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We consider independence results concerning two topological problems. First, a space
is defined to be weakly Lindeldf iff every open cover admits a subcover of cardinality
less than c. We introduce a topological hy pothesis H and show that it implies that every
weakly-Lindel6f regular separable T space is countably cocmpact iff it is compact. We
then show that H follows from Martin’s axiom and is, therefore, consistent with the ne-
gation of the continuum hypothesis. We also note that it is consistent with the negation
of the continuum hypothesis that there exist a separable normal countably-compact T
space of cardinality ®; (and thus weakly Lindel6f) which is not compact.

In another direction, we define uncountable cardinals K, <K, < ¢, and we prove that
every product of fewer than K, (sequertiaily compact) strongly ®-compact spaces is itself
(sequentially compact) strongly ¥,-compact and that any product of no more than K such
spaces is countably compact. On the other hand, we show that no product of K o OF niore
non-8,-bounded spaces can be strongly X -compact. We then show that it is consistent with
the negation of the continuum hypothesis both that K, =K, =, and that K, =K, =c.

We conclude with some open questions.

AMS Subj. Class.: Primary, 54D20, 54A25, 02K05, 02K25.

Lindelof countably compact
compact sequentially compact
No-bounded strongly Rg-compact
Martin’s axiom continuum hypothesis

1. Introduction

In this paper we shall consider independence results concerning some
well known generalizations of compactnzss. One set of results will gen-
eralize the obvious fact that every countably-compact Lindelof spac:
is compact. We suppose that the continuum hypothesis fails and note
that we may reasonably define a space to be weakly Lindeldf iff every

* The preparation of this paper was partially supported by a grant from the Faculty Research
Award Program of the City University of New York.
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'open cover admlts a subcover of cardmallty strictly less thanc. Itis
- not true (given the negatlon of the continuum hypothesis) that every
'weakly-LmdeIOf countably—compact space is compact; the ordinal
space [0, £2) is a convenient counterexample. However, since every
“countable subset of this space is relatively compact, we are led to con-
‘sider separable spaces, and, for technical reasons, we shall also require
regularity. Even these will not be sufficient in all inodels of set theory,
‘but what we shall prove is that given a certain topological hypothesis
'H which we shall show is a consequence of Martin’s axiom {7] and
which is, therefore, consistent with the negation of the continuum
hypothesis [12], then every countably-compact weakly-Lindelof re-
gular separable T, space is compact. On the other hand, we shall prove
that ¥ < ¢ < 2™ implies that there exists a non-compact such space.
We shall also consider a generalization of sequential compactness.
We remember that a space is sequentially compact iff every sequene
in it admits a convergent subsequence and that Scarborough and Stone
[11] have proven that while sequential compactness is countably pro-
ductive, no product of ¢ or more T, spaces each containing at least
two elements is ever sequentially compact. Following Saks and Ste-
phenson [10], we define a space to be strongly R,-compact iff for every
infinite subset 5 there is an infinite subset T € S which is relatively
compact.® Clearly, sequential compactness implies strong ¥ g-com-
pactness in Hausdorff spaces (but not necessarily in T, spaces where
a sequence may have infinitely many limit points). Froiik [S], when
he first introduced the notion, proved it was countably productive and
found a family of ¢ strongly Ng-compact spaces whose product was
not strongly Ny-compact. A direct analogue of the second Scarborough—
Stone theorem is, of course, impossible since compactness implies strong
N-compactness and is productive. In fact, if, again following Saks and
Stephenson, we define a space to be N -bounded iff each of its count-
able subsets is relatively compact, then we see that % ;-boundedness is
also productive and implies strong 8 ,-compactness. Thus any analogue
of this theorem must necessarily exclude such spaces. We show that ex-
cluding such spaces is sufficient in that we prove that there exists an
uncovntable cardinzal K, < ¢ such that no product of ¥, or more 10n-
Ng-bounded Hausdorff spaces can be strongly No-compact We also
extend the first Scarborough—Stone theorem by proving that there ex-

This definition differs slightly from that given in [10], but it is equivalent in Hausdorff
spaces,
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ists an uncountable cardinal X, < c such that every product of fewer
than K, sequentially compact or strongly 8,-compact spaces is itself
sequentially compact or strongly ®,-compact, respectively.

In what follows, when we use the terms ‘“‘regular” and “normal”’, we
shall mean them to include the property of being T, . Finally, we shall
assume the Axiom of Choice throughout and without further mention,
and whenever we speak of “consistency” we shall be referring to consis-
tency with respect to the axioms of Zermelo—Fraenkel sei theory. This
latter is simply a cenvenience based on the fact that almost all indepen-
dence proofs in the literature are with respect to this system.

