TG-3*; codons HGIRAW* at the carboxylof the zebrafish orthologs of Nkx-2.5 and Nkx-2.3 and of a
terminus, antisense.new tinman-related gene, nkx2.7. Analysis of their expres-

sion in the early embryo reveals that nkx2.7 transcripts are Purified zebrafish genomic DNA (Westerfield, 1995), 100 ng per
the first to appear in endodermal and cardiac mesodermal 100-ml reaction, was amplified using Taq DNA polymerase (Per-
precursors of the anterior hypoblast, anticipating both tem- kin–Elmer, Foster City, CA) in standard buffer adjusted to 6 mM

Mg2/ for 35 cycles at 947C for 30 sec, 547C for 60 sec, and 727C forporally and spatially the later expression of nkx2.3 and
60 sec. The longest product (352 nt plus primers) was subcloned,nkx2.5 in these lineages. The findings suggest an important
sequenced, radiolabeled, and used to screen 106 recombinants of afunctional role for these genes in the development of the
zebrafish adult heart Uni-ZAP XR cDNA library (Short et al., 1988;heart and pharyngeal arches and reinforce the paradigm of
R.E.B. and B. S. Ticho, unpublished observations; Stratagene, Lagene duplication and subspecialization between Drosophila
Jolla, CA) at high stringency, i.e., under conditions modified fromand vertebrate species. Further, these results provide a
above to include 50% formamide at 427C and a wash temperature

framework in which to analyze potential changes in tin- of 557C. Five clones selected at random among multiple primary
man-related gene expression during abnormal zebrafish de- positives were purified, excised as recommended (Stratagene, La
velopment. Jolla, CA), and determined by restriction mapping to be identical

to each other; one was completely sequenced and proved to be
nkx2.5 (1678 nt, comprising 98 nt 5* untranslated, 942 nt coding
and 638 nt 3* untranslated sequences; GenBank accession numberMATERIALS AND METHODS U66572), as described under Results.

In situ hybridization. Antisense RNA probes were synthesized
by in vitro transcription of full-length cDNAs in the presence ofFish stocks and embryos. Zebrafish, either AB strain (Massa-

chusetts General Hospital, Boston, MA) or wild-type (Ekkwill, digoxigenin UTP (Boehringer Mannheim, Indianapolis, IN) as de-
scribed by Harland (1991). Each of these probes was strictly gene-Tampa, FL) were raised, handled, and staged according to stan-

dard methods (Westerfield, 1995). Embryos prior to 24 hr hpf specific in these assays, showing no cross-hybridization with tran-
scripts of the other two genes: as shown under Results, the nkx2.3were staged according to somite number ({1 somite) and con-

verted to hpf for consistency and ease of comparison among and nkx2.5 probes did not detect the earliest expression of nkx2.7;
similarly, the nkx2.7 probe did not detect the later expression ofstages.

cDNA isolation and sequencing. A 660 nucleotide (nt) SphI nkx2.5 or nkx2.3. This strict specificity was confirmed in each
case using probes comprising only nonconserved C-terminal andfragment of an XNkx-2.5 cDNA (gift of S. Izumo), encompassing

the homeobox and NK2 domains (nt 166–825; Tonissen et al., 3* untranslated sequences, which yielded results indistinguishable
from the full-length probes. No signal above background was de-1994), was radiolabeled and used to screen 1.2 1 106 recombinants

from a 30- to 36-hr whole embryo zebrafish lgt11 cDNA library tected in control in situ hybridization experiments using the corre-
sponding sense transcripts as probes (not shown).(gift of K. Zinn) at low stringency, i.e., hybridization in 25% for-

mamide, 51 SSC, at 377C, and wash in 0.21 SSC/0.2% SDS up to Whole-mount in situ hybridization was performed according to
Li et al. (1994) with the following modifications. Embryos were427C, according to standard procedures (Benton and Davis, 1977).

