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We consider independence results concerning two topological problems. First, a space 
is defined to be weakly Lindeldf iff every open cover admits a subcover of cardinality 
less than c. We intmlduce a topological hypothesis M and show that it implies that every 
weakly VLindeNf regular separable T r space is countably compact iff it is compact. We 
then show that H follows from MaiGn’s axiom and is, therefore, consistent with th,e ne- 
gation of the continuum hypothesis. We afso note that it is consistent with the negation 
of the continuum hypothesis that there exist a separable normal countably-eompact Tr 
space of cardinality HI (and thus weakly LindeNif) which is not compact. 

In another direction, we define uncountable cardinals Kt G Kc < c, and we prove that 
every product of fewer than Kt (sequeritiady compact) strongly HO-compact spaces is itself 
(sequentially compact) strongly &,-compact and that any product of no more than K, such 
spaces is countably compact. On the other hand, we show that no product of Kc OX vs‘rore 
non-NO-bounded spaces can be strongly HO-compact. We then show that it is consistent, with 
the negation of the continuum hypothesis both that K, = K, = ti r and that K, = Kc = C. 

We conclude with some open questions. 
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Lindeliif countably compact 
compact sequentially, compact 
He-bounded strongly He-compact 
Martin’s axiom continuum hypothesis 

1. Introduction 

In this paper we shall consider indepen,dence results concerning some 
well known generalizations of compactness. C.333 set of results will gen- 
eralize the obvious fact that every countably-compact LindelBf spat-T 
is compact. We suppose that the continuum hypothesis fails and nolee 
that we may reasonably define a sy,aee to be weak& Lindel6f .iff 

* 
The preparation of this paper was partially supported by a grant from the Faculty Research 
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-open cover admits a subcover of cardinality strictly less than cL It is 
not me @iven the negation of th e continuum hypothesis) that every 
we&ly-lindeli)f countably-compact space is compact; the ordinal 
space [O, S2) is a convenient counterexample. However, since every 
countable subset of this space is relatively compact, we are led to con- 
sider separable spaces, and, for technical reasons, we shall also require 
regularity. Even these will not be sufficient in all models of set theory, 
but what we shall prove is that given a certain topological hypothesis 

which we shall show is a consequence of Martin’s axiom [7 1 and 
which is, therefore, consistent with the negation of the continuum 
hypothesis [ 121, then every countably-compact weakly-lindelijf re- 
g~lar separable T1 space is compact. On the other hand, we shall prove 
that F l < c < 2”1 implies that there exists a non-compact such space. 

We shall also consider a generalization of sequential compactness. 
We remember that a space is sequlentially compact iff every sequezz 
in it admits a convergent subsequence and that Scarborough and Stone 
[ 111 have proven that while sequential compactness is countably pro- 
ductive, no product of c or more T, spaces each containing at least 
twlo elements is ever sequentially compact. Following Saks and Ste- 
phenson [ 1 S], we define a space to be stron@” No-compact iff for every 
infinite subset s there is an infinite subset T 5, S which is relatively 
compact. l Clearly, sequential compactness’implies strong H o-com- 
pactness in Hausdorff spaces (but not necessarily in T, spaces where 
a sequence may have infinitely many limit points). Froiik [ 51, when 
he first introduced the notion, proved it was countably productive and 
found a family of c strongly Ho-compact spaces whose product was 
not strongly Ho-compact. A direct analogue of the second Scarborou&-- 
Stone theorem is, of course, impossible since compactness implies strong 
Ho-compactness and is productive. In fact, if, again following Saks and 
Stephenson, we define a space to be No-bmmded iff each of its count- 
able subsets is relatively compact, then we see that la o,-boundedness is 
also productive and implies strong No-compactness. Thus any analogue 
of this theorem must necessarily exclude such spaces. We show that ex- 
cluding such spaces is sufficient in that we prove that there exists 2n 
uncountable 
% o -bouz.ded 

dinnl KC G c such that no product of KC or more .~on- 
usdorff spaces can be strongly n,-compact. We also 

extend the first Scarborough-Stone theorem by proving that there ex- 

’ This definition differs slightly from that given in [lo], but it is equivalent in Hausdorff 
spaces. 



ists a ncountable cardinal I& 6 c su hat every product of fewer 
than sequentially compact or stron 
sequentially compact 9r strongly He-corn 

In what follows, when we use the terms “‘regular” and “normal”,. we 
shall mean them to in&& the property of being TI . Finally, we shall 
assume the axiom of Choice throughout and without further mention, 
and whenever we speak of “consistency” we shall be referring to consis- 
tency with respect to the axioms of Zermelo-Fraenkel set theory. This 
latter is simply a convenience based on the fact th.at almost all indepen- 
dence proofs in the literature are with respect to this system. 