We wish to thank both the referee and Franklin Tall for suggestions
which resulted in a strengthening of 3.1 and 3.5, and we would like to
thank the referee for suggesting that we consider the implication H— S
in 3.8 and for many other useful suggestions.

2. Products of some weakly compact spaces

We begin with some combinatorial notions concerning the fzmily of
subsets of the set N of natural numbers which we shall use both in this
and the following section. For any two sets A, B C N we define

AC*B iff A —B is finite,
A=*B iff AC*BandBC*A4,and
AC*B iff AC*BbutA+*B.
We then define a family {F, C N: a < x} to be a k-tower iff
a<B<k->Q#*F,C*F,
and to be an inverse k-tower iff
a<pf<k->F,c*F;#"N.
Such an (inverse) tower is defined to be maximal iff there is no set '
F, C N such that the family {F,: « <k} is an (inverse) (k + 1)-tower.
We note that the family {F,: a < «} is a maximal k-tower iff the family

{N—F,: a <k} is a maximal inverse k-tower, and we define K, to be
the smallest cardinal k such that there exists a maximal k-tower.
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; Booth [1 2] has noted that Martin’s axiom unphes that K, =+ while
*Rothbe“ger [9] has proven that

C Rg <K<K, > 2=c.

‘The converse of Rothberger’s theorem is not true, however. If we look
at Cohen’s [3] original models of the negation of the continuum hypoth-
esis, we see that if we take any family of 8, generic sets and use it to
construct an 8, -tower by the standard diagonalization techniques, us-
ing only constructible reorderings of countable ordinals, the resulting
‘tower will be maximal. On the other hand, it is well known that in these
models we have Ry < k < c - 2* =¢.

We shall need another notion which, to the author’s knowledge,
has not been dealt with before. Define a family F of functions from
N intc N to be complete iff for every infinite set S C N there exists a
function f € F such that f[S] =N, and define K, to be the cardinality
of the smallest complete family. Using an argument similar to that
above, we can easily see that in the Cohen models mentioned above
K, =¥, and since we shall show later (2.8) that K, > K, it follows
that Martin’s axiom also i.a»lies that K, = c.

- We are now ready to consider products of strongly X ,-compact
spaces and some generalizations of the following three theorems due
to Scarborough and Stone.

2.1. Theorem. Every product of at most R, sequentially compact spaces
is sequentially compact [11, proof of 5.2].

2.2. Theorem. Every product of at most 8, sequentially compact spaces
is countably compact [11 5.5].

2.3. Theorem. No product of ¢ or more T, spaces each containing at
least two points is sequentially compact [11,5.3,5.4].

In his original paper Frolik [S] proved 2.1 for strongly N o-compact
spaces, and Saks and Stephenson [10] proved that 2.2 also holds for
these spaces. We observe that these latter proofs as well as the original

proofs of 2.1 and 2.2 require only that one be able to extend any count-
able a-tower. Thus we see immediately:
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2.4. Theovem. 2 Every product of fewer than K, (sequentially compect)
strongly R ,-compact spaces is itself (sequentzally coempact) strongly 8 ,-
compact, and every product of no more than K, such spaces is count-
ably compact. O

2.5. Corollary. It is consistent with the negation of the continuum hy-
pothesis that every product of fewer than c (sequentially compact)
strongly ¥ ,-compact spaces is (sequentially compact) strongly R ,-com-
pact and that every product of no more than c such spaces is countably
compact. '

Proof. As we mentioned, it is consistent with the negatlon of the con-
tinuum hypotheses that K, =¢. T

With respect to 2.3, Booth [1,2] has found an uncountable cardinal
less than or equal to ¢ which is-equal to 8, in Cohen models andi can
be used to replace ¢, and Frolik [5] has exhibited a particular product
of ¢ strongly R j-compact spaces which is not itself strongly X ;-com-
pact. As we have already pointed out, every product of Ry-bounded
spaces is ¥ j-bounded and, therefore, strongly N,-compact. Thus the -
following is, in a sense, best possible.

2.6. Theorem. If {T, : « < K, } is any collection of non-R g-bounded
Hausdorff spaces, then T* =1IT, is not strongly xo-co_mpac;r. E

Proof. Since each T, is non-Xj-bounded, it must contain a countably- 3
infinite non»relanvely-compact subset which we may, without loss of
generality, assume to be N (although not necescarily with the discrete
topology). We now dafineaset ® = {¢, : n€ N}S T" as follows: ket -
F={f,: « < K,} be any complete family of functions from N into N,
and for each n € N and each « < K, define |

¢, (a) =f,(n).
Now let ¥ be any infinite subset of ®, and let
S={n¢,€V¥}.