Among fourteen primary positives, seven were successfully plaque- fixed in 4% paraformaldehyde/0.1% Tween 20 in phosphate-buf-
fered saline for 1 hr at room temperature and then overnight at 47Cpurified, subcloned into pBluescript II (Stratagene, La Jolla, CA),

and partially or completely sequenced and compared to existing prior to rinsing and storage in 90% methanol. After rehydration,
embryos were digested with proteinase K, 10–20 mg/ml in phos-gene databases as previously described (Sanger et al., 1977; Yu et
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724 Lee, Xu, and Breitbart

phate-buffered saline/0.1% Tween 20 (PBT) according to develop-
mental stage: 10–20 hpf, 5 min; 24–36 hpf, 15 min; 48–60 hpf, 20
min; 72 hpf, 25 min. Acetylation was repeated three times with 15
ml of acetic anhydride in 5 ml of 0.1 M triethanolamine, with the
addition of 0.1% Tween 20 and 0.2 M triethanolamine during the
third round of acetylation, rinsed once in 1 M triethanolamine,
twice in PBT, once in 100 mM glycine, pH 8.0, then three more
times in PBT before postfixation in 4% paraformaldehyde/PBT.
Hybridization was for 36–40 hr at 587C. Posthybridization washes
and RNAse treatments were modified to include two additional
15-min washes in 0.21 SSC/0.3% CHAPS (Sigma, St. Louis, MO)
and one 5-min wash in 0.3% CHAPS/PBT at 537C. Incubation with
anti-digoxigenin Fab fragments (Boehringer Mannheim, Indianapo-
lis, IN), development of alkaline phosphatase color reagent, storage
in 90% methanol, and clearing in benzoyl benzoate/benzyl alcohol
followed standard protocols (Harland, 1991).

Embryos for sectioning were rehydrated through a graded alcohol
series to 25% methanol in PBT and equilibrated with JB-4 or Immu-
nobed glycomethacrylate resin according to manufacturer’s in-
structions (Polysciences, Beaverton, PA) prior to imbedding and
sectioning to 5 mm thickness. All specimens were photographed
on a Zeiss Axiophot phase contrast microscope with Kodak (Roch-
ester, NY) 160T tungsten color slide film.

RESULTS

Isolation of Zebrafish tinman Homologs

We obtained cDNA clones corresponding to three distinct
tinman-related genes in the zebrafish using a combination
of PCR with degenerate oligonucleotide primers and homol-
ogy screening of zebrafish cDNA libraries prepared from
whole embryos and adult heart (Fig. 1). These genes include
the apparent orthologs of Nkx-2.5 (Komuro and Izumo,
1993; Lints et al., 1993, Tonissen et al., 1994; Schultheiss
et al., 1995) and Nkx-2.3 (Evans et al., 1995), as well as a
third gene, here named nkx2.7 (numbered consecutively as
a new gene, per considerations below; conventions for nam-
ing zebrafish genes call for lower case letters and no hy-
phens; Westerfield, 1995). Each of the cDNAs includes full-
length protein coding sequences, as evidenced by the pres-

FIG. 1. Predicted amino acid sequences of zebrafish tinman-relatedence of in-frame stop codons in the 5*-untranslated regions
genes nkx2.5, nkx2.3, and nkx2.7, with residues numbered at the(not shown; nucleotide sequences submitted to Genbank).
right. Zebrafish nkx2.5 and nkx2.3 are shown on the upper linesEach contains the three highly conserved domains charac-
in comparison to their respective Xenopus counterparts (XNkx-2.5,teristic of the vertebrate tinman homologs, i.e., a tinman-
Tonissen et al., 1994; XNkx-2.3a, Evans et al., 1995) on the lower

like decapeptide near the amino terminus, a 60-amino acid lines with nonconserved residues shown in lighter typeface. Dots
NK-type homeodomain, and a 16-amino acid NK2 domain indicate gaps introduced to maximize identities. The tinman-like
(Lints et al., 1993; Kim and Nirenberg, 1989). The amino decapeptide (t), homeodomain (hd), and NK2 domain (nk) are over-
acid sequence encoded by zebrafish nkx2.5 (314 residues, lined in each sequence. The GenBank accession numbers for nkx2.5,
calculated Mr 35.9 1 103) is 67% identical overall (80% nkx2.3, and nkx2.7 are U66572, U66571, and U66573, respectively.
similar including conservative substitutions) to XNkx-2.5
(Tonissen et al., 1994), with marked conservation in the
above domains (absolute identity in the homeobox), and at two residues), NK2 domain, and the amino and carboxyl

termini. nkx2.3 also shares with XNkx2.3a a prominentthe carboxyl terminus. Zebrafish nkx2.3 encodes a peptide
(321 residues, calculated Mr 36.11 103) that is 61% identical histidine/proline-rich peptide linking the homeodomain

and the NK2 domain (Fig. 1).(74% similar) at the amino acid level to its closest Xenopus
counterpart, XNkx-2.3a (Evans et al., 1995), again with the The third gene, nkx2.7, encodes a peptide (269 residues,