We wish to thank both the referee and Franklin Tall for suggestions 
which resulted in a strengthening of 3.1 and 3.5, and we would ilike lto 
thtik the referee for suggesting that we consider the implication M --, S 

in 3.8 and for many other useful suggestions. 

2. Products of some weakly compact spaces 

We begin with some combinatorial notions concerning the f?>mily of 
subsets of the set N of natural numbers which we shall use both in this 
and the following section. For any two setis A, I? C, N we define 

AE*B iff A-B isfinite, 

A =* B iff AE*B andBG*A,and 

AC*B iff AE*B butA+*B. 

We then define a family (F, C N: a < K) tto be a rc-tower iff 

and to be an inverse K-tower iff 

Such an (inverse) tower is defineld to be rncrtximal iff there is no set 
’ such that the family {F,: ut < K } is an (inverse) (K + 1).tower. 

that the family {F,: a <: K ) is a maximal K-tower iff 
- Fa: Q < K ) is a maxi&al inverse K-tower., and we define 

the smallest cardinal K such that there exists a’maxirnal K-tower. 
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Booth [ 1,2] has noted that &lartin’s axiom implies that K, = : while 
Rothberger [9] has proven that 

The cmwse of Rothberger’s theorem is not true, however. If we look 
at Cohen’s [3] original models of the negation of the continuum hypoth- 
esis, we see that if we ta e any family of H 1 generic sets and use it to 
construct an PC f -tower by the standard diagonalization techniques, us- 
ing only constructible reorderings of countable ordinals, the resulting 
tower will be maximal. On the other hand, it is well known that in these 
modelswehaveH0GK<c+2K =c. 

We shall need another notion which, to the author’s knowledge, 
has not been dealt with before. Define a family 9 of functions from 
.N into N to be complete iff for every infinite set S C N there exists a 
fun.ctionfE 3 such that f[S] = N, and define Kc to be the cardinality 
of *ihe smallest complete family. Using an argument similar to that 
above, we can easily see rhat in the Cohen models mentioned above 
Kc = pf 1, and since we shall show lE.ter (2.8) that Kc 2 Kt , it follows 
that Martin’s axiom also H~olies that Kc = c. 

We are now ready to consider products of strongly &-,-compact 
spaces and some generalizations of the follotiing three theorems due 
to Scarborough and Stone. 

2.1. Theorem. Every product of at most HO sequentially compact (spaces 
is sequentially compclct [ 1 I, proof of 5.2 1. 

orem. Every pro uct of at most H 1 sequentiallg, compact spaces 
bly compact [ 1 

2.3. eorem. No prol;~uct of c or more T, spaces each containing at 
least two points is sequentially compact [ 11,5.3,5.4]. 

In his original paper Frolik [ 5 ] proved 2.1 for strongly H 0-compact 
spaces, and Saks and Stephenson [ 1 O] proved that 2.2 also holds for 
these spaces. e observe that these latter proofs as well as the original 
proofs of 2. i and 2.2 require only that one be able to extend any count- 
able at-tower. Thus we see immediately: 



. 2 Every product offewer than Kt (sequentially cotipixt) 

0-compact spaces is itself (sequentially Cm2pact) strongly IS O- 
act, and ewry product of no more than such spaces is count- 

ably compact. Cl 

ary. It is consistent with the negation of the cont&~.~nz hy- 
pothesis that eveq) product of fewer than c (sequentiQl& compact) 
strongly MO-compact spaces is (sequentially compact) strongly H,,-cum- 
pact and that every product of no more than c such spaces is comtably 
compact. 

Roof. As we mentioned, it is consistent with the negation of the con- 
tinuum hypotheses that K, = c. C: 

With respect to 2.3, Booth [ 1,2] has found an uncountable cardinal 
less than or equal to c which :isequal to H l in Cohen models and can 
be used to replace c, and rolik [ 5 I has exhibited a particular product 
of c strongly Ho-compact spaces which is not itself strongly H ~-corn= 
pact. As we have alre;ady pointed out, every product of Me-bounded 
spaces is PC o-bounded and, therefore, strongly H ,-compact. Thus the 
following is, in a sense, best possible. 

2.6. Theorem. If { TQ : a < Kc ) is any collection of non-NO-bounded 
Hausdorff spaces, then T* = IIT& is not strongly MO-cornpac,~. 