2 This theorem with respect to sequentially compact spaces was probably known to David
Booth,
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“Then the projection of ¥ onto T, is simply f1S]. But because ¥ is com-
plete, there must be at least one § < K, such that f3[S] =N. Thus the
projection of ¥ onto T is not relatlvely compact, and since Tg is Haus-
dorff, this implies that \Il itself cannot be relatively compact in 7. We
have, therefore, shown that no infinite subset of the countable set
®C T is relatively compact, so T* is not strongly N y-compact. O

Next, noting that if a product of spaces is strongly ¥ ,-compact, then
so must be the factors, we see:

2.7. Corollary. If a strongly R -compact Hausdorff space can be express-
ed as a product of spaces, then all but fewer than K_ of the factors must
be Ry-bounded. O

Now, using the consistency of K, = 8, with the negation of the con-
tinuum hypothesis, we have:

2.8. Corollary. It is consistent with the negation of the continuum hy-
pothesis that no producr of 8, or more non-R y-bounded Hausdorff
spaces be strongly R -compact, and that any strongly ¥ ,-compact
Hausdorff space expressible as a product admits fewer than K, non-X ;-
bounded factors. O

Finally, combining 2.4 with 2.6, we obtain:

2.9. Corollary. K, < K,.O

3. Weakly Lindelof spaces

Earlier, we defined a space to be weakly Lindelof iff every open cover
admits a subcover of cardinality less than ¢, and, similarly, we define
a space to be weakly separable iff it contains a dense set of cardinality
less than ¢, weakly first countable iff each point has a neighborhood
base of cardinality less than ¢, and R j-weakly Lindelof itf the closure
of each countable subset is weakly Lindelof.

We begin with a topological hypothe:is H which will imply most of
the results in this section and which we shall show is equivalent to a
known consequence of Martin’s axiom [7] and is therefore consistent
with the negation of the continuum hypothesis [12]. We shall also show
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that it implies that K, = ¢ and that every non-compact countably-com-
pact weakly-first-countable separable regular space has cardinality ex-
actly equal tc c.

H. If D is any countable dense subset of a T space and there exists
an open cover U of the space such that the set {UNnD: UE Y }
has cardinality less than ¢ and admits no finite subcover of D, ihen
there exists an infinite closed discrete subset of D.

Although H is rather technical in form, it has rather surprising con-
sequences. Perhaps the most striking is the following.

3.1. Theorem. H implies that a weakly-Lindelof separable regular space
is countably compact iff it is compact. )

Proof. Assume H holds, let T be any weakly-Lindelof countably-com-

pact separable regular space, aiid let D be any countable dense subset

of 7. Now choose any open cover of 7. Because T is weakly Lindelof,

we may assume that this cover has cardinality less than ¢, and thus, by

H, there exists either an infinite closed discrete subset of D or a finite
subcover of D. But T is countably compact, so it cannot contain an infinite
closed discrete subset. We have, therefore, showva that every open cover

of T admits a finite subcover of the dense subset D, and it is well known
that in regular spaces this implies compactness. O

If we drop separability and look instead at the closures of the count-
able subsets of a space, we have:

3.2. Corollary. H implies that every R y-weakly-Lindelof regular space is
countably compact iff it is N y-bounded. O

Although, as we shall show later, regularity is actually needed in the
above, we have developed elsewhere [6] analogues to the compactness
notions which we have referred to earlier. These notions, which we have
called e-compactness, e-relative compactness, and e-8y-boundedness,
reduce to the standard notions in regular spaces and may be used to
replace these standard notions in the above theorems and corollaries
when non-regular T, spaces are considered. In Hausdorff spaces e-com-
pactness implies (but is strictly stronger than) absolute closure, so con-
clusions concerning absolute closure may easily be obtained from the
above.
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; Alw, it is shown that e-xo-boundedness is productwe and implies count-
‘able compactnﬂss, so although it is well known [8] that countable com-
pactness is noi even finitely productive, we have:

33, Corollary. H implies that every product of R y-weakly-Lindelof
countabiy-compact T, spaces is countably compact.

Proof. If the spaces are regular, then by 3.2 they are Xy-bounded, and
% o-boundedness is easily seen to be productive and to imply countable

compactness. For non-regular T, spaces the same proof applies using
e-Ry-boundedness in place of 8y-boundedness.