calculated Mr 30.8 1 103; Fig. 1), which, although similarstrongest conservation in the homeobox (identical at all but
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725New tinman-Related Gene in Zebrafish

to nkx2.3 and XNkx-2.3 in the tinman domain, homeobox, myocardium forms a cone with its base on the yolk at the
future confluence of the vitelline veins, and its apex at theand NK2 domain, diverges from them substantially else-

where, including the carboxyl terminus, and lacks the histi- developing junction with the ventral aorta (Fig. 2F; Stainier
et al., 1993; Senior, 1909). Thereafter, nkx2.5-expressingdine/proline-rich peptide sequence between the homeobox

and NK2 domains (56% identical, 70% similar overall, com- cells form paired ventrorostral and dorsocaudal extensions
of the elongating heart tube (Figs. 2G and 2H), comprisingpared to XNkx-2.3a; Evans et al., 1995). Furthermore,

nkx2.7 is even less similar to sequences reported for Nkx- the future inflow (sinus venosus) and outflow (bulbus arteri-
osus), respectively, prior to looping and anatomic chamber2.1 (TTF-1; 42% identical, 60% similar), Nkx-2.2 (43% iden-

tical, 61% similar), and the partial sequences available for differentiation. nkx2.5 transcripts persist in the embryonic
heart at least through 48 hpf and are also present in adultNkx-2.4, and Nkx-2.6 (Guazzi et al., 1990; Price et al., 1992;

Lints et al., 1993; Rudnick et al., 1994). On this basis, and heart (data not shown). Extracardiac expression of nkx2.5
was detected at a low level after prolonged staining inon the basis of its expression patterns (see below), nkx2.7

is a new member of the tinman-related subfamily of homeo- loosely clustered cells lying caudal to the cardiac primordia
domain genes. We found no evidence for the existence of bilaterally, at 18–20 hpf (Figs. 2C–2E). This pattern of ex-
still other closely related tinman family members in the pression appears similar to that for nkx2.3 and nkx2.7,
zebrafish, either from genomic Southern blotting or from which go on to mark pharyngeal arch endoderm (see below
the examination of multiple additional cloned cDNAs, and Figs. 2K–2N and 2Q). However, the extra-cardiac ex-
which included only more distant homeobox sequences pression of nkx2.5 is transient and does not appear in defin-
from other subfamilies (data not shown). itive endoderm in the zebrafish, in contrast to its homologs

in other vertebrates (Komuro and Izumo, 1993; and Lints et
al., 1993). Thus, in the zebrafish, nkx2.5 expression revealsnkx2.5 Marks the Paired Cardiac Primordia and
the entire progression of heart formation and is relativelyFusing Heart Tube
cardiac specific.

We undertook a detailed study of the embryonic expres-
sion of these three genes by in situ hybridization with gene-
specific probes in order to better understand their roles in

nkx2.3 Is a Marker of Early Endoderm in thevertebrate embryogenesis; adult stages were not examined.
Developing Pharyngeal Arches and GutThroughout these Results, apparent cell movements are in-

ferred with some confidence from examination of multiple
Zebrafish nkx2.3 is not expressed in the early heart, un-stained embryos at very closely spaced developmental