Roof. Since each T4 is norMe-bounded, it must contain a couniably- 
infinite non-relatively-compact subset which we may, without loss of 
generality, assume to be N (although not necessarily with the discrete 
topology). We now define a set Q[, = 19, : n E N)G T* a~ follows; Let 
9 = cfol : a < Kc ) be any complete family of functions from N into N, 

for each PI E N and each a < KC define 

Now let !P be any infinite subset of Qr, and let 

s= (n: tpn E 9) l 

2 This theorem with respect to sequentia111y compact spaces was probably known to David 
Booth. 



Then the projection of !I? onto Tel is simply fiS - But lxmluse y is cam- 

$ete, there must be at least one fl < KC such th tf,[sl = N. l-b 
projection of * onto T8 is not relatively compact, and since TP is 
dorff, thila implies that lil[r itself cannot be relativzty compact in IF*. 
have, therefore, Shown that no infinite subset e countable set 
@ C. T* is relatively compact, so T* is not stro ‘LI Ho-compact. 0 

Next, noting that if a product of spaces is strongly Ho-compac 
so must be the factors, we: see: 

2.7. Corollary. If a strongly Ho-cumpitcl Hausdorff space cun be express- 
ed as LL product of spaces, then QN but fewer than of the factors must 
be H o-bou,lded. a 

Nvw, using the 
tinuum hypothesis, 

ion of the con- 

ry. bt is consistent with the negation of the continuum hy- 
pothesis that no product of H l or more non-HO-bounded Hausdorff 
spaces be strongly HO -compact, and that any strongly PC Oqompact 
Hausdorff space expres,rible as a product admits fewer than KC non-k+-,- 
bounded factors. c3 

Finally, combining 2.4 with 2.6, we obtain: 

My Eindeliif spaces 

Earlier, we defined a space to be wecEkZy L&de&f iff every open cover 
admits a subcover of ca&nality less thiln c, an , similarly, we define 
a space to be weakly separaole iff it contains a dense set of cnrdinaiity 
less than c, weakly first countable iff each @lint has a ne@borhood 
base of cardinality less than ~3, and Ho-weakly Lindeliif iff the closure 
of each countable subset is weakly Lindelof. 

e begin with a topological hypotkis H which will imply most of 
suits in this sect 

known consequence 
with the negatio;l of 



actly equal to C. 

= c and that every non-compact countab 
table separable regular space has cardinal 

dense subset T, space and there exists 

space such th eset {UnD: UE ?c! ) 
has cardinaCty less than c and admits no finite subcover of D, &en 
there exists an iqfhite closed discrete subset of D. 

is rather technical in form, it h s rather surprising con- 
aps the most striking is the fo 

3.1. Theorem. H implies that a weakly-L&deliif separable regular space 
& countably compact iff it is compact. 

Roof. ,4ssume H holds, let T ‘be hny weakly-Lindelof countably-com- 
pact separable regular space, a.rd let D be any countable dense subset 
of Z Now choose any open cover of T. Because T is weakly Lindelof, 
we may assume that this cover has cardinality less than c, and thus, by 
H, there exists either an infinite closed discrete subset of D or a finite 
subcover of D. But T is countably compact, so it cannot contain an infinite 
closed discrete subset. We have, therefore, shoal that every open cover 
of T admits a finite su.bcover of the dense subset D, and it is well known 
that in regular spaces this implies compactness. a 

If we drop separability and look instead at the closures of the count- 
able subsets of a space, we have: 

3.2. Corollary. H implies that e&very #O-weakly-lindeliif regular space is 
countably compact iff it is H O-bounded. [5 

Although, as we shall show later, regularity is actually needed in the 
above, we have developed elsewhere [6] analogues to the compactness 
notions which we have referred to earlier. These notions, which we have 
called e-compactness, e-relative compactness, and e-N o-boundedness, 
reduce to the standard notions in regular spaces and may be used to 
replace these standard notions in the above theorems sn.d corolIaries 
when non-regular T, spaces are considered. In Hausdor!“lf spaces e-com- 

actness implies (but is strictly stronger than) absolute closure, so COW 
elusions concerning absolute closure may easily be obtained from the 
above. 



able compactness, so although it is well known [8] t at countable CQ’m- 
pactness is ncrc: even finitely productive, we have: 

3.3. COT4311 H tmplies that every product of Ho-weakly-LindelZ)f 
countab&co&act T, sakes is countably compact. 

oaf, If the spaces are regular, then by 3.2 they are Ho-bounded, and 
I+boundedness is easily seen to be productive and to imply countable 
compactness. For non-reg lar T, spaces e same proof applies using 
e-H O -boundedness ‘in plac of Ho-bound 