To see that both regularity and sore set theoretical or topolngical
hypotheses are needed to obtain conclusions such as those i’ s.1, we
look at some very useful spaces recently found by Frank’in and Rajagopalan.
In their paper {4] Franklin and Rajagopalan show how to use any in-
verse k-tower {where k is any cardinal of cofinality greater than w) to
construct a non-regular non-cuinpact sequentially-compact (and, there-
fore, countably-compact) separable regular space of cardinality k. Fur-
thermore they note that if the inverse tower is maximal, then it is pos-
sible to delete one point from the space in such a way that the space
remains non-compact and sequentially compact but becomes normal.
(Explicit constructions of these spaces can be found in [6].) Thus we
have:

3.4. Theorem. If the continuum hypothesis fails, then there exists a
countably-compact weakly-Lindelof separable Hausdorff space which
is not compact. Furthermore, it is consistent (with the negation of the

continuum hypothesis) that there exist such a space which is normal as
well. O

Combining this with 3.1, we obtain:
3.5. Corollary. it is independent of the negation of the continuum
hypothesis as to whether or not every weakly-Lindeldf countably-com-
pact separable regular (or normal) space is compact. O

In particular, since K, > 8, - 251 == 2% we have:

3.6. Corollary. If 8| < 2%0 < 281 then there exists a weakly-Lindelof

countably-compact normal separable s;. ace (of cardinality 8, ) which is
hot compact. O
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Further:nore, if we compare 3.! with the second part of 3.4 and note
that the spaces referred to in the latter exist if K, < c, we see:

3.7. Corollary. H implies that:
(@) K, = ¢, and
b)Ry<Kk<c->2"=c¢0O

Using this, we see:

3.8. Theorem. H implies that every weakly separable weakly-first-count-
able Hausdorff space has cardinality at most ¢ and that every non-com-
pact countable-compact weakly-first-countable regular separ.”le space
has cardinality exactly equal to c.

Preoof. The standard proof that separable first-countable Hausdorff spaces
have cardinality at most ¢ makes use of the fact that c¥° = ¢. The same
proof when generalized to weak separability and weak first countability
requires only that for k < ¢ we have c* = c. But this follows immediately
from H by 3.7b. The second part then follows directly from the first
part and 3.1 because a space of cardinality less than c is necessarily
weakly Lindelof. O

Finally, to prove the consistency of H, we consider the following hy-
pothesis, which is a slight weakening of the hypothesis S,, introduced in
[7] where it was shown to be a consequer:ce of Martin’s axiom and,
therefore, consistent with the negation of the continuum hypothesis.

S. If F is any family of fewer than c subsets of N and no finite
subfamily of F covers all but finitely many members of N, then
there exists an infinite set M C N such that no member of F con-
tains infinitely many members of M.

This hypothesis is important to us because:
3.9. Theorem. The hypotheses S and H are equivalent.

rroof. S - H. Let D and U be as in the hypotheses of H. Then the set
{Un D: Ue U} satisfies the hypotheses of S with respect to D, so
there must exist an infinite set M C D such that for each U€ U the
set U N M is finite. But because U is an open cover and the space in
question is T, M is clearly closed and discrete.

H - S. Let .7 satisfy the hypotheses of S, and assume that UF =N
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- and that each member of ¥ is infinite. Then consider the topological
“space T=FUN W1th the topology generated by the base B defined
-as follows:
(a) Every subset of N belongs to B.
bW)IfFe F,MCN,and M="F, thenM U {F} € B.
It is easily seen that T is a T, space and that N is a dense subset of 7.
Nowlet U= {FU {F}: F E F }. Clearly, < is an open cover of T of
cardinality | F | which we have assumed to be less than ¢. Also, by our
conditions cn F , no finite subset of U can cover N, so we may apply
H to obtain an infiite closed discrete subset M of N. However, the
fact that M is closed ensures that F N M is finite for all FEF . O

4. Open problems

(1) Booth [1] has shown that there exists a combinatorially defined
cardinal K such that a product of k copies of the two-element discrete
space is sequentially compact iff k < K, and he has proven the con-
sistency of 8; < ¢ = K < 2™:. Can results of this kind be obtained for
products of arbitrary sequentially compact spaces or products of strongly
Rg-compact but non-R ;-bounded spaces? In particular, can the hypothesis
K, = c be replaced by weaker hypotiieses which do not imply 28e = 2%1?

(2) Is it consistent that K, be strictly greater than K,?

(3) Is it consistent that there exist a family of fewer than K, strongly-
¥ ¢-compact spaces whose product is not strongly X ,-compact? This
would, of course, imply K, less than K.

(4) Does H imply Martin’s axiom?
(5) Do any of the consequences of H mentioned imply H? In parti-

cular, does K, = ¢ imply H?
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