like its closest structural orthologs XNkx-2.3a and -2.3b instages; however, confirmation of these movements will re-
the frog (Evans et al., 1995). Instead, the earliest nkx2.3quire cell fate mapping using injected lineage tracers.
expression is detected at the 22 somite stage (20 hpf) innkx2.5 transcripts first appear at the 5 somite stage (12
bilateral, loosely arrayed clusters of hypoblast cells in thehpf) in bilateral cords of cells in the ventral-most hypoblast,
ventrolateral extremes of the embryo, initially caudal to thelying in close proximity to the yolk, adjacent to the future
fusing cardiac progenitors (Fig. 3C and data not shown).hindbrain, and just rostral to the future otic placodes (Fig.
This expression becomes more robust by 24 hpf, comprising2A and data not shown). These paired structures, initially
bilaterally symmetric clusters of ventrolateral cells (Fig.parallel to each other, move toward the midline, first at
2Q). Over the ensuing 12 hr, nkx2.3-expressing cells becometheir posterior ends forming a ‘‘Y’’ configuration (Figs. 2B
consolidated into paired arrays of transverse stripes (Fig.and 2C), and then anteriorly to form a ring at the 20 somite
2R). By 48 hpf these appear in whole mount embryos tostage (19–20 hpf; Figs. 2D and 2E). On cross section (Fig.
represent the five clefts between the six pharyngeal arches,3A), the cells of the paired primordia do not appear to be
i.e., the mandibular, hyoid, and first through fifth branchialorganized around a lumen, in contrast to results reported
arches (Fig. 2S; Kimmel et al., 1995). Examination in severalfor immunostained sections showing tubular primordia
planes of section shows that nkx2.3 expression is confined(Stainier et al., 1993; this discrepancy may derive from tech-
to the endoderm and, indeed, marks the entire epithelialnical differences in fixation and embedding techniques).
lining of the pharynx, including the floor overlying theThese cells also begin to express a-tropomyosin, indicating
forming heart, the convexities of the pharyngeal arches, andphenotypic differentiation of the myocardium (data not
the pharyngeal pouches where staining is particularly in-shown; Stainier et al., 1993). The ring encircles the portion
tense (Figs. 3G, 3I–3K, and data not shown). This patternmoyenne, a cluster of mesodermally derived cells that will
of foregut endoderm expression persists at least through 72give rise to the endocardium (Senior, 1909; Stainier et al.,
hpf (data not shown). In addition, nkx2.3 marks the mid-1993), and which do not express this gene (Fig. 2E; also see
and hindgut epithelium beginning at 36 hpf (Figs. 2S andFigs. 3A, 3B, and 4). The portion moyenne is surrounded in
3L, and data not shown). Thus the expression of nkx2.3 inthe horizontal plane by nkx2.5-expressing cells at this stage
the zebrafish is similar to that of its Xenopus counterpartsbut is contiguous ventrally with the yolk syncytial layer
in endoderm but is not present in the heart, despite theand dorsally with noncardiac mesoderm just beneath the

hindbrain (section data not shown). By 24 hpf, the nascent strong sequence conservation between them.
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FIG. 2. Whole mount zebrafish embryos stained by in situ hybridization using gene-specific antisense RNA probes. Blue –violet staining
indicates the presence of the cognate gene transcripts. (A–H) nkx2.5 staining at 12 (A), 13.5 (B), 18 (C), 19 (D), 20 (E), 22 (F), 24 (G), and
26 (H) hpf showing the progression from paired cardiac primordia (white arrows) to fused heart tube (ht). Noncardiac regions of staining
are indicated (black arrows). (I-P) nkx2.7 at 10.5 (I), 13.5 (J), 18 (K), 19 (L), 20 (M), 24 (N), 36 (O), and 48 (P) hpf showing the earliest staining
in the postgastrulation hypoblast (black arrows); white arrows indicate consolidations of apparent precardiac mesoderm. (Q –S) nkx2.3 at
24 (Q), 36 (R), and 48 (S) hpf. Specimens are viewed dorsolaterally with the rostral end of the embryo to the left and the dorsal axis up,
except I, which is a head-on view (dorsal up), and A, C, M, O, and R, which are true dorsal projections. Brown pigment is endogenous
melanin that appears after 24 hpf. Faint staining of neural structures was not reproducible. Labels: h, head; t, tailbud; y, yolk; ht, heart;
g, gut; md, mandibular; hy, hyoid, and 1, 2, 3, 4, first through fourth branchial clefts; *, artifact. Numbers in lower left corner indicate
hpf. Scale bars indicate 250 mm.
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2S and 3F, 3G), as confirmed by double staining with
nkx2.3 and nkx2.7 probes (not shown). Thereafter, the
expression of nkx2.7 in definitive endoderm diminishes
and, in contrast to nkx2.3, is undetectable at 60 hpf.

The expression of nkx2.7, therefore, precedes and then
overlaps that of nkx2.5 in the myocardial lineage and that
of nkx2.3 in the endoderm (Fig. 4). This is particularly well
illustrated by comparing stained sections showing that, just
prior to heart tube fusion, the ventral hypoblast comprises
nkx2.5-expressing cells of the cardiac primordia that lie rel-
atively medial (Fig. 3A) and nkx2.3-expressing cells that are
lateral (Fig. 3C), while both groups of cells express nkx2.7
(Fig. 3B). At 36 hpf, nkx2.7 expression encompasses both the
heart and overlying pharyngeal endoderm (Fig. 3F) which are
marked individually by nkx2.5 (Fig. 3E) and nkx2.3 (Fig.
3G), respectively. While individual cells were not moni-
tored continuously, the precise positional information ob-
tained at very frequent developmental intervals argues

FIG. 4. Schematic representation of the position of cardiac meso- strongly that the earliest nkx2.7-expressing cells and their
dermal and pharyngeal endodermal progenitors in the zebrafish an- descendants go on to form both heart and definitive endo-
terior hypoblast at 18 somites (18 hpf) and 22 somites (20 hpf). derm.
The upper diagrams are idealized ventral views, while those below
represent transverse sections. Shading marks the domains of gene
expression, as indicated in the key. The fourth ventricle in the
hindbrain (IV) is labeled to help with orientation, as is the portion DISCUSSION
moyenne (pm). See text for details.