To see that both regularity and SOIW set theoretical or topological 
hypotheses are needed to obtain conc:fus,ions such as those 4 2. B , we 
look at some very useful spaces recently found by Frank% and Rajagopalan. 
In theti paper IA 1 c-* T J 1 iddbi and h..agopdan show how to use any in- 
verse K-tower (where K is any cardinal of cofinality greater than w) to 
construct a non-regular non-cl;rnpact sequentially-compact (and, there- 
fore, countably-compact) separable regular space of cardinal@ K. Fur- 
thermore they note that if the inverse tower is maximal, then it is pos- 
sible to delete one poirit from the space in such a way that the space 
remains non-compact qnd sequentially compact but becomes normal. 
(Explicit constructions of these spaces can be found in [6] .) Thus we 
have : 

3.4.Theor~m. If the continuum hypothesis fails, then there exists a 
coun tably-compact weakly-Lindeliif separable HaucJorff spats which 
is not compact. Furthermore, it is consistent (with the negation of the 
continuum hypothesis) that there exist such a space which is normal as 
well. c3 

Combining this with 3.1, we obtain: 

(rry. lt is independent of the negation of the continuum 
hypsthesls as to whether or not every weakly-LlndeRij coun tably-corn-1 
pact seiuarable regul&r (or normal) b,i;‘ace is compuct. cl 

In particular,, since Kr > H 1 + 2’1 == 2Hg, we have: 



urthemore, if we pare 3. X (with the second part of 3.4 and note 
the spaces referre o in the latter exist if Kt < c, we see: 

3. rY* implies that: 

60 K, == c, and 
(b) t’+~ < K < c -+ 2” = c. 0 

Using this, we see: 

3.8. Theorem. H implies that every weakly separable weakly-first-cuun t-. 
able Hausdqff space has cardinality at most c and that every non-corn- 
pact countable-compact weakly-first-countable regular separ&le space 
has cardinality exactly equal to c. * 

Roof. The standr,rd proof that separable first-countable Hausdorff spaces 
have cardinality at most c makes use of the fact that ~‘0 = C. The sarrne 
proof when generalized to weak separability and weak first countability 
requires only that for K < c we have cK = cc. But th!.s follows immediate!.y 
from H by 3,7b. The secoid part then follows directly from the first 
part and 3.1 because a space of cardinality less than c is necessarily 
weakly Lindelijf. 0 

Finally, to prove the consistency of H, we consider the following hy- 
pothesis, which is a slight weakening of the hypothesis S, introduced in 
71 where it was shown to be a consequerce of lMart.tn’s axiom and, 
herefore, consistent with the negation of the continuum hypothesis. 

s. If 9 is any family of fewer than c subsets of N and no finite 
subfamily of 9 covers all but finiteIy many members of N, then 
there exists an infinite set M 2 N such that no member of 3: con- 
tains infinitely many members of M. 

This hypothesis is important to us because: 

3.9. Theortzm. The hypotheses S and H tire equivalent. 

Proof. S + H. Let D and W be as in the hypotheses of H. Then\ the set 
{U n D: UE Cu ) satisfies the hypotheses of S with respect to D, so 
there must exist an infinite set M C, D such that for each I.JE Cu the 
set U n M is finite. But because Cu is an open cover and the space in 

ses of S, and assume that 
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and that each member of 9 is infinite. Then consider the topological 
space Ts 5FU with the topology generated by the base defined 
as foilows: 

(a) Every subset 

t: subset of T. 
Now let % = {F U CF): FE 9 }. Clearly, Cu is an open cover of T of > 

cardinality I 9 1 which we have assumed to be less than c. 
nditions @n F , no finite subset of <ic can cover N, so 
to obtain an inWte closed discrete subset M of N. H 

fact that M is closed .ensures that F n M is finite for all E E F . 0 

(1) Booth [ 11 has shown that there ex sts a combinaiol-i 
cardinal g< s*mnk +b-+ b,‘vra LllQl a product of K copies o 
space is sequentially compact iff K < K, and has proven the con- 
sistencyofk$ <c=K< 2 % Can results of this kind be obtained for 
products of arbitrary sequentially compact s aces or products af strongly 
He-compact but non-NO-bounded spaces? In particular, cart the hypothesis 
Kt = c be replaced bv weaker hypotheses which do not imply 2’0 = 2”1? r 

(2) Hs it consistent that Kc be strictly greater than Kc? 

(3) Is it consistent that there exist: a family of fewer thzln KC strongly- 
HO-compact spaces whose product is not strongly HO-compact? This 
would, of course, imply Kt less than KC. 

imply Martin’s axiom? 

(5) Do any of the consequences of H mentioned imply H? In 
cular, does k& = c imply W? 
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