Evolution of Vertebrate Genes Related to tinman

nkx2.7 is a new member of the tinman-related subfam-
ily of NK homeodomain genes. It contains the hallmarkExpression of the Novel Gene nkx2.7 Precedes and
domains—the tinman-like amino terminal decapeptide,Overlaps nkx2.5 and nkx2.3
homeobox, and NK2 domain—that are characteristic of
its vertebrate relatives. Outside these regions, nkx2.7 di-The onset of nkx2.7 expression soon after gastrulation

at the 0– 1 somite stage (10.5 hpf) is the earliest among verges substantially from the other members, although
it is somewhat more similar to nkx2.3 than to nkx2.5.the three tinman-related genes in the zebrafish (Fig. 2I).

It appears first in cells in a V-shaped band, apex anterior, Zebrafish nkx2.5 and nkx2.3, on the other hand, appear
on the basis of sequence conservation to be the structurallying ventrolaterally in the anterior hypoblast. Initially

two to three cells wide, this band broadens by the 8–9 orthologs of their namesakes in other species. As noted
(Evans et al., 1995), the evolution of these genes fits ansomite stage (13 hpf; Figs. 2J and 3D). As development

proceeds further, the rostral-most expression of nkx2.7 increasingly well-established paradigm—recognized also
in the myogenic bHLH and MEF2 transcription factorwanes while the lateral segments of the band on either

side extend medially within the mesendoderm (Figs. 2K families, among others—in which a single Drosophila
gene is represented in vertebrates by a group of relatedand 3B). The cells in these bands are more densely consoli-

dated anteromedially, and these consolidations migrate genes with subspecialized and often diversified function
(Abmayr et al., 1995).further medially to form a Y-shaped structure at the 20

somite stage (19 hpf), a ring at 22 somites (20 hpf), and a Despite the conserved coding sequences among the ver-
tebrate nkx2.5 orthologs and nkx2.3 orthologs, the datarudimentary fused heart tube at 24 hpf, identical to the

patterns seen with nkx2.5 (compare Figs. 2D and 2L, 2E reported here indicate that the transcriptional regulation
of these genes differs in different species. In the mouse,and 2M, 2G and 2N). Double staining with nkx2.5 and

nkx2.7 probes indicates that both genes are expressed in frog, and chick, Nkx-2.5 is expressed both in heart and in
pharyngeal endoderm (Lints et al., 1993; Tonissen et al.,the same cells in these cardiac primordia (data not

shown). Cardiac expression of nkx2.7 persists at 36 hpf 1994; Schultheiss et al., 1995). In the zebrafish, however,
nkx2.5 transcripts do not appear in definitive endoderm,in the single cell layer of myocardium (Figs. 2O, 2P, 3F,

and 3H; the endocardial cell layer is not well preserved at least through 48 hpf, although they are transiently ex-
pressed at a low level in cells that may be endodermalin sections of whole mount embryos). The more lateral

extracardiac nkx2.7-expressing cells appear to be the precursors. The regulation of nkx2.3, expressed in zebra-
fish pharyngeal arch and gut endoderm but not in thesame as those that later express nkx2.3 and go on to form

the pharyngeal arch and gut endoderm (compare Figs. 2N – cardiac lineage, also differs from that of its orthologs in
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the frog, which are expressed both in endoderm and heart lineage-restricted progenitors in the blastula and the later
emergence of differentiated phenotypes (Kimmel et al.,(Evans et al., 1995). Thus, the early embryonic expression

patterns of nkx2.5 and nkx2.3 are relatively lineage-spe- 1990; Stainier et al., 1993).
cific in the zebrafish as compared to other vertebrates.
These genes have apparently come to be regulated under

Gene Regulatory Mechanisms in the Ontogeny ofdifferent developmental programs in different species fol-
the Definitive Heart and Endodermlowing their emergence by gene duplication in ancestral

vertebrates, as also noted for the MEF2 transcription fac- nkx2.7 is likely to be a principal element in the molecu-
tor family (Ticho et al., 1996). lar hierarchy underlying cardiac and endoderm develop-

To understand more completely the developmental role ment. The sequential activation of the tinman-related
of the tinman-related gene family, it will be important to genes raises the possibility that the nkx2.7 product might
identify putative nkx2.7 orthologs in other vertebrates. The interact with or regulate nkx2.5 and nkx2.3 in their re-
potential for functional redundancy among the members of spective lineages. In the heart, mechanisms of myocar-
this family has been previously noted; thus, a murine dial-specific gene regulation must also involve other cell
nkx2.7 ortholog might substitute, in part, for the lack of type-restricted transcription factors—particularly the
Nkx-2.5 in the Nkx-2.50/0 mouse (Evans et al., 1995; Lyons MADS box factor MEF2C (Edmondson et al., 1994) and
et al., 1995), supporting normal cardiac development in the the zinc finger factor GATA-4 (Kelley et al., 1993; Heikin-
earliest stages prior to heart tube looping. It has not escaped heimo et al., 1994) —that appear simultaneously, or
notice, however, that nkx2.7 may instead be unique to the nearly simultaneously, with Nkx-2.5 in the precardiac
fish and subserve functions which, in other vertebrates, are mesoderm of vertebrate species, including the zebrafish
met by Nkx-2.5 and Nkx-2.3 alone. (Ticho et al., 1996). Analogous mechanisms, involving

nkx2.7, nkx2.3, and other endodermal factors are also
likely to operate in endoderm development.Role of nkx2.7, nkx2.5, and nkx2.3 in Partitioning

The inductive role of anterior endoderm upon precardiacthe Embryonic Hypoblast
mesoderm is well established in vertebrates (Jacobson and

The zebrafish hypoblast comprises cells that involute Sater, 1988; Muslin and Williams, 1991; Nascone and Mer-
from the blastoderm margin beneath the epiblast (future cola, 1995; Schultheiss et al., 1995; and references therein).
ectoderm) during gastrulation and go on to differentiate The expression of nkx2.7 in both these embryonic tissues
into mesoderm and endoderm (Warga and Kimmel, 1990). begs the question as to whether tinman-related genes might
Prior to involution, both cardiac and endodermal progeni- have a central role in that induction, as posed by others
tors reside near the marginal extremes of the blastoderm (Lints et al., 1993; Evans et al., 1995). For example, nkx2.7
(Kimmel et al., 1990; Solnica-Krezel et al., 1995). Interca- might control the expression of inductive mediators such
lating cell movements result in rearrangement of the hy- as cell surface or soluble ligands and cognate receptors; how-
poblast in the gastrula, such that the precise positional ever, there is no reason to expect a priori that genes in both
organization of mesodermal versus endodermal progeni- tissues would have to be regulated by members of the same
tors for the period between gastrulation and phenotypic transcription factor family.
differentiation has not been fate mapped (Warga and Kim- A better understanding of heart and endoderm ontog-
mel, 1990; Kimmel et al., 1990; Ho and Kimmel, 1993; eny, and the relationship between them, will come in
Solnica-Krezel et al., 1995). nkx2.7 appears to be ex- part from the elucidation of signals that induce nkx2.7,
pressed in cells of both the mesodermal and endodermal nkx2.5, and nkx2.3, and of the target genes that are in
lineages. Our findings suggest that the former lie rela- turn activated by them. nkx2.7 is the earliest molecular
tively medially in the ventral hypoblast and give rise to marker of zebrafish precardiac mesoderm and anterior en-
the myocardium while the latter reside more laterally and doderm found to date. nkx2.5 is also likely to be a key
give rise to endoderm derivatives, including the epithelial regulator of cardiac development, while nkx2.3 is the only
lining of the pharyngeal arches and pouches (Fig. 4). endoderm-specific gene identified at present in the zebra-
nkx2.7 anticipates positionally as well as temporally the fish. Taken together, the findings reported here provide
expression of nkx2.5 and nkx2.3 in these lineages: precar- an essential framework and important molecular tools for
diac mesoderm is marked by nkx2.7 followed 4.5 hr later the investigation of abnormal developmental phenotypes
by nkx2.5, while endodermal precursors are marked by arising in mutagenesis screens and through molecular
nkx2.7 followed 9.5 hr later by nkx2.3. Confirmation of perturbation of the embryo.
these relationships must await experiments in which cell
fate and specific gene expression can be determined si-
multaneously. The findings, however, provide the first ACKNOWLEDGMENTS
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